HP-UX Reference
Vol 2: Sections 2 and 3

HP 9000 Series 300/800 Computers
HP-UX Release 7.0

HP Part Number 09000-90013

(ﬁp HEWLETT

PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard Company makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard Company shall not be liable for
errors contained herein or direct, indirect, special, incidental, or consequential
damages in connection with the furnishing, performance, or use of this material.

Warranty: A copy of the specific warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service Office. ‘

Copyright © Hewlett-Packard Company 1985, 1986, 1987, 1988, 1989

This documentation and software contains information which is protected by
copyright. All rights are reserved. Reproduction, adaptation, or translation

without written permission is prohibited except as allowed under the copyright
laws.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government Department of Defense
is subject to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in
Technical Data and Software clause in FAR 52.227-7013.

Copyright (C) AT&T, Inc. 1980, 1984, 1986

Copyright (C) The Regents of the University of California 1979, 1980, 1983,
1985

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. ‘

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. However, minor
changes may be made at reprint without changing the printing date. The
manual part number will change when extensive changes are made.

To ensure that you receive new editions of this manual when changes occur,
you may subscribe to the appropriate product support service, available through
your HP sales representative.

September 1989. First Edition. This manual replaces manual part number
09000-90009, and is valid for HP-UX Release 7.0 on both Series 300 and
Series 800 systems.

Notes

iv

Table of Contents
for
Volume 2

Table of Contents

Volume 2
Section 2: System Calls
Entry Name(Section) name Description
INTRO(2): FHETO vevevinrierenrerteoneneeesienaenaesnesreeesesbe bt caanenassbesoasbaessennsaresssasbessssnnennes introduction to system calls

ACCESS(2): access
ACCT(2): acct

determine accessibility of a file
enable or disable process accounting

ALARM(2): @larm ..ot set a process’s alarm clock
ATEXIT(2): GEEXIE wovvveviriircnniirererenentenncbrb s register a function to be called at program termination
AUDCTL(2): audctl start or halt auditing system; set or get audit files
AUDSWITCH(2): audswitchccoeuueueine ... suspend or resume auditing on current process

AUDWRITE(2): audwrite write audit record for self-auditing process
BRK(2): Brk, SHYK oot change data segment space allocation
BSDPROC(2): killpg, getpgrp, setpgrp, sigvec, signal 4.2 BSD-compatible process control facilities
CHDIR(2): CHAIT oovviiiiiiciitiicctc sttt st b s as change working directory
CHMOD(2): chmod, fchmod change access mode of file
CHOWN(2): chown, fchown change owner and group of a file
CHROOT(2): chroot change root directory
CLOSE(2): close close a file descriptor
CNODEID(2): cnodeid ... get the cnode ID of the local machine
CNODES(2): cnodes ... get a list of active nodes in cluster
CREAT(2). creat create a new file or rewrite an existing one
DUP2(2): dup2 .. duplicate an open file descriptor to a specific slot
DUP(2): dup duplicate an open file descriptor
ERRNO(2): errno error indicator for system calls
EXEC(2): execl, execv, execle, execve, execlp, execvp execute a file
execle: execute a fileoocevrciiniininineneeceeeeee .. see EXEC(2)
execl: execute a file . .. see EXEC(2)
execlp: execute a file see EXEC(2)
execve: execute a file .. see EXEC(2)
execv: execute a file .. see EXEC(2)
execup: execute a file .. see EXEC(2)
EXIT(2): €Xit, _EXIt vvvericiiririririinircniicnrnencreesiieees ... terminate process
fchmod: change access mode of file see CHMOD(2)
fchown: change owner and group of a file see CHOWN(2)
FCNTL(2): fentl file control
fgetacl: get access control list (ACL) information . see GETACL(2)
FORK(2): fork . create a new process
fpathconf: get configurable pathname variables see PATHCONF(2)
FSCTL(2): fsctl file system control.
fsetacl: set access control list (ACL) information ... see SETACL(2)
fstatfs: get file system statistics see STATFS(2)
fstat: get file status ... see STAT(2)
FSYNC(2): fsync . synchronize a file’s in-core state with its state on disk

FTIME(2): fHIE ovvvvereriicniiineieie et dr et st sas bbb s get date and time more precisely
ftruncate: truncate a file to a specified lengthccccoeviiiiii see TRUNCATE(2)
GETACCESS(2): getaccess ... get a user’s effective access rights to a file
GETACL(2): getacl, fQetacliiivnvninnivnnniciiiiineneienennans get access control list (ACL) information

GETAUDID(2): getaudid get the audit ID (aid) for the current process
GETAUDPROC(2): getaudproc get audit process flag for calling process
GETCONTEXT(2): = getcontext return the process context for context dependent file search
GETDIRENTRIES(2): ~ getdirentries ... get entries from a directory in a filesystem-independent format
getegid: get effective group ID see GETUID(2)
geteuid: get effective user group ID .. see GETUID(2)

HP-UX Release 7.0: September 1989 -1- (Table of Contents) v

Table of Contents
Volume 2

Entry Name(Section) name Description

GETEVENT(2): getevent get events and system calls currently being audited
getgid: get real Group ID ... b e r e an see GETUID(2)
GETGROUPS(2): getgroups get group access list
GETHOSTNAME(2): gethostname get name of current host
GETITIMER(2): GeHtIMeEr, SEHHEMETc.ovvvviiniiieneniisneiincncecnnecneroresieseserenens get/set value of interval timer
getpgrp2: get process group ID of specified process .. see GETPID(2)
getpgrp: 4.2 BSD-compatible process control facilities . see BSDPROC(2)
getpgrp. get process group ID see GETPID(2)
GETPID(2): getpid, getpgrp, getppid, getpgrp2 get process, process group, and parent process ID
getppid: get parent process ID see GETPID(2)
GETPRIVGRP(2): getprivgrp, setprivgrp . get and set special attributes for group
GETTIMEOFDAY(2): gettimeofday, settimeofday get/set date and time
GETUID(2): getuid, geteuid,

getgid, getegidcooovcecerniinnes get real user, effective user, real group, and effective group IDs
gtty: control device see STTY(2)
IOCTL(2): ioctl control device
KILL(2): Kill v send a signal to a process or a group of processes
killpg: 4.2 BSD-compatible process control facilities . see BSDPROC(2)
LINK(2): TIHK vt asneaens ... link to a file
LOCKF(2): lockf . .. provide semaphores and record locking on files
LSEEK(2): Iseek move read/write file pointer; seek
Istat: get file status see STAT(2)
Isync: update SUPET-DBIOCKcvveieiuiiiiiiiiieiciceicr et see SYNC(2)
MKDIR(2): TKAIT cvenveeeireeeeieteeeeeseeeteteetesesassses s asaesesssesssessensesansessesassesessansessesersnnsassass make a directory file
MKNOD(2):© mknod make a directory, or a special or ordinary file
MOUNT(2): mount mount a file system
MSGCTL(2): msgctl message control operations
MSGGET(2): msgget get message queue
MSGOP(2): msgsnd, msgrcv . . message operations
MSGICY: MESSAZE OPEIAtONS ...ooviiviiiieicie it oa e see MSGOP(2)
NICE(2): nice change priority of a process
OPEN(2): open open file for reading or writing
PATHCONF(2): get configurable pathname variables
PAUSE(2): pause suspend process until signal
PIPE(2). PIPE covirerieeirieeeieeenreseeeesassssiessesisstsaeseensessssesessesianaonsesesssstossonssssonense create an interprocess channel
PLOCK(2): plock lock process, text, or data in memory
PREALLOC(2): prealloc preallocate fast disk storage
PROFIL(2): profil execution time profile
PTRACE(2): ptrace ... process trace
READ(2): read, readv read input
READLINK(2): readlink . read value of a symbolic link
readv: read input see READ(2)
REBOOT(2): reboot boot the system
RENAME(2): rename change the name of a file
RMDIR(2): THALY cevvevinreseiveieiesiiesesseseesessessessasssssssessensssessensassesessessssessessossessessesaasensanses remove a directory file
RTPRIO(2): TEPFIO ..ot change or read realtime priority
sbrk: change data segment space allocation ..ot s see BRK(2)
SELECT(2): select synchronous I/O multiplexing
SEMCTL(2): semaphore control operations
SEMGET(2): semget ... get set of semaphores

vi (Table of Contents) -2- HP-UX Release 7.0: September 1989

Table of Contents

Volume 2
Entry Name(Section) name Description
Fo1510% () o /) 7 T T PP PSPPI semaphore operations
SETACL(2): setacl, fsetacl . set access control list (ACL) information
SETAUDID(2): SEHAUAIA ...oovevirrereirirenereeeerneieniisistsnes st csesenressesenees set audit ID (aid) for current process

SETAUDPROC(2): setaudproc ..
SETEVENT(2): setevent
setgid: set group ID
SETGROUPS(2): setgroups
SETHOSTNAME(2): sethostname
setitimer: set value of interval timer see GETITIMER(2)
SETPGID(2): setpgid, setpgrp2 set process group ID for job control
setpgrp2: set Process group IDccoiiieniinieiienieiicie e e e see SETPGID(2)
setpgrp: 4.2 BSD-compatible process control facilities see BSDPROC(2)
setpgrp — create session and set process group IDc.ccccvviiiiminiiiienieinineieeee e see SETSID(2)
setprivgrp: set special attributes for group see GETPRIVGRP(2)
setresgid: set real, effective, and saved group IDs see SETRESUID(2)

.. set or clear auditing on calling process
.. set current events and system calls to be audited
se€e SETUID(2)
set group access list
... set name of host cpu

SETRESUID(2): setresuid, setresgidcocovueees . set real, effective, and saved user and group IDs
SETSID(2): setsid, setpgrp create session and set process group ID
settimeofday: set date and HIMEcccevivviiiiiiiniii e see GETTIMEOFDAY(2)

SETUID(2): setuid, setgid ...
SHMCTL(2): shmctl
shmdt: shared memory operations
SHMGET(2): shmget
SHMOP(2): shmat, shmdt
SIGACTION(2): sigaction
SIGBLOCK(2): sigblock
sighold: signal management
sigignore: signal managementocoiierierennn
SIGNAL(2): signal
signal: 4.2 BSD-compatible process control facilities ...
SIGPAUSE(2): sigpause
sigpause: signal management .
SIGPENDING(2): sigpending examine pending signals
SIGPROCMASK(2): sigprocmask . examine and change blocked signals
sigrelse: signal MANAGEMENtccoiiveeiiiiiniiriie e s e bbb easbans see SIGSET(2V)
SIGSET(2V): sigset, sighold, sigrelse, sigignore, SIgPAUSEcoovmerrierereiiencriinrieiiieeins signal management
SIGSETMASK(2): sigsetmask ... set current signal mask
SIGSPACE(2): sigspace ... assure sufficient signal stack space
SIGSTACK(2): ~ sigstack ... set and /or get signal stack context

set user and group IDs
.. shared memory control operations
see SHMOP(2)
get shared memory segment
shared memory operations
... examine and change signal action
block signals
see SIGSET(2V)
...... SE€ SIGSET(2V)
... specify what to do upon receipt of a signal
. see BSDPROC(2)
atomically release blocked signals and wait for interrupt
see SIGSET(2V)

SIGSUSPEND(2): SISSUSPENA ..v.veevieeiitireeteacteitees ettt e as wait for a signal
sigvec: 4.2 BSD-compatible process control facilitiescocoovvereierieiniiiie see BSDPROC(2)
SIGVECTOR(2): sigvector software signal facilities

STAT(2): stat, Istat, fstat e etee et pr e et eenreaeeae e s aaeanen get file status
STATFS(2): statfs, fstatfs ... get file system statistics
STIME(2): SEHMIE cuecveieeeieeieseieresertntetertsenteiesae b et ebe sttt eb e st b st et b st st s b e saeba s sa et e b s enesssseaansiaee set time and date
STTY(2): SHY, GHY crereieiriiiieitsree e renes ... control device
SWAPON(2): swapon . . add a swap device for interleaved paging/swapping
SYMLINK(2): SYMIINK oeceiiiriciiiicitiniiicns e make symbolic link to a file
SYNC(2): SYNC, ISYNC vttt ettt as update super-block
SYSCONF(2): sysconf ... get configurable system variables
TIME(2): HIME eeeeiniieeeeereeteitetten et e sstsaeese st sser e s s e e e b st saea s s e s sb s sa e ss e b s aes e s ehaas e R b e bbess e b b eae bR sebe et get time

HP-UX Release 7.0: September 1989 -3- (Table of Contents) vii

Table of Contents

Volume 2

Entry Name(Section) name Description
TIMES(2): HIIES eovvvvrireriniiiriiisisisiiisest st sessse bbbt e sb bt nebenene get process and child process times
TRUNCATE(2): truncate, ftruncate .. truncate a file to a specified length
ULIMIT(2): BITIE oeeeieeeeeieceee s eestesaessesessessesessesesaessesasseessasssnsessoscssessenssnessesseseesenses get and set user limits

UMASK(2): umask set and get file creation mask
UMOUNT(2): UIMOUNLE eooiviiiiinrniiiiieiiiiiiniiree i iiiiiisee e ssree st sessssbsiersesesesssssabastsnsasnes unmount a file system
UNAME(2): uname . get name of current HP-UX system
UNLINK(2): unlink . . remove directory entry; delete file
USTAT(2): USEAE wevevvviviveniresiririsiisissesss et s n et s as bbb nbanas get file system statistics
UTIME(2): HETE woeeveiieeceiiiiieesteiene ettt sane s senenes set file access and modification times
VFORK(2): vfork . spawn new process in a virtual memory efficient way
VESMOUNT(2): vfsmount mount a file system
WAIT(2): - wait, wait3 wait for child or traced process to stop or terminate
wait3: wait for child or traced process to stop or terminate ... see WAIT(2)
waitpid: wait for child or traced process to stop or terminate .. see WAIT(2)
WRITE(2): write, writev write on a file
writev: write on a file see WRITE(2)

Section 3: System Calls

Entry Name(Section) name Description

A64L(3C): ab4l, 164a convert between long integer and base-64 ASCII string
INTRO(3): intro introduction to subroutines and libraries
ABORT(3C): abort generate a software abort fault
ABS(3C): abs return integer absolute value

ACLTOSTR(3C): .. convert access control list (ACL) structure to string form
acos: trigonometric functions .. see TRIG(3M)
addmntent. get file system descriptor file entry ..., see GETMNTENT(3X)
ADVANCE: process 16-bit characterscc.coceuu.. see NL_TOOLS_16(3C)
advance: regular expression compile and match routines see REGEXP(3X)
ALMANAC(3X): almanac ... return numeric date information in MPE format
asctime: convert date and time to StriNg ...t see CTIME(3C)
asin: trigonomMetric fUNCHONScooviiriiiiriisiciereie et bbb a e see TRIG(3M)
ASSERT(3X): assert verify program assertion
atan2: trigonometric functions see TRIG(3M)

atan: trigonometric functions
atof: convert string to double-precision number see STRTOD(3C)
BESSEL(3M): 0, j1, jn, y0, y1, yn Bessel functions
BLMODE(3C): blmode .. terminal block mode library interface
BSEARCH(3C): bsearch binary search a sorted table
byte_status, BYTE_STATUS: process 16-bit characters see NL_TOOLS_16(3C)
CALENDAR(3X): calendar return the MPE calendar date
calloc: fast main memory allocator see MALLOC(3X)
calloc: main Memory allOCatOrcccovimiiirini b s e see MALLOC(3C)
CATGETMSG(3C): catgetmsg . get message from a message catalog
CATGETS(3C): CAEGELS onenniieiiiiisiiiintitieie sttt bbbt e get a program message
CATREAD(3C): eatread MPE/RTE-style message catalog support
ceil: celHNE fUNCHON .ovpvseeineiieriit e s sara s rsns b see FLOOR(3M)
cfgetispeed: get tty intput baud rate .. see CFSPEED(3C)
cfgetospeed: get tty output baud rate .. see CFSPEED(3C)
cfsetispeed: set tty intput baud rate see CFSPEED(3C)

see TRIG(3M)

viii (Table of Contents) -4 - HP-UX Release 7.0: September 1989

Table of Contents

Volume 2
Entry Name(Section) name Description
cfsetospeed: set tty output baud rate ... see CFSPEED(3C)
CFSPEED(3C): cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeedcovvvivnnniines tty baud rate functions

CHARADV: process 16-bit characters see NL_TOOLS_16(3C)
CHARAT: process 16-bit characters ... see NL_TOOLS_16(3C)
CHOWNACL(3C): chownaclccooeeiirviercnianas change owner and/or group in access control list (ACL)
chpibegin, chpiclose, chpiconirol, chpidelete, chpiend, chpiervor, chpifind, chpifindset,

chpiget, chpiinfo, chpilock, chpimemo, chpiopen, chpiput, chpiundo,

chpiupdate: ALLBASE/HP-UX HPIMAGE programmatic callsccccooovnninnn see HPIMAGE(3X)
cjistosj, cjistouj: JIS, Shift JIS and UJIS code conversion .. see JCODE(3X)
clearerr: stream status inquiriesc.cooeeeuene see FERROR(3S)

CLOCK(3C): clock .. e et r et s b bbbttt bttt b bt b e report CPU time used
CLOCK(3X): clock . return the MPE clock value
closedir: directory OPerationsccooiviieiiiiiiiiee et see DIRECTORY(3C)

close_kana_kan — initialize KANA to KANJI conversion
closelog: control system log

see OPEN_KANA_KAN(3X)
see SYSLOG(3C)

compile: regular expression compile and match routinesccocooveeiicieiiieiccnnns see REGEXP(3X)
CONV(3C): toupper, tolower, _toupper, _tolower, F0ASCITccvvcvivivcnrvrercemmerienrererirenens translate characters
cosh: hyperbolic cosine function ... see SINH(3M)

cos: trigonometric functionscccoeeiciinnieenns see TRIG(3M)
CPACL(3C): cpacl, fepacl ... copy access control list (ACL) to another file
CRTO(3): crt0.0, mert0.0, frt0.0, mfrt0.0 ... execution startup routines
crt0.0: execution startup routines .. see CRTO(3)
CRYPT(3C): crypt, setkey, encrypt ... generate hashing encryption
csjtojis, csjtouj: JIS, Shift JIS and UJIS code conversion . see JCODE(3X)

CTERMID(3S): CEETTHIA ..o..eovevevurienecrinrinienreneesensensensestesessesasesessensoseesensansansone generate file name for terminal
CTIMEQ3C): ctime, nl_cxtime, localtime, gmtime, asctime, nl_ascxtime, timezone,
daylight, tzname, tzset, nl_ctime, nl_asctimecoooeveerceernvrennnns convert date and time to string

ctime: convert date and time to string ...
CTYPE(3C): isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,

ispunct, isprint, isgraph, iSCHErL, ISASCILccvviviivniniririiiiiresieis e classify characters
cujtojis, cujtosj: JIS, Shift JIS and UJIS code conversion ... see JCODE(3X)
currlangid: NLS information about native languages see LANGINFO(3C)
CURSES(3X): curses . CRT screen handling and optimization package
CUSERID(3S): cuserid get character login name of the user
CVINUM(3C): cotnum convert string to floating point number
DATALOCK(3C): datalock .. lock process into memory after allocating data and stack space
daylight: convert date and time to string : see CTIME(3C)
DBM(3X): dbminit, fetch, store, delete, firstkey, nextkey, dbmclose . data base subroutines
dbm_clearerr: data base subroutines see NDBM(3X)
dbmclose: data base subroutines see DBM(3X)
dbm_close: data base subroutines . see NDBM(3X)
dbm_delete: data base subroutines see NDBM(3X)
dbm_error: data base subroutines . see NDBM(3X)
dbm_fetch: data base subroutines . see NDBM(3X)
dbm_firstkey: data base subroutines ... see NDBM(3X)
dbminit: data base SUDTOUNEScicceiviviniiiiienreieiiee et et neenes see DBM(3X)
dbm_nextkey: data base subroutines ... see NDBM(3X)
dbm_open: data base subroutines ... See NDBM(3X)
dbm_store: data base subroutines see NDBM(3X)
delete: data Dase SUDIOUIINGScccceviviriireereeiimininiescorioiessoresassessarsssessesesssssassastesssssssssuassesessasen see DBM(3X)

.. see CTIME(3C)

HP-UX Release 7.0: September 1989 -5 (Table of Contents) ix

Table of Contents

Volume 2
Entry Name(Section) name Description
DIALBC): dial, undialcoocovvevoeviecnvinieneeieeeinreenenenes establish an out-going terminal line connection
DIRECTORY(3C): opendir, readdir, telldir, seekdir, rewinddir, closedircccovrueunne directory operations
DIV(3C): di0, IBIU ittt integer division and remainder
DRAND48(3C): drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,

seed48, [congas ... generate uniformly distributed pseudo-random numbers
ECVT(3C): ecvt, fcvt, gevt, Nl_gevtccccovvvvuviiuicnivniiicccierininin convert floating-point number to string
edata: last 10cations in PrOGIrAMcccceiviiiiiiiircii e s see END(3C)
encrypt. generate hashing encryption ... see CRYPT(3C)
END(3C): end, etext, edAtAoouvivivrrviiiiiieeeecisinrece st last locations in program

endccent: get cluster configuration entry
endfsent: get file system descriptor file entry .
endgrent: get group file entry ...
endmntent: get file system descriptor file entry
endpwent: get password file entry .. see GETPWENT(3C)
endpwent: get secure password file entry see GETSPWENT(3C)
endutent: access UtMP file ENLIY ..o see GETUT(3C)

see GETCCENT(3C)
.... see GETFSENT(3X)
... see GETGRENT(3C)

see GETMNTENT(3X)

erand48: generate pseudo-random NUMDETSccccoiiiiiviieiniiiice e see DRAND48(3C)
ERE(3M): erf, erfc .. error function and complementary error function
erfc: error function and complementary error funcHONccoiveeimieenrinicninee e see ERF(3M)

errno. system error messages see PERROR(3C)
etext: last locations in program ... see END(3C)
EXP(3M): exp, log, 10§10, pow, sqrtcccovvviirennnens exponential, logarithm, power, square root functions
fabs: absolute value function see FLOOR(3M)
FCLOSE(3S): fclose, fflush .. . close or flush a stream
fepacl: copy access control hst (ACL) to another file . .. see CPACL(3C)
fevt: convert floating-point number to string see ECVT(3C)

fdopen: associate a stream with a file desScriptor ... see FOPEN(3S)
feof: stream status INQUIKIES ... see FERROR(3S)
FERROR(3S): ferror, feof, clearerr, fileno .. stream status inquiries
fetch: data base SUDIOULINEScccccccoiininiiiieniiiinice et st et sene see DBM(3X)

flush: flush a stream
foetccent: . get cluster configuration entry

see FCLOSE(3S)
see GETCCENT(3C)

fgetc: get character from a stream fileccoceoeiiiiniiiiiniiii e see GETC(3S)
foetgrent: get group file eNtIY ...t see GETGRENT(3C)
FGETPOS(3S): fgetpos, fsetpos save or restore file position indicator for a stream
fgetpwent: get password file entry ... see GETPWENT(3C)

fgetpwent: get secure password file entry ...

. see GETSPWENT(3C)
fgets: get a string from a stream

see GETS(3S)

FILENO(3S): filen0 ...ueevviciiiice e map stream pointer to file descriptor
firstkey: data base subroutines see DBM(3X)
firstof2, FIRSTof2: process 16-bit characterscouviivcervircrinennniicsiiereeeresserenenes see NL_TOOLS_16(3C)
FLOOR(3M): floor, ceil, fmod, fabs ﬂoor ceiling, remainder, absolute value functions
fmod: remainder fUNCHON ..ot see FLOOR(3M)
FOPEN(3S): fopen, freopen, fdopen open or re-open a stream file; convert file to stream
fprintf. print formatted OULPUL ...ocovrvvviriririiiir see PRINTF(3S)
fprintmsg: print formatted output with numbered arguments . . see PRINTMSG(3C)

fputc: put character ON @ SIIEAIMNLccvivireeeriemeuiiiniieceertreeer et saesess e s senersseeneenses see PUTC(3S)
fputs: put a string on a stream see PUTS(3S)
FREAD(3S): fread, fwrite .. buffered bmary mput/output to a stream file
free: fast main memory allocator see MALLOC(3X)

x (Table of Contents) -6 — HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description

free: main memory allocator see MALLOC(3C)
freopen: re-open a stream file; convert file to stream see FOPEN(3S)
FREXP(3C): frexp, ldexp, modf split floating-point into mantissa and exponent
frt0.0: execution startup routines see CRT0(3)
fscanf, sscanf, nl_scanf, nl_fscanf,

nl_sscanf: formatied inpui conversion, read fiom stream fileoocvvinevcinnccnnns see SCANF(3S)
FSEEK(3S): fseek, rewind, ftelloocovnnonevvinniiinninininncnneniccnienans reposition a file pointer in a stream
fsetaclentry: add, modify, or delete access control list entry see SETACLENTRY(3C)
fsetpos — restore file position indicator for a stream ... see FGETPOS(3S)
fstatfsdev: get file system SEAISEICScooiviviviniriiiini e see STATFSDEV(3C)
ftell: reposition a file pointer in a SrEAMcccccoviiiiviniiiiiiec e see FSEEK(3S)
ftok — standard interprocess communication package .. see STDIPC(3C)
FTW(CQ): ftw, ftwh walk a file tree
ftwh: walk a file tree see FTW(3C)
fwrite: buffered binary output to a stream file see FREAD(3S)
GAMMAQBM): gamma, Signgamcoeeuruen. log gamma function
gert0.0: execution Startup rOULINESoccviviiiiiniiniii see CRTO(3)
gevt: convert floating-point number to strmg see ECVT(3C)
GETC(3S): getc, getchar, fgetc, getw get character or word from a stream file
getcccid: get cluster configuration entry ... see GETCCENT(3C)
GETCCENT(3C): getccent, getcccid, getccnam, setccent, endccent, fgetccent ... get cluster configuration entry
getccnam: get cluster configuration entry ... see GETCCENT(3C)
GETCDF(3C): getCdf .vvvvviveecrerieiciciiinirenane return the expanded path that matches a path name

getchar: get character from a stream filec.oviiveniiinnicninii e see GETC(3S)
GETCWD(3C): getcwd, gethcwdccovvvvmvviviciieniiiicsirecns get path-name of current working directory
GETENV(3C): QBEENT .ooviviniiirieiiieciisicecte v return value for environment name

GETFSENT(3X): getfsent, getfsspec, getfsfile, getfstype,

setfsent, endfsent get file system descriptor file entry
getfsent: get file system descriptor file entry see GETFSENT(3X)
getfsfile: get file system descriptor file entry .. see GETFSENT(3X)
getfsspec: get file system descriptor file entry see GETFSENT(3X)
getfstype: get file system descriptor file entry see GETFSENT(3X)
GETGRENT(3C): getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent . get group file entry
getgrgid, getgrnam: get group file entry see GETGRENT(3C)
gethcwd: get path-name of current working d1rectory see GETCWD(3C)
getlocale: get the locale of a program see SETLOCALE(3C)
GETLOGIN(BC): QEHIOZIM ettt ettt get login name
GETMNTENT(3X): getmntent, setmntent, addmntent, endmntent, hasmntoget file system descriptor file entry
GETMSG(3C): ZEEMISE vvvviririeiriniiiisitinsiiasisie st b s bbb saons get message from a catalog
GETOPT(3C): getopt, optarg, optind, opterr . get option letter from argument vector
GETPASS(3C): getpass read a password’
GETPW(BC): EEPW .ottt ittt sttt s sttt get name from UID
GETPWENT(3C): getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent get password file entry
getpwent: get password file entry see GETPWENT(3C)
getpwent: get secure password file entry ... see GETSPWENT(3C)
GETS(3S): gets, fgets get a string from a stream
getspwaid: get secure password file entry see GETSPWENT(3C)
GETSPWENT(3C): getpwent, getpwuid, getpwnam, setpwent,

eNAPWENt, fEEEPWENE ...covvvrviriiiircceeeirienr ettt st tsssor et aessenensens get secure password file entry
GETUT(3C): getutent, getutid, getutline, pututline, setutent, endutent, utmpname access utmp file entry

HP-UX Release 7.0: September 1989 -7 (Table of Contents) xi

Table of Contents

Volume 2
Entry Name(Section) name Description
getutent: access UtMp file @NLrY ..o see GETUT(3C)

getw: get word from a stream file ...
gmiime: convert date and time to string ...
GPIO_GET_STATUS(3]): gpio_get_status return status lines of GPIO card
GPIO_SET_CTL(3I): gpio_set_ctl set control lines on GPIO card
gsignal: software signals ...t e see SSIGNAL(3C)
HANKAKUZENKAKU(3X): HankakuZenkaku, ZenkakuHankaku .. translate characters
hasmntopt: get file system descriptor file entry see GETMNTENT(3X)
hcreate: manage hash search tables see HSEARCH(3C)
hdestroy: manage hash search tablesccocvvivieeiirreeirnrreeceeec e see HSEARCH(3C)
HENKAN(3X): Henkan, JiKouho, Kakutei, HenkanOwari, SetUserDict . KANA to KANJI conversion routines
Henkan: KANA to KANJI conversion routines ... see HENKAN(3X)
HenkanOwari: KANA to KANJI conversion routines ... see HENKAN(3X)
HIRAGANAKATAKANA(3X): HiraganaKatakana, KatakanaHiragana translate characters
HPIB_ABORT(3I): hpib_abort stop activity on specified HP-IB bus
HPIB_ADDRESS_CTL(3I): hpib_address_ctl set HP-IB bus address for an interface
HPIB_LATN_CTL(3D): APIb_atn_Ctl oot control Attention line on HP-IB
HPIB_BUS_STATUS(3I): HPIb_bDUS_SEALUS .ceovereevierreiierieenriresinreeeresenseenaenenas return status of HP-IB interface
HPIB_CARD_PPOLL_RESP(3I): hpib_card_ppoll_resp .. . control response to parallel poll on HP-IB
hpibegin, hpiclose, hpicontrol, hpidelete, hpiend, hpierror, hpifind, hpifindset,

hpiget, hpiinfo, hpilock, hpimemo, hpiopen, hpiput, hpiundo,

hpiupdate: ALLBASE/HP-UX HPIMAGE programmatic callscccocovvuenneeiirinnnnne see HPIMAGE(3X)
HPIB_EOI_CTL(3I): hpib_eoi_ctl ... control EOI mode for HP-IB file
HPIB_IO(3I): hpib_io .. perform 1/0 with an HP-IB channel from buffers
HPIB_PARITY_CTL(3I): hpib_parity_ctl ... enable/disable odd parity on ATN commands
HPIB_PASS_CTL(3I): hpib_pass_ctl change active controllers on HP-IB
HPIB_PPOLL(3D): APIb_ppoll ..ottt sieneneenes conduct paralle] poll on HP-IB bus
HPIB_PPOLL_RESP_CTL(3I): hpib_ppoll_resp_ctlcccccoveemnnnnnencns define interface parallel poll response
HPIB_REN_CTL(3I): hpib_ren_ctl control the Remote Enable line on HP-IB
HPIB_RQST_SRVCE(3I): hpib_rgst_srvce . . allow interface to enable SRQ line on HP-IB
HPIB_SEND_CMND(3I): hpib_send_cmndcccccovvivvmvicnnncnininnnnenens send command bytes over HP-IB
HPIB_SPOLL(3I): APIb_SPOILveevriviriniceisicineccinc e conduct a serial poll on HP-IB bus
HPIB_STATUS_WAIT@3I): hpib_status_wait wait until the requested status condition becomes true
HPIB_WAIT_ON_PPOLL(3I): hpib_wait_on_ppoll wait until a particular parallel poll value occurs
HPIMAGE(3X): hpi..., ChPi... oot ALLBASE/HP-UX HPIMAGE programmatic calls
HPPAC(3X) wveveeneeerrenreeieneenenseennessessesnseseens . Series 800 HP 3000-mode packed decimal library
HSEARCH(3C): hsearch, hcreate, hdestroy manage hash search tables
HYPOT(3M): - hypot Euclidean distance function
ICONV(3C): iconvclose, iconvopen, iconvsize, iconvlock,

ICONV, ICONV1, ICONV2 code set conversion routines
idtolang: NLS information about native Janguagesccocvuveureeierecnieenniseseenersneneneee see LANGINFO(3C)
INITGROUPS(3C): initgroups initialize group access list
IO_BURST(3I): io_burst perform low-overhead 1/0 on an HP-IB/GPIO channel
I0_DMA_CTL(3I): io_dma_ctl — control DMA allocation for an interface
IO_EOL_CTL3D): 10_€0I_Ctl .ovvreiviicriiienincrccneiieenreane set up read termination character on special file
IO_GET_TERM_REASON(3I): io_get_term_reason determine how last read terminated
IO_INTERRUPT_CTL(3I): io_interrupt_ctl enable/disable interrupts for the associated eid
I0_LOCK(3I): io_lock, io_unlock lock and unlock an interface
IO_ON_INTERRUPT(3]): io_on_interrupt . device interrupt (fault) control
IO_RESET(3I): io_reset reset an /0 interface

.. see GETC(3S)
see CTIME(3C)

xii (Table of Contents) -8 - HP-UX Release 7.0: September 1989

Table of Contents

Volume 2
Entry Name(Section) name Description
IO_SPEED_CTL(3I): 10_SPEEA_CH ...ovverrerecrrcncnicicceeninenes inform system of required transfer speed
IO_TIMEOUT_CTL(3I): i0_timeout_ctlccoeeereriiviinriiiniirnnins establish a time limit for /O operations
io_unlock: lock and unlock an INEErfacecoccoovcienirnimniinnieneinece e neens see I0_LOCK(3I)
IO_WIDTH_CTL(3I): 10_Width_Ctl ..cceovveieerieerecenicineens set width of data path
is_68010_present: check for presence of hardware capabilitiescccceeuviinn. see IS_HW_PRESENT(3C)

is_68881_present: check for presence of hardware capabilities .
is_98248A _present: check for presence of hardware capabilities ...
is_98635A _present: check for presence of hardware capabilities ...

... see IS_HW_PRESENT(3C)
... see IS_HW_PRESENT(3C)
.. see IS_HW_PRESENT(3C)

isalnum: classify CharacterS ... s see CTYPE(3C)
isalpha: classify characters . . see CTYPE(3C)
isascii: classify CharaCters ... see CTYPE(3C)

see TTYNAME(3C)
see CTYPE(3C)
. see CTYPE(3C)
see CTYPE(3C)

isatty: find name of a terminal
iscntrl: classify characters
isdigit: classify characters .
isgraph: classify characters
IS_HW_PRESENT(3C): i5_68010_present, is_68881_present,

is_98635A_present, is_98248A_present

check for presence of hardware capabilities

ISINF(BM): ISIIf wvviviiiineneinrcn st qeeeenes test for INFINITY function
islower: classify ChAracters ... e b see CTYPE(3C)
ISNAN(BM): iSHAN .ecveeerernennne . test for NaN function

isprint: classify Characters ... see CTYPE(3C)
ispunct: classify characters . see CTYPE(3C)
isspace: classify characters see CTYPE(3C)

isupper: classify Characters ... see CTYPE(3C)
isxdigit: classify characters . see CTYPE(3C)
JO: Bessel FUNCHOMcciviiiiiniiniiiiitiececiecietcre et ss st erens see BESSEL(3M)
J1: Bessel fUNCHON ..o see BESSEL(3M)

JCODE(3X): jistosj, jistouj, sjtojis, sjtouj, ujtojis, ujtosj,
cjistosj, cjistouj, csjtojis, csjtouj, cujtojis,

CUJEOS] ottt code set conversion routines for JIS, Shift JIS and UJIS
JiKouho: KANA to KANJI CONVErSION FOULINESccvveiieerrienrierieiorieriensiesoressiresseessuesersessnsens see HENKAN(3X)
jistosj, jistouj: JIS, Shift JIS and UJIS code CONVEISIONc..ccoeeueieiieienieiiiisiceiiseeiesas see JCODE(3X)
jn: Bessel function see BESSEL(3M)

jrand48: generate pseudo-random numbers ... see DRAND48(3C)
J_UD_close: manage user dictionaries see J_UD_SEARCH(3X)
J_UD_delete: manage user dictionaries see J_UD_SEARCH(3X)
J_UD_free: manage user diCtONATIIESccoivviiriniiiiiiiiee e see J_UD_SEARCH(3X)
J_UD_open: manage user diCHONATIESccoveiiiriiiiniiiieiniiir e esens see]_UD_SEARCH(3X)
J.UD_SEARCH(3X): J_UD_open, J]_UD_close, [_UD_search,

J_UD_free,]_UD_store,] _UD_deleteccccovvvvinvniivviinnnerenian. manage user dictionaries
J_UD_search: manage user dictionariescccoviviivniiicnnnernnoiinnniinnnes see J_UD_SEARCH(3X)
J_UD_store: manage user dictionaries see J_UD_SEARCH(3X)
Kakutei: KANA to KANJI conversion rOUHINEScccceereiirreereiiirereeesisisseeseseessnnees see HENKAN(3X)
KatakanaHiragana: translate characters see HIRAGANAKATAKANA(3X)
KUTENZENKAKU(3X): KutenZenkakihcccocoveiineninincconencneneecnenieneens translate characters
L3TOL(3C): 13tol, Itol3ccovvvvveiviriiriniins convert between 3-byte integers and long integers
164a: convert between long integer and base-64 ASCII Stringccocvvvicivviuienennn see A64L(3C)
LANGINFO(3C): langinfo, langtoid, idtolang, currlangid NLS information about native languages
langinit: initialize the NLS environment of a program s see NL_INIT(3C)
langtoid: NLS information about native languagescccccocoovciiiiininnn. see LANGINFO(3C)

HP-UX Release 7.0: September 1989 -9 - (Table of Contents) xiii

Table of Contents

Volume 2

Entry Name(Section) name Description
lcong48: generate pseudo-random nUMberscccooviviiiiiiiiininine see DRAND48(3C)
LDCVT(3C): _ldecvt, _ldfcut, _ldgcvt convert long double floating-point number to string
_ldecvt - convert long double floating-point number to string ..., see LDCVT(3C)
Idecvt (_ldecvt) — convert long double (floating-point number to string ... see LDCVT(3C)
ldexp: split floating-point into mantissa and eXPONeNtcooeeeereiriiiersinrninne see FREXP(3C)
_ldfcot — convert long double floating-point number to string ... see LDCVT(3C)

ldfcvt (_ldfcvt) — convert long double floating-point number to string
_ldgcvt — convert long double floating-point number to string
ldgcvt (_ldgcvt) — convert long double floating-point number to string ..

... see LDCVT(3C)
... see LDCVT(3C)
.. see LDCVT(3C)

Idiv: long integer division and remainder ... see DIV(3C)
Ifind: linear search and update see LSEARCH(3C)
localtime: convert date and time to string see CTIME(3C)
log10: common logarithm fUnCHONcccccoiiiiiiiiiic e see EXP(3M)
LOGNAME(3C): logname return login name of user
log: natural logarithm fUnCHON ..o, see EXP(3M)
longjmp: restore stack environment for non—local goto see SETJMP(3C)
Irand48: generate pseudo-random numbers ..o see DRAND48(3C)
LSEARCH(3C): Isearch, Ifindccccoecevneenen. linear search and update
Itoa: long to ASCII decimalcccocoviiiiiiiiininiiiii e see LTOSTR(3C)
Itol3: convert between 3-byte integers and long integersc.ccoeveviiiiiinnnnnn. see L3TOL(3C)
LTOSTR(3C): ltostr, ultostr, ltoa, ultodccooovveenivivinnnininins convert long integers to strings
mallinfo: fast main memory allocatorccoveeiiiiveiienniiiic e see MALLOC(3X)
MALLOC(3C): malloc, free, realloc, callocccovevirveievevncnicienene main memory allocator
MALLOC(3X): mualloc, free, realloc, calloc, mallopt, mallinfo fast main memory allocator
mallopt: fast main memory allocatorccvvieiiiiiiiniiiiiei e see MALLOC(3X)
manage Japanese language user dictionaries ..., see J_UD_SEARCH(3X)
MATHERR(BM): MALHETT oo ... error-handling function
mblen: multibyte characters and strings conversionscccceeeviiivnniinin, see MULTIBYTE(3C)
mbtowc, mbstowcs: multibyte characters and strings conversions see MULTIBYTE(3C)
mert0.0: execution startup routines ... see CRTO(3)

memccpy: memory operations ..
memchr: memory operations
memcmp: memory operations ...
memcpy: memory operations ...

... see MEMORY(3C)
... see MEMORY(3C)
... see MEMORY(3C)

. see MEMORY(3C)

Memmove: IEMOTy OPEratioNSccccviiiiiiieiiiiieniietie e s see MEMORY(3C)
MEMORY(3C): memccpy, memchr, memcmp, memcpy, memset . . memory operations
memset: MEMOYY OPErationsc.ccceeiiiiiiiniiiiiiiiie see MEMORY(3C)
mfrt0.0: execution startup YOUINEScccccviiiiiiciiiniiniiiiiie e see CRTO(3)
MKFIFO(3C): MKfifo ..o make a FIFO special file
MKTEMP(3C): MKEEMID .cvvvviriviriniiiiiiccciti e make a unique file name
modf: split floating-point into mantissa and exponent ..., see FREXP(3C)
MONITOR(3C): monitor . prepare execution profile
mrand48: generate pseudo-random NUMDBETSccccoveveuiviniriiniierieniinnenies see DRAND48(3C)
MULTIBYTE(3C): mblen, mbtowc, mbstowcs,

wetomb, WESEOMDS ..o multibyte characters and strings conversions

NDBM(3X): dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm_clearerr data base subroutines

nextkey: data base subroutinescccooiiiiiiiiiiii see DBM(3X)
NLAPPEND(3X): nlappend .. append appropriate language identification to valid MPE file name
nl_asctime: convert date and time to String ... see CTIME(3C)

xiv (Table of Contents) - 10 - HP-UX Release 7.0: September 1989

Table of Contents

Volume 2
Entry Name(Section) name Description
nl_ascxtime: convert date and time to String ... see CTIME(3C)

nl_atof: convert string to double-precision number see STRTOD(3C)
NLCOLLATE(3X): nlcollate . compare strings using MPE language-dependent collating sequence
NL_CONV(3C): nl_toupper, nl_tolowerccocevvvrveriencnn translate characters for use with NLS
NLCONVCLOCK(3X): nlconvclock check and convert time string to MPE internal format
NLCONVCUSTDA(3X): nlconvcustda ..o, convert date string to MPE packed date format
NLCONVNUM(3X): nlconvnumconvert MPE native language formatted number to ASCII number
nl_ctime: convert date and time to String ..o see CTIME(3C)
NL_CTYPEQ3C): nl_isalpha, nl_isupper, nl_islower, nl_isdigit, nl_isxdigit,
nl_isalnum, nl_isspace, nl_ispunct, nl_isprint, nl_isgraph,

RI_ISCHETL (it classify characters for use with NLS
nl_cxtime: convert date and time £0 SEHNGcococeeiviiioiiiiiice see CTIME(3C)
NLFINDSTR(3X): nlfindstr search for string in another string using MPE character set definition
NLFMTCAL(3X): nlfmtcalendarc...cco.c.... format MPE packed date using localized format

NLEMTCLOCK(3X): nlfmtclock format MPE time of day using localized format
NLFMTCUSTDATE(3X): nifmtcustdateccoccue. format MPE packed date using custom date
NLEMTDATE3X): nlfmtdatecoccccevncvennnnnne format MPE date and time in localized format
NLFMTLONGCAL(3X): nlfmtlongcal format MPE packed date using long calendar format
NLEMTINUM(@3X): nlfmtnum convert ASCII number to MPE language-specific formatted number
nl_fprintf: print formatted oUtPULcveriviiiiiiii see PRINTF(3S)
nl_fscanf: formatted input conversion, read from stream filecccocoeviinns see SCANE(3S)
nl_gcvt: convert floating-point number to StriNgccooeeeiviciciinieiiienins see ECVT(3C)
NLGETLANG(3X): _nlgetlang return current user, data, or system default language
NLINFO(BX): #linfo .ccoovvvvviiiniiiiriiiciiiien, return MPE language-dependent information
NL_INIT(3C): nl_init, langinitcc.coovvvinncunnn. initialize the NLS environment of a program
nl_isalnum: classify characters for use with NLScccoevoniiniiiiiininnne. see NL_CTYPE(3C)
nl_isalpha: classify characters for use with NLS ... see NL_CTYPE(3C)
nl_iscntrl: classify characters for use with NLScccocviiiniiiciinniiieinne, see NL_CTYPE(3C)

nl_isdigit: classify characters for use with NLS ..
nl_isgraph: classify characters for use with NLS
nl_islower: classify characters for use with NLS
nl_isprint: classify characters for use with NLS .
nl_ispunct: classify characters for use with NLS .
nl_isspace: classify characters for use with NLSccccocoviiiviniiiininiin see NL_CTYPE(3C)
NLIST(3C): #list ooviveiiiiciicic e . get entries from name list
nl_isupper: classify characters for use with NLSc.cccccieiiivninniniinncciinnes see NL_CTYPE(3C)
nl_isxdigit: classify characters for use with NLS see NL_CTYPE(3C)
NLJUDGE(3X):

nljudge judge whether character is one- or multi-byte Asian using MPE character table
NLKEYCOMPARE(3X):

... see NL_CTYPE(3C)
... see NL_CTYPE(3C)
... see NL_CTYPE(3C)
... see NL_CTYPE(3C)
.. see NL_CTYPE(3C)

nlkeycompare compare character arrays (keyl, key2) using MPE collation table
NL_NL_LANGINFO3C): nl_langinfoccccoovuvennnine. NLS information about native languages
NLNUMSPEC(3X): nlnumspec return number convert/format information for MPE routines
nl_printf: print formatted output ... see PRINTF(3S)
NLREPCHAR(3X): nlrepchar replace non-displayable characters MPE character set table
nl_scanf. formatted input conversion, read from stream filecocecceiviiininns see SCANF(3S)
NLSCANMOVE(3X):

nlscanmove move, scan and case shift character strings using MPE character set table
nl_sprintf: print formatted outputcccooveiiiiiin see PRINTF(3S)

nl_sscanf: formatted input conversion, read from stream file see SCANF(3S)

HP-UX Release 7.0: September 1989 - 11 - (Table of Contents) = xv

Table of Contents

Volume 2

Entry Name(Section) name Description
nl_stremp, nl_strncmp: character string operationsc.cccoeecervveeiceercineeenens see STRING(3C)
NL_STRING(3C): strcmp8, strncmp8, strcmpl6, strncmplé ... non-ASCII string collation
nl_strtod: convert stiing to double-precision number ..o see STRTOD(3C)
NLSUBSTR(3X): 1ISUBSEYcovemirrniririiinccniiinns extract substring using MPE character set table
NLSWITCHBUF(3X): nlswitchbuf convert string screen order using MPE character set table
nl_tolower: translate characters for use with NLSccccooiiiiniiiiiiiniieii, see NL_CONV(3C)

NL_TOOLS_16(3C): firstof2, secof2, byte_status, FIRSTof2, SECof2,
BYTE_STATUS, CHARAT, ADVANCE, CHARADV, WCHAR, WCHARADV,

PCHAR, PCHARADVcooviimiiiiiiiiiniieeicncceneeens tools to process 16-bit characters
nl_toupper: translate characters for use with NLSccccovniiininninnincne. see NL_CONV(3C)
NLTRANSLATE(3X): nltranslate translate ASCII EBCDIC using MPE conversion table
nrand48: generate pseudo-random NUMDETSc.ccccovirivenenincienicrneeeneee see DRAND48(3C)
opendir: directory operationscccceeunee see DIRECTORY(3C)
OPEN_JLIB(3X): open_jlib, close_jlibcccccovrivivucrcinn. enable to use Japanese specific facilities
open_jlib, close_jlib — enable to use Japanese specific facilitiesccceceeereenee see OPEN_JLIB(3X)
OPEN_KANA_KAN(3X): open_kana_kan, close_kana_kan initialize KANA to KANJI conversion
openlog: control SYStemM 108ccccuiiininininininiieciriereeccece e see SYSLOG(3C)
optarg: get option letter from argument VECtOrc.coicivvrivinveccniiiicninecnnnns see GETOPT(3C)
opterr: get option letter from argument vector see GETOPT(3C)
optind: get option letter from argument vector e —————— see GETOPT(3C)
PCHARADV: process 16-bit characterscccoeceevrveencne. see NL_TOOLS_16(3C)
PCHAR: process 16-bit characters see NL_TOOLS_16(3C)
pclose: initiate pipe 1I/O t0/frOM @ PrOCESS ..c.eveerrrveeriererrrerieenirieierereriereseerensrennes see POPEN(3S)
PERROR(3C): perror, errno, sys_errlist, SYS_Nerrcecoevvveeriricoeeennenens system error messages
POPEN(3S): popen, pclosec.cvcvevcivvrvunnnenne initiate pipe I/O to/from a process
POW: POWET fUNCHON ...cooviviiiiiiiiiiiii ettt see EXP(3M)

PRINTF(3S): printf, nl_printf, forintf, nl_fprintf, sprintf, nl_sprintf print formatted output
PRINTMSG(3C): printmsg, fprintmsg, sprintmsgprint formatted output with numbered arguments

PUTC(3S): putc, putchar, fputc, putioevecvcvveinrenecnnns put character or word on a stream
putchar: put character On @ SIEAIMNcc.cceviririieeeirerrii ettt saees see PUTC(3S)
PUTENV(3C): PULENT cooviieiiiiiiiniiceereeec e .. change or add value to environment
PUTPWENT(3C): PUIPWENEcvvvvviniiriiiiiiiinieriienccissis e write password file entry
PUTS(3S): PULS, fPUES et put a string on a stream
PUTSPWENT(3C): PULSPWENEooviviiiiiniiciiniciiecccccei e write secure password file entry
pututline: access utmp file entry .. see GETUT(3C)
putw: put Word ON a SEIEAIMcovivviiiiiiriii e see PUTC(3S)
QSORT(BC): SO vttt ettt quicker sort
RAND(3C): rand, srand simple random-number generator
readdir: directory OPerationsc..c.cceecvviireinieenineretnesneneneeesenneiereeenerenes see DIRECTORY(3C)

realloc: fast main memory allocator ...
realloc: main memory allocator
REGCMP(3X): 7€gCHIP, TEZEX ..vvvrvrreniinreinriinrennnns

.... see MALLOC(3X)
..................................... see MALLOC(3C)
. compile and execute regular expression

regex: compile and execute regular eXpression ... see REGCMP(3X)
REGEXP(3X): compile, step, advance regular expression compile and match routines
REMOVE(BC): TEIMOUE ..ccvveeeriereereenieesisesisatsessessessseesseasssessseasssasssssesansessasesssssssenseans remove a file

rewinddir: directory operations .

. see DIRECTORY(3C)
rewind: reposition a file pointer in a stream ..

.................... see FSEEK(3S)

RomajiHankakuKatakana: translate charactersocccvvvvnenennnns see ROMAJIHIRAGANA(3X)
ROMAJIHIRAGANA(3X): RomajiHiragana,
RomajiKatakana, RomajiHankakuKatakana ... translate characters

xvi (Table of Contents) - 12 - HP-UX Release 7.0: September 1989

Table of Contents

Volume 2

Entry Name(Section) name Description

RomajiKatakana: translate characterscccocovvcevncenivieeneenennennnes see ROMAJIHIRAGANA(3X)
SCANFK(3S): scanf, fscanf, sscanf, nl_scanf,

nl_fscanf, nl_sscanf ..., formatted input conversion, read from stream file

secof2, SECof2: process 16-bit charactersc.cccovivcveninccrnnninieeenricnes see NL_TOOLS_16(3C)

seed48: generate pseudo-random NUMDBETSc..ccceceirircinnininieiiceiniienene see DRAND48(3C)

seekdir: directory operationscccvoerieerenenns
SETACLENTRY(3C): setaclentry, fsetaclentry add, modify, or delete access control list entry
SETBUF(3S): setbuf, setvbufc.ccc.... assign buffering to a stream file
setccent: get cluster configuration entry ... see GETCCENT(3C)
setfsent: get file system descrlptor file entry ... see GETFSENT(3X)
setgrent: get group file entry .. see GETGRENT(3C)
SETJMP(3S): setjmp, longjmp save/restore stack environment for non-local goto
_setjmp: save stack environment for non-local gotocccceverrieirneecinrenenenn see SETIMP(3C)
setkey: generate hashing encryptionc.c..c...... .. see CRYPT(3C)
SETLOCALE(3C): setlocale, getlocale set and get the locale of a program

see DIRECTORY(3C)

setlogmask: cONtrol SYSLEM 10G ...ccociiiiricuiiviiiiieiitiiinste et erereb e see SYSLOG(3C)
setmntent: get file system descriptor file entry see GETMNTENT(3X)
setpwent: get password file entry see GETPWENT(3C)
setpwent: get secure password file entry see GETSPWENT(3C)
SetUserDict: KANA to KANJI cONVersion routinescccecveveeereveerienreoressvereennnas see HENKAN(3X)
setutent: access WHMP file ENEIY .occcocviciriiirrinniiret ettt see GETUT(3C)

setvbuf: assign buffering to a stream filecccocoeiceniinnnnneenen
sgetl: access long integer data in a machine-independent fashion

. see SETBUF(3S)
see SPUTL(3X)

sigaddset: initialize, manipulate, and test signal setsc.ccecervnrrrnnenenen see SIGSETOPS(3C)
sigdelset: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
sigemptyset: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
sigfillset: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
sigismember: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
signgam: log gamma functionc..ccceviiieininnnii e see GAMMA(3M)
SIGSETOPS(3C): sigemptyset, sigfillset, sigaddset,

sigdelset, SigQiSMEMBETocvvvveevviriiireniererinnene initialize, manipulate, and test signal sets
SINH(BM): 8inh, COsH, EANN ... hyperbolic functions
sin: trigonometric fUNCHONSc.coiiiiiiiiiirienicieece e see TRIG(3M)
sjtojis, sjtouj: JIS, Shift JIS and UJIS code CONVErSIONc..cccceeevereirieineeriuineereanees see JCODE(3X)
SLEEP(3C): SIEEP .ovveeereiiiiiiceie e suspend execution for interval
sprintf: print formatted outPULcccoiiiiiiiii see PRINTF(3S)
sprintmsg: print formatted output with numbered ATGUIENLS oooovieieee see PRINTMSG(3C)
SPUTL(3X): sputl, sgetlcouceueeee. access long integer data in a machine-independent fashion
sqrt: square roOt fUNCHONMccccoiriieiiiiiiiiieicetet ettt et e see EXP(3M)
srand48: generate pseudo-random NUMDbETScoveveveiiricriceeniirnirennenen see DRAND48(3C)

srand: simple random-number generatorc..cccoeuee.
sscanf: formatted input conversion, read from stream file

see RAND(3C)
see SCANE(3S)

SSIGNAL(3C): ssignal, 8ignalccccoviviiiiiniiiiiiiicccnc s software signals
STATFSDEV(3C): statfsdev, fStatfSAencuvmnmmnmneiiicieecnicneens get file system statistics
STDIO3S): StAIO .oovvvvriieirieieiivciieneenee standard buffered input/output stream file package
STDIPC(3C): fEOK ..ovoveiiiiiciccccces standard interprocess communication package
step: regular expression compile and match routinesccccceonreirnreiiennnnen. see REGEXP(3X)
store: data base SUDTOULNESccccceeceeiiiiiiiieiieeiecie st etiesteete e ta e eassaeeanenen see DBM(3X)

strcat, strncat: character string operations .
strchr, strrchr: character string operations

. see STRING(3C)
see STRING(3C)

HP-UX Release 7.0: September 1989 -13 - (Table of Contents) xvii

Table of Contents

Volume 2

Entry Name(Section) name Description
stremp8, strempl6: non-ASCII string collationcocoeiviiceiiiinnenceneenienne see NL_STRING(3C)
stremp, strncmp: character string Operationsccveiceniennieiccnienns see STRING(3C)
strcoil: character string operations see STRING(3C)
strepy, strncpy: character string OPErationsceiiiiinieieininicicniniennnas see STRING(3C)
STRFTIME(3C): SHfHIME ..o convert date and time to string

STRING(3C): strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok,

NI_SErCmp, NI_SEICMP .ccoiviiiiiiiiiiccie et character string operations
strlen: character string OpPerationsccccoccviveereeniiniicnrce e see STRING(3C)
strncmp8, strncmpl6: non-ASCII string collation see NL_STRING(3C)
STRORD(BC): SHOTA .oovvevioririereiresiersriierenieerereieieeseese e ereevesseseesens convert string data order
strpbrk: character string operations ... see STRING(3C)
strspn, strcspn: character string OPerationscococcieiiiiiiecciecienenereereereeens see STRING(3C)
strstr: character string OPerations ..ot see STRING(3C)
STRTOACL(3C): strtoacl,

strtoaclpatt ... convert exact or pattern string form to access control list (ACL) structure
strtoaclpatt: convert pattern string form to access control list (ACL) structure . see STRTOACL(3C)
STRTOD(3C): strtod, atof, nl_strtod, nl_atof convert string to double-precision number
strtok: character string OPerationscccoccvvevivieniniiiencc e see STRING(3C)
STRTOLD(3C): strtoldccoevevvrviinnnnnnes .. convert string to long double-precision number
strxfrm: character string OpPerationsc.cccovviverinniinneninieicnreeeneeer e see STRING(3C)
SWAB(BC): SWAD ...ttt swap bytes
sys_errlist: SYSLEIML €ITOT IMESSAZES ..c.evvreeuierruereurrensirersesereseeutsesaesestenessesesesensasarens see PERROR(3C)
SYSLOG(3C): syslog, openlog, closelog, setlogmask control system log
SYs_merr: SYSteM €ITOT MIESSAZES ...cceovreirreiiiiiniiviiiisriiinieirienntesesaie e srrenessiessrees see PERROR(3C)
SYSTEM(3S): SYStemcccccenuee. .. issue a shell command
tanh: hyperbolic tangent funConccoooveviiiieoiiiecnii s see SINH(3M)
tan: trigonometric fUNCHONSococcrviiieriiniie ettt see TRIG(3M)
TCATTRIBUTE(3C): tcgetatty, tCSELattroovvivviviiiiinivieniiiiiienienns .. control tty device
TCCONTROL(3C): tcsendbreak, tcdrain, tcflush, tcflow . tty line control functions
tedrain: tty line control fUnCHONSccooiverieirienieiinirecreeeeee s see TCCONTROL(3C)
tcflow: tty line control fUNCHONSc.ccovveriniiicccniieriniiccenicrerrrceeee e see TCCONTROL(3C)
tcflush: tty line control fUNCHONSo.oevvieiicciiccrceece e .. see TCCONTROL(3C)
tcgetattr: get tty device attributes...........cooovviviiiiiiiiiiiii i, see TCATTRIBUTE(3C)
TCGETPGRP(3C): ECREEPZTP wevvivvieriniireiintieniiitiice e get foreground process group ID
tesendbreak: tty line control funconscccccnmcrneriineinnieccncne e see TCCONTROL(3C)
tesetattr: set tty device attributes..........ocoooiiiiiiiiiiii, see TCATTRIBUTE(3C)
TCSETPGRP(3C): {CSetpgryccovvvennnn get foreground process group ID
tdelete: manage binary search tr€escccccoeieimvviniiiiiniiiiiiee e see TSEARCH(3C)
telldir: directory operationscccceeeeee. . see DIRECTORY(3C)
tempnam: create a name for a temporary file ... see TMPNAM(3S)
TERMCAP(3X): tgetent, tgetnum, tgetflag,

tgetstr, tg0t0, tPULSccocviiiiei emulate /etc/termcap access routines
tfind: manage binary search treescocvciiioneiciniiiniini e see TSEARCH(3C)
tgetent, tgetnum, tgetflag, tgetstr,

tgoto, tputs: emulate /etc/termcap access routinescoocceeeerneneen see TERMCAP(3X)
tgetflag: emulate /etc/termcap access routines see TERMCAP(3X)
tgetnum: emulate /etc/termcap access TOUINEScccoovviviiiiiiieieniiineeiennes see TERMCAP(3X)
tgetstr: emulate /efc/termcap access TOUHNESc.cccooviviiniiiiiiciiniiicncneeene see TERMCAP(3X)

tgoto: emulate /etc/termcap access TOUHINEScccccoiiverininieeiniininceirienene see TERMCAP(3X)

xviii (Table of Contents) - 14 - HP-UX Release 7.0: September 1989

Table of Contents

Volume 2
Entry Name(Section) name Description
timezone: convert date and time to StriNgcccocovvviiiiiiiiini see CTIME(3C)
TMPFILE(3S): HMPAILE ...oveeeiiiceicnni e create a temporary file
TMPNAM(3S): tMPRAm, teMPRamccoveeruieecmeiieineeeeranens create a name for a temporary file
toascii: translate characters see CONV(3C)
tolower, _tolower: translate CRATACEIScccivivirieneriieniiieirerieneeeesnnresesiesennes see CONV(3C)
toupper, _toupper: ftranslate characters ... see CONV(3C)
tputs: emulate /etc/termcap access roUtiNESccovvevevinieeeiiieiineninienes see TERMCAP(3X)
TRIG(3M): sin, cos, tan, asin, acos, atan, atan2 trigonometric functions
TSEARCH(3C): tsearch, tfind, tdelete, twalkccoooveviininnninnns manage binary search trees
TTYNAMEBC): HYNAME, (ALY .oovceieeeeniiieiriicereeeneencne et find name of a terminal
TTYSLOT(3C): #tyslofcccovvviineane . find the slot in the utmp file of the current user
twalk: manage binary search trees see TSEARCH(3C)

tzname: convert date and time to string .
tzset: convert date and time to stringcccneenee
ujtojis, ujtosj: JIS, Shift JIS and UJIS code conversion
ultoa: unsigned long to ASCII decimal
ultostr: unsigned long to ASCIIcccoovivmmmienciiinninninne

.... see CTIME(3C)

.. see CTIME(3C)
... see JCODE(3X)
see LTOSTR(3C)
see LTOSTR(3C)

undial: establish an out-going terminal line connectioncccocovreveiniinineccnnne see DIAL(3C)
UNGETC(3S): UNZELC .oovoeieiiriiiieicteeee et push character back into input stream
utmp file entry see GETUT(3C)
utmpname: access utmp file entry Oy O OO ROP O see GETUT(3C)
vfprintf.: print formatted output of a varargs argument listcccccoeverinann. see VPRINTF(3S)
vfscanf: formatted input conversion to a varargs argumentcoccecrueuenan see VSCANF(3S)
VPRINTE(3S): vprintf, vfprintf, vsprintf print formatted output of a varargs argument list
VSCANEF(3S): vscanf, vfscanf, vsscanf formatted input conversion to a varargs argument
vsprintf: print formatted output of a varargs argument listccoovivenennne. see VPRINTF(3S)
vsscanf: formatted input conversion to a varargs argumentccoeceeeereennn see VSCANF(3S)

WCHARADV: process 16-bit characters
WCHAR: process 16-bit characterscecevvevcniiciiienninnn
wctomb, wctombs: multibyte characters and strings conversions .
y0: Bessel function see BESSEL(3M)
y1: Bessel function see BESSEL(3M)
yn: Bessel FUNCHON ..o..ocoiiiiiiiicic e see BESSEL(3M)
ZenkakuHankaku: translate characters e —— . see HANKAKUZENKAKU(3X)

.. see NL_TOOLS_16(3C)
see NL_TOOLS_16(3C)
.... see MULTIBYTE(3C)

HP-UX Release 7.0: September 1989 - 15— (Table of Contents) xix

Section 2:
System Calls

INTRO(2) INTRO(2)

NAME
intro — introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This
result indicates the status of the call. Typically, a zero or positive result indicates that the call
completed successfully, and —1 indicates an error. The individual descriptions specify the
details. An error number is also made available in the external variable errno (see errno(2)).
Note: Errno is not cleared on successful calls, so it shouild be tested only after an error has
been indicated.

SEE ALSO
intro(3), errno(2), hier(5).

The introduction to this manual.

HP-UX Release 7.0: September 1989 -1- (Section 2) 1

ACCESS(2) ACCESS(2)

NAME
access — determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility accord-
ing to the bit pattern contained in amode, using the real user ID instead of the effective user ID
and the real group ID instead of the effective group ID. The value of amode is either the bitwise
inclusive OR of the access permissions to be checked or the existence test. The following sym-
bolic constants, defined in <unistd.h>, test for permissions:

R_OK read

W_OK write

X_OK execute (search)
F_OK check existence of file

Access Control Lists (ACLs)

Read, write and execute/search permissions are checked against the file’s access control list.
Each mode is checked separately since different ACL entries might grant different permissions.
The real user ID is combined with the process’s real group ID and each group in its supplemen-
tary groups list, and the access control list is searched for a match. Search proceeds in order of
specificity and ends when one or more matching entries are found at a specific level. More
than one u.g or %.g entry can match a user if that user has a non-null supplementary groups
list. If any matching entry has the appropriate permission bit set, access is permitted.

Access reports that a shared text file currently open for execution is not writable, regardless of
its access control list. It also reports that a file on a read-only file system is not writable. How-
ever, access does not report that a shared text file open for writing is not executable, since the
check is not easily done.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

ERRORS
Access to the file is denied if one or more of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

[EACCES] The access control list does not permit the requested access and the real user ID

is not the superuser.

[EFAULT] Path points outside the allocated address space for the process. The reliable
detection of this error will be implementation dependent.

2 (Section 2) -1- HP-UX Release 7.0: September 1989

ACCESS(2) ACCESS(2)

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

The owner of a file has permission checked with respect to the “owner” read, write, and exe-
cute mode bits. Members of the file’s group other than the owner have permissions checked
with respect to the “group” mode bits, and all others have permissions checked with respect to
the “other”” mode bits.

Access reports that a file currently open for execution is not writable, regardless of the setting of
its mode.

WARNINGS
If the path is valid and the real user ID is super-user, access always returns 0.

SEE ALSO
chmod(2), setacl(2), stat(2), acl(5), unistd(5).

STANDARDS CONFORMANCE
access: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2 - (Section2) 3

ACCT(2) ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
Acct is used to enable or disable the system’s process accounting routine. If the routine is
enabled, an accounting record will be written on an accounting file for each process that ter-
minates. Termination can be caused by one of two things: an exit call or a signal; see exit(2)
and signal(5). The effective user ID of the calling process must be super-user to use this call.
Path points to a path name naming the accounting file. The accounting file format is given in
acct(4).
The accounting routine is enabled if path is non-zero and no errors occur during the system
call. It is disabled if path is zero and no errors occur during the system call.
When the amount of free space on the file system containing the accounting file falls below a
configurable threshold, the system prints a message on the console and disables process
accounting. Another message is printed and the process accounting is re-enabled when the
space reaches a second configurable threshold.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Acct will fail if one or more of the following are true:
[EPERM] The effective user ID of the calling process is not super-user.
[EBUSY] An attempt is being made to enable accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] One or more components of the accounting file path name do not exist.
[EACCES] The file named by path is not an ordinary file.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points to an illegal address. The reliable detection of this error will be

implementation dependent.

[ETXTBSY] Path points to a text file which is currently open.
[ENAMETOOLONG]

The accounting file path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

DEPENDENCIES

4

Series 300

The system’s process accounting routine will ignore any locks placed on the process
accounting file.

If the size of the process accounting file reaches 5000 blocks, records for processes ter-
minating after that point will be silently lost. However, in that case the turnacct command
would still sense that process accounting is still enabled. This loss of records can be
prevented by the use of ckpacct (see acctsh(1M)).

(Section 2) -1- HP-UX Release 7.0: September 1989

ACCT(2) ACCT(2)

SEE ALSO
acct(1M), acctsh(1M), exit(2), acct(4), signal(5).

STANDARDS CONFORMANCE
acct: SVID2, XPG2

HP-UX Release 7.0: September 1989 -2- (Section2) 5

ALARM(2) ALARM(2)

NAME

alarm — set a process’s alarm clock

SYNOPSIS

unsigned long alarm (sec)
unsigned long sec;

DESCRIPTION

Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real-time seconds specified by sec have elapsed; see signal(5).
Specific implementations might place limitations of the maximum alarm time supported. The
constant MAX_ALARM defined in <sys/param.h> specifies the implementation-specific max-
imum. Whenever sec is greater that this maximum, it is silently rounded down to it. On all
implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.
If sec is 0, any previously made alarm request is canceled.
Alarms are not inherited by a child process across a fork, but are inherited across an exec.

On systems that support the getitimer(2) and setitimer system calls, the timer mechanism used
by alarm is the same as that used by ITIMER_REAL. Thus successive calls to alarm, getitimer,
and setitimer set and return the state of a single timer. In addition, alarm sets the timer interval
to zero.

RETURN VALUE

Alarm returns the amount of time previously remaining in the alarm clock of the calling pro-

Cess.

WARNINGS

In some implementations, error bounds for alarm are -1, +0 seconds (for the posting of the
alarm, not the restart of the process). Thus a delay of 1 second can return immediately. The
setitimer routine can be used to create a more precise delay.

SEE ALSO

sleep(1), exec(2), getitimer(2), pause(2), signal(5), sleep(3C).

STANDARDS CONFORMANCE

alarm: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

6 (Section 2) -1- HP-UX Release 7.0: September 1989

ATEXIT(2) ATEXIT(2)

NAME
atexit — register a function to be called at program termination
SYNOPSIS
#include <stdlib.h>
int atexit(func);
void (*funci(void);
DESCRIPTION
Atexit registers the function func to be called, without arguments, at normal program termina-
tion. Functions registered by atexit are called in reverse order of registration.

An atexit call during exit processing is always unsuccessful.
The number of registered functions should not exceed ATEXIT_MAX as specified in <limits.h>.

RETURN VALUE
Atexit returns zero if the registration is successful; non-zero if unsuccessful.

SEE ALSO
exit(2).

STANDARDS CONFORMANCE
atexit: ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 2) 7

AUDCTL(2)

NAME

AUDCTL(2)

audctl — start or halt the auditing system and set or get audit files

SYNOPSIS
#include <sys/audit.h>

audctl(cmd, cpath, npath, mode)

char *cpath, *npath;

int cmd, mode;

DESCRIPTION
Audctl sets or gets the auditing system "current" and "next" audit files, and starts or halts the
auditing system. This call is restricted to superusers. Cpath and npath hold the absolute path
names of the "current" and "next" files. Mode specifies the audit file’s permission bits. cmd is
one of the following specifications:

8

AUD_ON

AUD_GET

AUD_SET

AUD_SETCURR

(Section 2)

The caller issues the AUD_ON command with the required "current"
and "next" files to turn on the auditing system. If the auditing system
is currently off, it is turned on; the file specified by the cpath parame-
ter is used as the "current" audit file, and the file specified by the
npath parameter is used as the "next" audit file. If the audit files do
not already exist, they are created with the mode specified. The audit-
ing system then begins writing to the specified "current" file. An
empty string or NULL npath can be specified, if the caller wants to
designate that no "next" file be available to the auditing system. If
the auditing system is already on, no action is performed; —1 is
returned and errno is set to EBUSY.

The caller issues the AUD_GET command to retrieve the names of the
"current" and "next" audit files. If the auditing system is on, the
names of the "current" and "next" audit files are returned via the
cpath and npath parameters (which must point to character buffers of
sufficient size to hold the file names). Mode is ignored. If the auditing
system is on and there is no available "next" file, the "current" audit
file name is returned via the cpath parameter, npath is set to an empty
string; —1 is returned, and errno is set to ENOENT. If the auditing sys-
tem is off, no action is performed; —1 is returned and errno is set to
EALREADY.

The caller issues the AUD_SET command to change both the "current"
and "next" files. If the audit system is on, the file specified by cpath is
used as the "current" audit file, and the file specified by npath is used
as the "next" audit file. If the audit files do not already exist, they are
created with the specified mode. The auditing system begins writing
to the specified "current" file. Either an empty string or NULL npath
can be specified if the caller wants to designate that no "next" file be
available to the auditing system. If the auditing system is off, no
action is performed; —1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETCURR command to change only the
"current" audit file. If the audit system is on, the file specified by
cpath is used as the "current" audit file. If the specified "current"
audit file does not exist, it is created with the specified mode. Npath is
ignored. The auditing system begins writing to the specified "current"
file. If the audit system is off, no action is performed; —1 is returned
and errno is set to EALREADY.

-1- HP-UX Release 7.0: September 1989

AUDCTL(2) AUDCTL(2)

AUD_SETNEXT The caller issues the AUD_SETNEXT command to change only the
"next" audit file. If the auditing system is on, the file specified by
npath is used as the "next" audit file. Cpath is ignored. If the "next"
audit file specified does not exist, it is created with the specified mode.
Either an empty string or NULL npath can be specified if the caller
wants to designate that no "next" file be available to the auditing sys-
tem. If the auditing system is off, no action is performed; —1 is
returned, and errno is set to EALREADY.

AUD_SWITCH The caller issues the AUD_SWITCH command to cause auditing sys-
tem to switch audit files. If the auditing system is on, it uses the
"next" file as the new "current" audit file and sets the new "next"
audit file to NULL. Cpath, npath,and mode are ignored. The auditing
system begins writing to the new "current" file. If the auditing sys-
tem is off, no action is performed; —1 is returned, and errno is set to
EALREADY. If the auditing system is on and there is no available
"next" file, no action is performed; —1 is returned, and errno is set to
ENOENT.

AUD_OFF The caller issues the AUD_OFF command to halt the auditing system.
If the auditing system is on, it is turned off and the "current" and
"next" audit files are closed. Cpath, npath, and mode are ignored. If
the audit system is already off, —1 is returned and errno is set to EAL-
READY.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, —1 is returned and the global
variable errno is set to indicate the error.

EXAMPLES

In the following example, audct! is used to determine whether the auditing system is on, and to
retrieve the names of the audit files that are currently in use by the system.

char c_filefPATH_MAX+1], x_filefPATH_MAX +1};
int mode=0600;

if (audctl(AUD_GET, c_file, x_file, mode))
switch (erro) {

case ENOENT:
strcpy(x_file,"-none-");
break;

case EALREADY:
printf("The auditing system is OFF\n");
return 0;

case default:
fprintf(stderr, "Audctl failed: errno=%d\n", errno);

return 1;
}
printf("The auditing system is ON: c_file=%s x_file=%s\n", c_file, x_file);
return 0;

ERRORS

Audctl fails if one of the following is true:

HP-UX Release 7.0: September 1989 -2 - (Section 2) 9

AUDCTL(2)

AUDCTL(2)

[EPERM] The caller does not have superuser privilege, or one or both of the
given files are not regular files and cannot be used.

[EALREADY] The AUD_OFF, AUD_SET, AUD_SETCURR, AUD_SETNEXT,
AUD_SWITCH, or AUD_GET cmd specified when the auditing system
is off.

[EBUSY] User attempt to start the auditing system failed because auditing is
already on.

[EFAULT] Bad pointer. One or more of the required function parameters are not
accessible.

[EINVAL] The cpath or npath is greater than PATH_MAX in length, the cpath or
npath specified is not an absolute path name.

[ENOENT] No available "next" file when c¢md is AUD_GETNEXT or
AUD_SWITCH.

AUTHOR
Audctl was developed by HP.
SEE ALSO

10

audit(5), audsys(1M), audomon(1M).

(Section 2)

-3 - HP-UX Release 7.0: September 1989

AUDSWITCH(2) AUDSWITCH(2)

NAME
audswitch — suspend or resume auditing on the current process

SYNOPSIS
#include <sys/audit.h>

int audswitch (aflag)
int aflag;
DESCRIPTION
Audswitch suspends or resumes auditing within the current process. This call is restricted to
superusers.
One of the following aflags must be used:
AUD_SUSPEND Suspend auditing on the current process.
AUD_RESUME Resume auditing on the current process.

Audswitch can be used in self-auditing privileged processes to temporarily suspend auditing
during intervals where auditing is to be handled by the process itself. Auditing is suspended by
a call to audswitch with the AUD_SUSPEND parameter and resumed later by a call to audswitch
with the AUD_RESUME parameter.

An audswitch call to resume auditing serves only to reverse the action of a previous audswitch
call to suspend auditing. A call to audswitch to resume auditing when auditing is not
suspended has no effect.

Audswitch affects only the current process. For example, audswitch cannot suspend auditing for
processes exec’ed from the current process. (Use setaudproc(2) to enable or disable auditing for
a process and its children).

RETURN VALUE
Upon successful completion, audswitch returns 0. If an error occurs, —1 is returned and the glo-
bal variable errno is set to indicate the error.

ERRORS
Audswitch fails if one of the following is true:

[EPERM] The user is not a superuser.

[EINVAL] The input parameter is neither AUD_RESUME nor AUD_SUSPEND.
AUTHOR

Audswitch was developed by HP.
SEE ALSO

audit(5), setaudproc(2), audusr(1M), audevent(1M).

HP-UX Release 7.0: September 1989 -1- (Section 2) 11

AUDWRITE(2) AUDWRITE(2)

NAME
audwrite — write an audit record for a self-auditing process

SYNOPSIS
#include <sys/audith>

int audwrite(audrec_p)
struct self_audit_rec *audrec_p;

DESCRIPTION
Auduwrite is called by trusted self-auditing processes, which are capable of turning off the regu-

lar auditing (using audswitch(2)) and doing higher-level auditing on their own. Audwrite is res-
tricted to superusers.

Audwrite checks to see if the auditing system is on and the calling process and the event
specified are being audited. If these conditions are met, audwrite writes the audit record pointed
to by audrec_p into the audit file. The record consists of an audit record body and a header with
the following fields:

u_long ah_time; /* Date/time (tv_sec of timeval) */
u_short ah_pid; /* Process ID */

u_short ah_error; /* Success/failure */

u_short ah_event; /* Event being audited */

u_short ah_len; /* Length of variant part */

The header has the same format as the regular audit record, while the body contains additional
information about the high-level audit event. The header fields ah_error, ah_event, and ah_len
are specified by the calling process. Audwrite fills in ah_time and ah_pid fields with the correct
values. This is done to reduce the risk of forgery. After the header is completed, the record
body is attached and the entire record is written into the current audit file.

RETURN VALUE
If the write is successful, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the reason for the failure.

ERRORS
Auduwrite fails if one of the following is true:

[EPERM] The caller is not a superuser.
[EINVAL] The event number in the audit record is invalid.
WARNINGS

If audwrite causes a file space overflow, the calling process might be suspended until the file
space is cleaned up. However a returned call with the return value of 0 indicates that the audit
record has been successfully written.

AUTHOR
Audwrite was developed by HP.

SEE ALSO
audswitch(2), audit(4).

12 (Section 2) -1- HP-UX Release 7.0: September 1989

BRK(2) BRK(2)

NAME
brk, sbrk — change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for the calling
process’s data segment; see exec(2). The change is made by resetting the process’s break value
and allocating the appropriate amount of space. The break value is the address of the first loca-
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. Incr can
be negative, in which case the amount of allocated space is decreased.
ERRORS

Brk and sbrk will fail without making any change in the allocated space if one or more of the
following are true:

[ENOMEM] Such a change would result in more space being allocated than is allowed by a
system-imposed maximum (see ulimit(2)).
[ENOMEM] Such a change would cause a conflict between addresses in the data segment
and any attached shared memory segment (see shmop(2)).
[ENOMEM] Such a change would be impossible as there is insufficient swap space avail-
able.
WARNINGS

The pointer returned by sbrk is not necessarily word-aligned. Loading or storing words through
this pointer could cause word alignment problems.

Care should be taken when using either brk(2) or sbrk(2) in conjunction with calis to the
malloc(3C) or malloc(3X) library routines. There is only one program data segment from which
all three of these routines allocate and deallocate program data memory. Although it is not
recommended practice, it is possible to deallocate program data memory allocated through
malloc(3C) with a subsequent call to brk().

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Oth-
erwise, a value of —1 is returned and errno is set to indicate the error.

AUTHOR
Brk and sbrk were developed by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

STANDARDS CONFORMANCE
brk: XPG2

sbrk: XPG2

HP-UX Release 7.0: September 1989 ~-1- (Section 2) 13

BSDPROC(2) BSDPROC(2)

NAME

killpg, getpgrp, setpgrp, sigvec, signal — 4.2 BSD-compatible process control facilities

SYNOPSIS

int killpg(pgrp, sig)
int pgrp, sig;

int getpgrp(pid)

int pid;

int setpgrp(pid, pgrp)
int pid, pgrp;

#include <signal.h>

int sigvec(sig, vec, ovec)
int sig;

struct sigvec *vec, *ovec;
void (*signal(sig, func))(
int sig;

void (*func)();

DESCRIPTION

These calls simulate (and are provided for backward compatibility with) functions of the same
name in the 4.2 Berkeley Software Distribution.

This version of setpgrp is equivalent to the system call setpgid(pid, pgrp) (see setpgid(2)).
This version of getpgrp is equivalent to the system call getpgrp2(pid) (see getpid(2)).
Killpg is equivalent to the system call kill(—pgrp, sig) (see kill(2)).

Sigvec is equivalent to the system call sigvector(sig, vec, ovec) (see sigvector(2)), except for the
following:

When SIGCHLD or SIGCLD is used and vec specifies a catching function, the routine acts
as if the SV_BSDSIG flag were included in the sv_flags field of vec.

The name sv_onstack can be used as a synonym for the name of the sv_flags field of vec
and ovec.

If vec is not a null pointer and the value of (vec—>sv_flags & 1) is "true", the routine
acts as if the SV_ONSTACK flag were set.

If ovec is not a null pointer, the flag word returned in ovec—>sv_flags (and therefore the
value of ovec—>sv_onstack) will be equal to 1 if the system was reserving space for pro-
cessing of that signal because of a call to sigspace(2), and 0 if not. The SV_BSDSIG bit in
the value placed in ovec—>sv_flags is always clear.

If the reception of a caught signal occurs during certain system calls, the call will always
be restarted, regardless of the return value from a catching function installed with
sigvec(). The affected calls are wait(2), semop(2), msgsnd(2), msgrcv(2), and read(2) or
write(Z) on a slow device (such as a terminal or pipe, but not a file). Other interrupted
system calls are not restarted.

This version of signal has the same effect as sigvec(sig, vec, ovec), where vec—>sv_handler is
equal to func, vec—>sv_mask is equal to 0, and vec—>sv_flags is equal to 0. Signal returns the
value that would be stored in ovec—>sv_handler if the equivalent sigvec call would have suc-
ceeded. Otherwise, signal returns —1 and errno is set to indicate the reason as it would have

14 (Section 2) -1- HP-UX Release 7.0: September 1989

BSDPROC(2) BSDPROC(2)

been set by the equivalent call to sigvec.
These functions can be linked into a program by giving the -IBSD option to ld(1).

WARNINGS
While the 4.3 BSD release defined extensions to some of the interfaces described here, only the
4.2 BSD interfaces are emulated by this package.
Bsdproc should not be used in conjunction with the facilities described under sigset(2V).
AUTHOR
Bsdproc was developed by HP and the University of California, Berkeley.
SEE ALSO
1d(1), kill(2), getpid(2), msgsnd(2), msgrev(2), read(2), semop(2), setpgid(2), setsid(2), sigvec-
tor(2), wait(2), write(2), sigset(2V), sigstack(2), signal(5).

HP-UX Release 7.0: September 1989 -2 - (Section 2) 15

CHDIR(2) CHDIR(2)

NAME
chdir — change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning
with /.

ERRORS

Chdir will fail and the current working directory will be unchanged if one or more of the fol-
lowing are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENOENT] Path is null.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

AUTHOR

Chdir was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.
SEE ALSO

cd(1), chroot(2).

STANDARDS CONFORMANCE
chdir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

16 (Section 2) -1- HP-UX Release 7.0: September 1989

CHMOD(2) CHMOD(2)

NAME
chmod, fchmod — change access mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int chmod (path, mode)
char spath;
mode_t mode;

int fchmod (fildes, mode)
int fildes;
mode_t mode;

DESCRIPTION
The path argument points to a path name naming a file. The fildes argument is a file descriptor.
Chmod and fchmod set the access permission portion of the file’s mode according to the bit pat-
tern contained in mode.

The following symbolic constants representing the access permission bits are defined with the
indicated values in <sys/stat.h> and are used to construct the argument mode. The value of
the argument mode is the bitwise inclusive OR of the values for the desired permissjons.

S_ISUID 04000 Set user ID on execution.
S_ISGID 02000 Set group ID on execution.
S_ENFMT 02000 Record locking enforced.
S_ISVTX 01000 Save text image after execution.
S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search) by owner.
S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute (search) by group.
S_IROTH 00004 Read by others (that is, anybody else).
S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute (search) by others.

The effective-user-ID of the process must match that of the owner of the file or the superuser to
change the mode of a file.

If the effective-user-ID of the process is not that of the superuser, S_ISVTX (mode bit 01000,
save text image on execution) is cleared.

If the effective-user-ID of the process is not that of the superuser, and the effective-group-ID of
the process does not match the group ID of the file and none of the group IDs in the supple-
mentary groups list match the group ID of the file, S_ISGID, S_LENFMT (mode bit 02000, set
group ID on execution and enforced file locking mode) is cleared.

The set-group-ID on execution bit is also used to enforce file-locking mode (see lockf(2) and
fentl(2)) on files that are not group executable. This might affect future calls to open(2), creat(2),
read(2), and write(2) on such files.

If an executable file is prepared for sharing, S_ISVTX (mode bit 01000) prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Then, when the next user of the file executes it, the text need not be read from the

file system but can simply be swapped in, thus saving time. '

HP-UX Release 7.0: September 1989 -1~ (Section 2) 17

CHMOD(2) CHMOD(2)

Access Control Lists
All optional entries in a file’s access control list are deleted when chmod is executed. (This
behavior conforms to the IEEE Standard POSIX 1003.1-1988.) To preserve optional entries in a
file’s access control list, it is necessary to save and restore them using getacl(2) and setacl(2).

To set the permission bits of access control list entries, use setacl(2) instead of chmod.
For more information on access control list entries, see acl(5).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Chmod and fchmod fail and the file mode is unchanged if one or more of the following is true:

[EACCES] Search permission is denied on a component of the path prefix.

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[ELOOP] Too many symbolic links are encountered in translating path.

[ENAMETOOLONG]

A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect or path exceeds PATH_MAX bytes.

[ENOENT] A component of path does not exist.
{ENOENT] The file named by path does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
[EPERM] The effective-user-ID does not match that of the owner of the file and the
effective-user-ID is not that of the super-user.
[EROFS] The named file resides on a read-only file system.
DEPENDENCIES

HP Clustered Environment:

If the file is a directory, the access permission bit S_CDF (04000) indicates a hidden direc-
tory (see cdf(4)).

RFA and NFS
Fchmod is not supported on remote files.
AUTHOR
Chmod was developed by AT&T, the University of California, Berkeley, and HP.
Fchmod was developed by the University of California, Berkeley.
SEE ALSO
chmod(1), chown(2), creat(2), fentl(2), getacl(2), lockf(2), mknod(2), open(2), read(2), setacl(2),
write(2), cdf(4), acl(5).

STANDARDS CONFORMANCE
chmod: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

18 (Section 2) -2 - HP-UX Release 7.0: September 1989

CHOWN(2) CHOWN(2)

NAME
chown, fchown — change owner and group of a file

SYNOPSIS
#include <sys/types.h>

int chown (path, owner, group)
char path;
uid_t owner;
gid_t group;
int fchown (fildes, owner, group)
int fildes;
uid_t owner;
gid_t group;

DESCRIPTION
Chown changes the user and group ownership of a file. The path argument points to a path
name naming a file. The fildes argument is a file descriptor. The chown and fchown functions
set the owner ID and group ID of the file to the numeric values contained in ewner and group
respectively. A value of UID_NO_CHANGE or GID_NO_CHANGE can be specified in owner
or group to leave unchanged the file’s owner ID or group ID respectively. Note that owner and
group should be less than or equal to UID_MAX (see limits(5)).

Only processes with effective user ID equal to the file owner or superuser can change the own-
ership of a file. If privilege groups are supported, the owner of a file can change the ownership
only if he is a member of a privilege group allowing CHOWN, as set up by setprivgrp(IM). All
users get CHOWN privileges by default.

The group ownership of a file can be changed to any group in the current process’s access list
or to the real or effective group ID of the current process. If privilege groups are supported
and the user is permitted the CHOWN privilege, the file can be given to any group.

If chown is invoked on a regular file by other than the superuser, the set-user-ID and set-
group-ID bits of the file mode are cleared. Whether chown preserves or clears these bits on files
of other types is implementation dependent.

Access Control Lists (ACLs)

A user can allow or deny specific individuals and groups access to a file by using the file’s
access control list (see acl(5)). When using chown(2) in conjunction with ACLs, if the new
owner and/or group does not have an optional ACL entry corresponding to #.% and/or %.g in
the file’s access control list, the file’s access permission bits remain unchanged. However, if the
new owner and/or group is already designated by an optional ACL entry of 4.% and/or %.g,
chown sets the file’s permission bits (and the three basic ACL entries) to the permissions con-
tained in that entry.

ERRORS
Chown fails and the owner and group of the file remain unchanged if one or more of the fol-
lowing is true:

[EBADF] Fildes is not a valid file descriptor.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The file named by path does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID is not superuser and one or more of the following condi-
tions exist:

HP-UX Release 7.0: September 1989 -1~ (Section 2) 19

CHOWN(2) CHOWN(2)

The effective user ID does not match the owner of the file.

When changing the owner of the file, if the owner of the file is not a member
of a privilege group allowing the CHOWN privilege.

member
mempoer

When changing the group of the file, if the owner of th

o a
of a privilege group allowing the CHOWN privilege and the group number is
not in the current process’s access list.

file ic not
file 18 not

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]

A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect, or path exceeds PATH_MAX bytes.
[ELOOP] Too many symbolic links were encountered in translating path.
DEPENDENCIES
HP Clustered Environment:
Chown does not clear the set-user-ID bit of a directory, because that bit indicates that the
directory is hidden (see cdf(4)).
When chown is called from a diskless node, the privilege groups checked are the ones set
up on the cluster server.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.
AUTHOR
Fchown was developed by the University of California, Berkeley.
SEE ALSO
chown(1), setprivgrp(1M), chmod(2), setacl(2), acl(5), limits(5).
STANDARDS CONFORMANCE
chown: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

20 (Section 2) -2 - HP-UX Release 7.0: September 1989

CHROOT(2) CHROOT(2)

NAME
chroot — change root directory
SYNOPSIS
int chroot (path)
char +path;
DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become

the root directory, the starting point for path searches for path names beginning with /. The
user’s working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot
be used to access files outside the subtree rooted at the root directory.
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Chroot will fail and the root directory will remain unchanged if one or more of the following
are true:
[ENOTDIR] Any component of the path name is not a directory.
[ENOENT] The named directory does not exist or a component of the path does not exist.
[EPERM] The effective user ID is not super-user.
[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.
[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.
[ELOOP] Too many symbolic links were encountered in translating the path name.
SEE ALSO

chroot(1M), chdir(2).

STANDARDS CONFORMANCE
chroot: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 2) 21

CLOSE(2) CLOSE(2)

NAME
close — close a file descriptor
SYNOPSIS
int close (fildes)
int fildes;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Close
closes the file descriptor indicated by fildes. All associated file segments which have been
locked by this process with the lockf function are released (i.e., unlocked).
ERRORS
[EBADF] Close will fail if fildes is not a valid open file descriptor.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.
SEE ALSO
creat(2), dup(2), exec(2), fentl(2), lockf(2), open(2), pipe(2).
STANDARDS CONFORMANCE
close: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

22 (Section 2) —-1- HP-UX Release 7.0: September 1989

CNODEID(2)

NAME
cnodeid — get the cnode ID of the local machine

SYNOPSIS
#include <sys/types.h>

cnode_t cnodeid ()

DESCRIPTION

Cnodeid rcturns the cnode ID of the local machine.
SEE ALSO

cnodes(1), cnodes(2), getccent(3C).
AUTHOR

Cnodeid was developed by HP.

HP-UX Release 7.0: September 1989 -1-

CNODEID(2)

(Section 2)

23

-CNODES(2) CNODES(2)

NAME
cnodes — get a list of active nodes in cluster

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
int cnodes (buf)
cnode_t *buf;

DESCRIPTION
Cnodes returns in buf the current number of active cnodes in the cluster. If buf is not a null
pointer, it should be a pointer to an array of at least MAX_CNODE cnode IDs. This array will
be filled with the cnode IDs of nodes currently in the cluster; the list of cnode IDs is terminated
by the cnode ID 0.

RETURN VALUE
Upon successful completion, cnodes returns the current number of active cnodes. If the value 0
is returned, the machine is not a member of a cluster. In case of an error, a value of —1 is
returned and errno is set to indicate the error.

ERRORS
Cnodes may fail if:

[EFAULT] Buf is not a null pointer and points to an illegal address. Reliable detection of
this error is not guaranteed.
SEE ALSO
cnodeid(2), cnodes(1), getccent(3C).
AUTHOR

Cnodes was developed by HP.

24 (Section 2) -1- HP-UX Release 7.0: September 1989

CREAT(2) CREAT(2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
#include <sys/types.h>
#include <sys/stath>
#include <fcntlh>

int creat (path, mode)
char xpath;
mode_t mode;

DESCRIPTION

Creat creates a new regular file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, its length is truncated to 0, and its mode and owner are unchanged. Other-
wise, the file’s owner ID is set to the effective user ID of the process. If the set-group-ID bit of
the parent directory is set, the directory’s group ID is set to the group ID of the parent directory.
Otherwise, the directory’s group ID is set to the process’s effective group ID. The low-order 12
bits of the file mode are set to the value of mode modified as follows:

All bits set in the process’s file mode creation mask are cleared. See umask(2).
The "save text image after execution" bit of the mode are cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing
(only), even if the mode does not permit writing. The file offset is set to the beginning of the
file. The file descriptor is set to remain open across exec system calls (see fcntl(2)). No process
can have more than OPEN_MAX files open simultaneously. This is discussed in open(2). A new
file can be created with a mode that forbids writing.

Access Control Lists (ACLs)
On systems that support access control lists, three base ACL entries are created corresponding to

the file access permission bits. An existing file’s access control list is unchanged by creat (see
setacl(2), chmod(2), and acl(5)).

ERRORS
Creat fails if one or more of the following is true:

[ENOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null, or a component of path
does not exist).

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The file does not exist and the directory in which the file is to be created does
not permit writing.

[EROFS] The named file resides or would reside on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EACCES] The file exists and write permission is denied.

[EISDIR] The named file is an existing directory.

[EMFILE] More than the maximum number of file descriptors are currently open.

[EFAULT] Path points outside the allocated address space of the process. The reliable

detection of this error is implementation dependent.

HP-UX Release 7.0: September 1989 -1~ (Section 2) 25

CREAT(2) CREAT(2)

[ENFILE] The system file table is full.

[ENXIO] The named file is a character special or block special file, and the device associ-
ated with this special file does not exist.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds. NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[EAGAIN] The file exists, enforcement mode file and record locking is set and there are
outstanding record locks on the file.

[ELOOP] Too many symbolic links were encountered in translating the path name.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), lockf(2), lseek(2), open(2), read(2), setacl(2), truncate(2),
umask(2), write(2), acl(5).

STANDARDS CONFORMANCE
creat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

26 (Section 2) -2- HP-UX Release 7.0: September 1989

DUP(2) DUP(2)

NAME
dup — duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup. fcntl, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).
Same file status flags (see fcntl(2), F_DUPFD).
The new file descriptor is set to remain open across exec system calls. See fcntl(2).
The file descriptor returned is the lowest one available.
ERRORS
Dup will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] The maximum number of file descriptors are currently open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

AUTHOR
Dup was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
close(2), creat(2), dup2(2), exec(2), fentl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 27

DUP2(2) DUP2(2)

NAME
dup2 — duplicate an open file descriptor to a specific slot

SYNOPSIS
int dup2(fildes, fildes2)
int fildes, fildes2;

DESCRIPTION)
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Fildes2 is a non-negative integer less than the maximum value allowed for file descriptors.

Dup2 causes fildes2 to refer to the same file as fildes. If fildes2 already referred to an open file, it
is closed first.

The file descriptor returned by dup2 has the following in common with fildes:
Same open file (or pipe).
Same file pointer (that is, both file descriptors share one file pointer.)
Same access mode (read, write or read/write).
Same file status flags (see fcntl(2), F_DUPFD).

The new file descriptor is set to remain open across exec system calls. See fcntl(2).

This routine is found in the C library. Programs using dup2 but not using other routines from
the Berkeley importability library (such as the routines described in bsdproc(2)) should not give
the —1BSD option to ld(1).

ERRORS
Dup2 will fail if the following is true:
[EBADF] Fildes is not a valid open file descriptor or fildes2 is not in the range of legal

file descriptors.

RETURN VALUE
Upon successful completion, dup2 returns a non-negative integer, namely the new file descriptor
fildes2. Otherwise, it returns —~1 and sets errno to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup2: SVID2, XPG3, POSIX.1, FIPS 151-1

28 (Section 2) -1- HP-UX Release 7.0: September 1989

ERRNO(2) ERRNO(2)

NAME
errno — error indicator for system calls

SYNOPSIS
#include <errno.h>
extern int errno;

DESCRIPTION
The value of the external variable errno is set whenever an error occurs in a system call. This
value can be used to obtain a more detailed description of the error. An error condition is indi-
cated by an otherwise impossible returned value. This is almost always —1; the individual
descriptions specify the details. Because errno is not cleared on successful system calls, its
value should be checked only when an error has been indicated.

Each system call description attempts to list all possible error numbers. The following is a com-
plete list of the error names. The numeric values can be found in <errno.h> but should not
normally be used.

E2BIG Arg list too long. An argument and or environment list longer than maximum
supported size is presented to a member of the exec family. Other possibilities
include: message size or number of semaphores exceeds system limit (msgop,
semop), or too many privileged groups have been set up (setprivgrp).

EACCES Permission denied. An attempt was made to access a file or IPC object in a
way forbidden by the protection system.

EADDRINUSE Address already in use. Only one usage of each address is normally permitted.

EADDRNOTAVAIL
Cannot assign requested address. Normally results from an attempt to create a
socket with an address not on this machine.

EAFNOSUPPORT
Address family not supported by protocol family. An address incompatible
with the requested protocol was used. For example, you should not necessarily
expect to be able to use PUP Internet addresses with ARPA Internet protocols.

EAGAIN No more processes. A fork failed because the system’s process table is full or
the user is not allowed to create any more processes, or a semop or msgop call
would have to block.

EALREADY Operation already in progress. An operation was attempted on a non-blocking
object which already had an operation in progress.

EBADF Bad file number. Either a file descriptor refers to no open file, a read (respec-
tively write) request is made to a file which is open only for writing (respec-
tively reading), or the file descriptor is not in the legal range of file descriptors.

EBUSY Device or resource busy. An attempt to mount a device that was already
mounted or an attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active text segment). It
will also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable, such as when a non-
shareable device file is in use.

ECHILD No child processes. A wait was executed by a process that had no existing or
unwaited-for child processes.
ECONNABORTED

Software caused connection abort. A connection abort was caused internal to
your host machine.

HP-UX Release 7.0: September 1989 -1- (Section2) 29

ERRNO(2) ERRNO(2)

ECONNREFUSED
Connection refused. No connection could be made because the target machine
actively refused it. This usually results from trying to connect to a service that
is inactive on the foreign host.

ECONNRESET Connection reset by peer. A connection was forcibly closed by a peer. This
normally results from the peer executing a shutdown(2) call.

EDEADLK Resource deadlock would occur. A process which has locked a system resource
would have been put to sleep while attempting to access another process’
locked resource.

EDESTADDRREQ

Destination address required. A required address was omitted from an opera-
tion on a socket.

EDOM Math argument. The argument of a function in the math package (3M) is out
of the domain of the function.

EEXIST File exists. An existing file was mentioned in an inappropriate context, e.g.,
link.

EFAULT Bad address. The system encountered a hardware fault in attempting to use an

argument of a system call; can also result from passing the wrong number of
parameters to a system call. The reliable detection of this error will be imple-
mentation dependent.

EFBIG File too large. The size of a file exceeded the maximum file size (for the file
system) or ULIMIT was exceeded. (see ulimit(2)), or a bad semaphore number
in a semop(2) call.

EHOSTDOWN Host is down. A socket operation encountered a dead host. Networking
activity on the local host has not been intiated.

EHOSTUNREACH
No route to host. A socket operation was attempted to an unreachable host.

EIDRM Identifier Removed. This error is returned to processes that resume execution
due to the removal of an identifier from the file system’s name space (see
msgctl(2), semctl(2), and shmctl(2)).

EINPROGRESS Operation now in progress. An operation which takes a long time to complete
was attempted on a non-blocking object (see ioctl(2) and fentl(2)).

EINTR Interrupted system call. An asynchronous signal (such as interrupt or quit),
which the user has elected to catch, occurred during a system call. If execution
is resumed after processing the signal, it will appear as if the interrupted sys-
tem call returned this error condition unless the system call is restarted (see
sigvector(2)).

EINVAL Invalid argument. Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or kill; reading or writing a
file for which Iseek has generated a negative pointer). Also set by the math
functions described in the (3M) entries of this manual.

EIO 1/O error — some physical 1/O error. This error may in some cases occur on a
call following the one to which it actually applies.

EISCONN Socket is already connected. A connect request was made on an already con-
nected socket, or, a sendto or sendmsg request on a connected socket specified a
destination other than the connected party.

30 (Section 2) -2- HP-UX Release 7.0: September 1989

ERRNO(2)

EISDIR
ELOOP

EMFILE

EMLINK

EMSGSIZE

ERRNO(2)

Is a directory. An attempt to open a directory for writing.

Too many levels of symbolic links. A path name search involved more than
MAXSYMLINKS symbolic links. MAXSYMLINKS is defined in <sys/param.h>.

Too many open files. No process may have more than a system defined
number of file descriptors open at a time.

Too many links. An attempt to make more than the maximum number of

links to a file.

Message too long. The socket requires that the message be sent atomically,
and the size of the message to be sent made this impossible.

ENAMETOOLONG

ENET

ENETDOWN
ENETRESET

ENETUNREACH

ENFILE

ENOBUFS

ENODEV

ENOENT

ENOEXEC

ENOMEM

File name too long. A path specified exceeds the maximum path length for the
system. The maximum path length is specified by PATH_MAX and is defined
in <limits.h>. PATH_MAX is guaranteed to be at least 1023 bytes. This error
is also generated if the length of a path name component exceeds NAME_MAX
and the _POSIX_NO_TRUNC option is in effect for the specified path.
Currently, _POSIX_NO_TRUNC is in effect only for HFS file systems configured
to allow path name components up to 255 bytes long (see convertfs(1M)) and
therefore only path names referring to such file systems will generate the error
for this case. The values of NAME_MAX, PATH_MAX, and _POSIX_NO_TRUNC
for a particular path name can be queried by using the pathconf(2) system call.

Local area network error. An error occurred in the software or hardware asso-
ciated with your local area network.

Network is down. A socket operation encountered a dead network.

Network dropped connection on reset. The host you were connected to
crashed and rebooted.

Network is unreachable. A socket operation was attempted to an unreachable
network.

File table overflow. The system’s table of open files is full, and temporarily no
more opens can be accepted.

No buffer space available. An operation on a socket was not performed
because the system lacked sufficient buffer space.

No such device. An attempt was made to apply an inappropriate system call
to a device; e.g., read a write-only device.

No such file or directory. This error occurs when a file name is specified and
the file should exist but doesn’t, or when one of the directories in a path name
does not exist. It also occurs with msgget, semget, shmget when key does not
refer to any object and the IPC_CREAT flag is not set.

Exec format error. A request is made to execute a file which, although it has
the appropriate permissions, does not start with a valid magic number (see
a.out(4)), or the file is too small to have a valid executable file header.

Not enough space. During a system call such as exec, brk, fork, or sbrk, a pro-
gram asks for more space than the system is able to supply. This may not be a
temporary condition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap space during a

fork.

HP-UX Release 7.0: September 1989 -3- (Section 2) 31

ERRNO(2)

32

ENOMSG

ENOPROTOOPT

ENOSPC

ENOSYS

ENOTBLK

ENOTCONN

ENOTDIR

ENOTEMPTY
ENOTSOCK

ENOTTY

ENXIO

EOPNOTSUPP

EPFNOSUPPORT

EPIPE

ERRNO(2)

No message of desired type. An attempt was made to receive a message of a
type that does not exist on the specified message queue; see msgop(2).

Protocol not available. A bad option was specified in a getsockopt(2) or set-
sockopt(2) call.

No space left on device. During a write to an ordinary file, there is no free
space left on the device; or, no space in system table during msgget(2),
semget(2), or semop(2) while SEM_UNDO flag is set.

Function is not available. The requested function or operation is not imple-
mented or not configured in the system.

Block device required. A non-block file was mentioned where a block device
was required, e.g., in mount.

Socket is not connected. A request to send or receive data was disallowed
because the socket was not connected.

Not a directory. A non-directory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(2).

Directory not empty. An attempt was made to remove a non-empty directory.

Socket operation on non-socket. An operation was attempted on something
that is not a socket.

Not a typewriter. The (ioctl(2)) command is inappropriate to the selected dev-
ice type.

No such device or address. I/O on a special file refers to a subdevice which
does not exist, or beyond the limits of the device. It may also occur when, for
example, a tape drive is not online or no disk pack is loaded on a drive.

Operation not supported. The requested operation on a socket, RFA file, or NFS
file is either invalid or unsupported. For example, this might occur when an
attempt to accept a connection on a datagram socket fails.

Protocol family not supported. The protocol family has not been configured
into the system or no implementation for it exists. the socket is not connected.

Broken pipe. A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is
ignored.

EPROTONOSUPPORT

EPROTOTYPE

ERANGE

EROFS

(Section 2)

Protocol not supported. The protocol has not been configured into the system
or no implementation for it exists.

Protocol wrong type for socket. A protocol was specified that does not support
the semantics of the socket type requested. For example you cannot use the
ARPA Internet UDP protocol with type SOCK_STREAM.

Result too large. The value of a function in the math package (3M) is not
representable within machine precision, or a semop(2) call would cause either a
semaphore value or a semaphore adjust value to exceed it system-imposed
maximum.

Read-only file system. An attempt to modify a file or directory was made on a
device mounted read-only.

-4 - HP-UX Release 7.0: September 1989

ERRNO(2) ERRNO(2)

ESHUTDOWN Cannot send after socket shutdown. A request to send data was disallowed
because the socket had already been shut down with a previous shutdown(2)
call.

ESOCKTNOSUPPORT
Socket type not supported. The support for the socket type has not been
configured into the system or no implementation for it exists.

ESPIPE Tllegal seek. An lseek was issued to a pipe.

ESRCH No such process. No process can be found corresponding to that specified by
pid in kill, rtprio or ptrace, or the process is not accessible.

ETIMEDOUT Connection timed out. A connect request failed because the connected party
did not properly respond after a period of time. (The timeout period is depen-
dent on the communication protocol.)

ETXTBSY Text file busy. An attempt to execute an executable file which is currently
open for writing (or reading). Also, an attempt to open for writing an other-
wise writable file which is currently open for execution.

EWOULDBLOCK Operation would block. An operation which would cause a process to block
was attempted on a object in non-blocking mode (see ioctl(2) and fcntl(2)).

EXDEV Cross-device link. A link to a file on another device was attempted.
DEPENDENCIES

The following NFS errors are also defined:

EREFUSED The same error as. ECONNREFUSED. The external variable errno is defined as

ECONNREFUSED for NFS compatibility.

EREMOTE Too many levels of remote in path. An attempt was made to remotely mount
an NFS file system into a path which already has a remotely mounted NFS file
system component.

ESTALE Stale NFS file handle. A client referenced an open file, but the file had previ-
ously been deleted.
Series 800:
In the definition of error ENOMEM, the term “‘segmentation registers” is invalid.

STANDARDS CONFORMANCE
errno: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -5 (Section 2) 33

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS
int execl (path, arg0, argl, ..., argn, (char) 0)
char *path, xarg0, *argl, .., *argn;

int execv (path, argv)
char «path, *argv| |;

int execle (path, arg0, argl, .., argn, (char %) 0, envp)
char xpath, +arg0, =argl, .., *argn, senvp| |;

int execve (path, argv, envp)
char *path, xargv[], xenvp| |;

int execlp (file, arg0, argl, ..., argn, (char) 0)
char file, +arg0, xargl, .., *argn;

int execvp (file, argv)
char «file, «argv] |;

DESCRIPTION

Exec, in all its forms, loads a program from an ordinary, executable file onto the current pro-
cess, replacing the current program. The path or file argument refers to either an executable
object file or a file of data for an interpreter. In this case, the file of data is also called a script
file.

An executable object file consists of a header (see a.out(4)), text segment, and data segment.
The data segment contains an initialized portion and an uninitialized portion (bss). For execlp
and execvp the shell (/bin/sh) can be loaded to interpret a script instead. A successful call to
exec does not return because the new program overwrites the calling program.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char sxargv, *xenvp;

where grgc is the argument count and argv is the address of an array of character pointers to the
arguments themselves. As indicated, argc usually has a value of at least one, and the first
member of the array points to a string containing the name of the file. (The exit conditions
from main are discussed in exit(2).)

Path points to a path name that identifies the executable file containing the new program.

File (in execlp or execvp) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by searching the directories passed as the
environment line "PATH =" (see environ(5)). The environment is supplied by the shell (see
sh(1)). If file does not have an executable magic number (magic(4)), it is passed to /bin/sh as a
shell script.

Arg0, argl, ..., argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new program, By convention, at least arg0 must be present
and point to a string identical to path or path’s last component.

Argu is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new program. By convention, argv must have at least one
member, and must point to a string that is identical to path or path’s last component. Argv is
terminated by a null pointer,

34 (Section 2) -1~ HP-UX Release 7.0: September 1989

EXEC(2) EXEC(2)

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment in which the new program runs. Envp is terminated by a null pointer. For execl
and execv, the C run-time start-off routine places a pointer to the environment of the calling
program in the global cell:

extern char #+environ;
and it is used to pass the environment of the calling program to the new program.

Open file descriptors remain open, except for those whose close-on-exec flag is set; see fentl(2).
The file offsei, access mode, and status flags of open file descriptors are unchanged.
Note that normal executable files are open only briefly, when they start execution. Other exe-

cutable file types can be kept open for a long time, or even indefinitely under some cir-
cumstances.

The processing of signals by the process is unchanged by exec, except that signals caught by the
process are set to their default value; see signal(2).

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2)),
exec sets the effective-user-ID of the new process to the user ID of the executable file. Similarly,
if the set-group-ID mode bit of the executable file is set, the effective-group-ID of the process is
set to the group ID of the executable file. The real-user-ID and real-group-ID of the process are
unchanged. Note that the set-user(group)-ID function does not apply to scripts; thus, if execlp
or execvp executes a script, the set-user(group)-ID bits are ignored, even if they are set.

The saved-user-ID and saved-group-ID of the process are always set to the effective-user-ID and
effective-group-ID, respectively, of the process at the end of the exec, whether or not set-
user(group)-ID is in effect.

The shared memory segments attached to the calling program are not attached to the new pro-
gram (see shmop(2)).

Profiling is disabled for the new process; see profil(2).
The process also retains the following attributes:

current working directory

file creation mode mask (see umask(2))

file locks (see fcntl(2)), except for files closed-on-exec
file size limit (see ulimit(2))

interval timers (see getitimer(2))

nice value (see nice(2))

parent process ID

pending signals

process ID

process group ID

real user ID

real group ID

real-time priority (see riprio(2))

root directory (see chroot(2))

semadj values (see semop(2))

session membership

signal mask (see sigvector(2))

supplementary group IDs

time left until an alarm clock signal (see alarm(2))
trace flag (see ptrace(2) PT_SETTRC request)
tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))

The initial line of a script file must begin with #! as the first two bytes, followed by 0 or more
spaces, followed by interpreter or interpreter argument. One or more space or tab must separate

HP-UX Release 7.0: September 1989 -2 - (Section 2) 35

EXEC(2)

EXEC(2)

interpreter and argument. The first line should end with either a new line or null character.

#! interpreter
#1 interpreter argument

When the script file is executed, the system executes the specified interpreter as an executable
object file. Even in the case of execlp or execvp, no path searching is done of the interpreter
name,

The argument is anything that follows the interpreter and tabs or spaces. If an argument is
given, it is passed to the interpreter as argv[1] and the name of the script file is passed as
argv[2]. Otherwise, the name of the script file is passed as argu[1]. The argv[0] is passed as
specified in the exec call, unless either argv or argv[0] is null as specified, in which case a
pointer to a null string is passed as argv[0]. All other arguments specified in the exec call are
passed following the name of the script file (that is, beginning at argv[3] if there is an argument;
otherwise at argv[2]).

If the initial line of the script file exceeds a system-defined maximum number of characters, exec
fails. The minimum value for this limit is 32.

Set-user-ID and set-group-ID bits are honored for the script and not for the interpreter.

RETURN VALUE

If exec returns to the calling program, an error has occurred; the return value is —1 and errno is
set to indicate the error.

ERRORS

Exec fails and returns to the calling program if one or more of the following is true:

[E2BIG] The number of bytes in the new program’s argument list is greater than the
system-imposed limit. This limit is at least 5120 bytes on HP-UX systems.

[EACCES] Read permission is denied for the executable file or interpreter, and trace flag
(see ptrace(2) request PT_SETTRC) of the process is set.

[EACCES] Search permission is denied for a directory listed in the executable file’s or the
interpreter’s path prefix.

[EACCES] The executable file or the interpreter is not an ordinary file.

[EACCES] The file described by path or file is not executable. The superuser cannot exe-

cute a file unless at least one access permission bit or entry in its access control
list has an execute bit set.

[EFAULT] Path, argv, or envp point to an illegal address. The reliable detection of this
error is implementation dependent.

[EFAULT] The executable file is shorter than indicated by the size values in its header, or
is otherwise inconsistent. The reliable detection of this error is implementation
dependent.

[EINVAL] The executable file is incompatible with the architecture on which the exec has

been performed, and is presumed to be for a different architecture. It is not
guaranteed that every architecture’s executable files wiill be recognized.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG]
The executable file’s path name or the interpreter’'s path name exceeds
PATH_MAX bytes, or the length of a component of the path name exceeds
NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

36 (Section 2) -3- HP-UX Release 7.0: - September 1989

EXEC(2)

[ENOENT]
[ENOENT]

[ENOEXEC]

[ENOEXEC]
[ENOMEM]
[ENOTDIR]
[ETXTBSY)

DEPENDENCIES
Series 800

EXEC(2)

Path is null.

One or more components of the executable file’s path name or the interpreter’s
path name does not exist.

The exec is not an execlp or execvp, and the executable file has the appropriate
access permission, but there is neither a valid magic number nor the characters
#! as the first two bytes of its initial line.
The nuimber of bytes in the initial linc of a script file exceeds the system’s max-

imum.

The new process requires more memory than is available or allowed by the
system-imposed maximum.

A component of the executable file’s path prefix or the interpreter's path prefix
is not a directory.

The executable file is currently open for writing.

Unsharable executable files (EXEC_MAGIC magic number produced via the —N option of
ld(1)) are not supported.

SEE ALSO

sh(1), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), acl(5), environ(5), signal(5).

STANDARDS CONFORMANCE
environ: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

execl: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
execle: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
execlp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
execv: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
execve: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
execvp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -4 - (Section 2) 37

EXIT(2) EXIT(2)

NAME
exit, _exit — terminate process

SYNOPSIS
#include <stdlib.h>

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process and passes status to the system for inspection, see wait(2).
Returning from main in a C program has the same effect as exit; the status value is the function
value returned by main. (This value will be undefined if main does not take care to return a
value or to call exit explicitly.)

The exit function cannot return to its caller. The result of an exit call during exit processing is
undefined.

The functions exit and _exit, are equivalent except that exit calls functions registered by atexit
and flushes stdio buffers, while _exit does not. Both exit and _exit terminate the calling process
with the following consequences:

Functions registered by atexit(2) are called in reverse order of registration.
All file descriptors open in the calling process are closed.
All files created by tmpfile(3C) are removed.

If the parent process of the calling process is executing a wait, wait3, or waitpid, it is
notified of the calling process’s termination and the low order eight bits, i.e., bits 0377,
of status are made available to it, see wait(2).

If the parent process of the calling process is not executing a wait, wait3, or waitpid,
and does not have SIGCLD set to SIG_IGN, the calling process is transformed into a
zombie process. A zombie process is a process that only occupies a slot in the process
table. It has no other space allocated either in user or kernel space. Time accounting
information is recorded for use by times(2).

The parent process ID of all of the calling process’s existing child processes and zombie
processes is set to 1. This means the initialization process (procl) inherits each of these
processes.

Each attached shared memory segment is detached and the value of shm_nattach in
the data structure associated with its shared memory identifier is decremented by 1, see
shmop(2).

For each semaphore for which the calling process has set a semadj value, see semop(2),
that semadj value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is performed, see plock(2).

An accounting record is written on the accounting file if the system’s accounting routine
is enabled, see acct(2).

A SIGCHLD signal is sent to the parent process.

If the calling process is a controlling process, the SIGHUP signal is sent to each process
in the foreground process group of the controlling terminal belonging to the calling pro-
cess. The controlling terminal associated with the session is disassociated from the ses-
sion, allowing it to be acquired by a new controlling process.

38 (Section 2) -1- HP-UX Release 7.0: September 1989

EXIT(2) . EXIT(2)

If the exit of the calling process causes a process group to become orphaned, and if any
member of the newly-orphaned process group is stopped, all processes in the newly-
orphaned process group are sent SIGHUP and SIGCONT signals.

If the current process has any child processes that are being traced, they will be sent a
SIGKILL signal.

AUTHOR
Exit was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1), acct(2), plock(2), semop(2), shmop(2), times(2), vfork(2), wait(2),
signal(5).

STANDARDS CONFORMANCE
exit: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

_exit: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2 - (Section 2) 39

FCNTL(2) FCNTL(2)

NAME

fentl — file control

SYNOPSIS

#include <sys/types.h>
#include <umistd.hi>
#include <fentlh>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

union {

int val;

struct flock *lockdes;
} arg

DESCRIPTION

40

Fentl provides for control over open files. Fildes is an open file descriptor.

The following are possible values of the ¢cmd argument:

F_DUPFD Return a new file descriptor having the following characteristics:
Lowest numbered available file descriptor greater than or equal to arg.val.
Same open file (or pipe) as the original file.
Same file pointer as the original file (that is, both file descriptors share one file
pointer).
Same access mode (read, write or read /write).
Same file status flags (that is, both file descriptors share the same file status
flags).
The close-on-exec flag associated with the new file descriptor is set to remain
open across exec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fildes. If the low-
order bit is 0 the file will remain open across exec(2), otherwise the file will be
closed upon execution of exec(2).

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of arg.val
(see F_GETFD).

F_GETFL Get file status flags and access modes; see fentl(5).

F_SETFL Set file status flags to arg.val. Only certain flags can be set; see fcntl(5). It is
not possible to set both O_NDELAY and O_NONBLOCK .

F_GETLK Get the first lock that blocks the lock described by the variable of type struct

flock pointed to by arg. The information retrieved overwrites the information
passed to fentl in the flock structure. If no lock is found that would prevent
this lock from being created, the structure is passed back unchanged, except
that the lock type is set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the variable of type struct flock
pointed to by arg.lockdes (see fcntl(5)). The cmd F_SETLK is used to establish
read (F_RDLCK) and write (F_ZWRLCK) locks, as well as to remove either type of
lock (F_UNLCK). If a read or write lock cannot be set, fcntl returns immediately
with an error value of —1.

(Section 2) -1- HP-UX Release 7.0: September 1989

FCNTL(2) FCNTL(2)

F_SETLKW This c¢md is the same as F_.SETLK except that if a read or write lock is blocked
by other locks, the process will sleep until the segment is free to be locked.

A read lock prevents any other process from write-locking the protected area. More than one
read lock can exist for a given segment of a file at a given time. The file descriptor on which a
read lock is being placed must have been opened with read access.

A write lock prevents any other process from read-locking or write-locking the protected area.
Only one write lock may exist for a given segment of a file at a given time. The file descriptor
on which a write lock is being placed must have been opened with write access.

The structure flock describes the type (l_type), starting offset (I_whence), relative offset
(L_start), size (I_len), and process ID (I_pid) of the segment of the file to be affected. The pro-
cess ID field is only used with the F_GETLK cmd to return the value of a block in lock. Locks
can start and extend beyond the current end of a file, but cannot be negative relative to the
beginning of the file. A lock can be set to always extend to the end of file by setting 1_len to
zero (0). If such a lock also has 1_start set to zero (0), the whole file will be locked. Changing
or unlocking a segment from the middle of a larger locked segment leaves two smaller seg-
ments for either end. Locking a segment already locked by the calling process causes the old
lock type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that process or
the process holding that file descriptor terminates. Locks are not inherited by a child process in
a fork(2) system call.

When enforcement-mode file and record locking is activated on a file (see chmod(2)), future
read(2) and write(2) system calls on the file are affected by the record locks in effect.

NETWORKING FEATURES
NFS
The advisory record-locking capabilities of fcntl(2) are implemented throughout the net-
work by the “network lock daemon”; see lockd(1M). If the file server crashes and is
rebooted, the lock daemon attempts to recover all locks associated with the crashed server.
If a lock cannot be reclaimed, the process that held the lock is issued a SIGLOST signal.

Record locking, as implemented for NFS files, is only advisory.

ERRORS

Under the following conditions, the function fcntl fails and sets the external variable errno

accordingly:

[EBADF] Fildes is not a valid open file descriptor, or was not opened for reading when
setting a read lock or for writing when setting a write lock.

[EMFILE] Cmd is F_DUPFD and the maximum number of file descriptors is currently
open,

[EMFILE] Cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock and no
more file-locking headers are available (too many files have segments locked).

[EMFILE] Cmd is F_DUPFD and arg.val is greater than or equal to the maximum number
of file descriptors.

[EMFILE] Cmd is F_DUPFD and arg.val is negative.

[EINVAL] Cmd is F_GETLK, F_SETLK, or F_SETLKW and arg.lockdes or the data it points to
is not valid, or fildes refers to a file that does not support locking.

[EINVAL] Cmd is not a valid command.

[EINVAL] Cmd is F_SETFL and both O_NONBLOCK and O_NDELAY are specified.

HP-UX Release 7.0: September 1989 -2 - (Section 2) 41

FCNTL(2)

{EINTR]
[EACCES]

[ENOLCK]

[ENOLCK]

[ENOLCK]

[EDEADLK]

[EFAULT]

RETURN VALUE
Upon successful completion, the value returned depends on c¢md as follows:

APPLICATION USAGE

42

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW

FCNTL(2)

Cmd is F_SETLKW and the call was interrupted by a signal.

Cmd is F_SETLK, the type of lock (l_type)isaread (F_RDLCK) or write lock
(F_WRLCK) and the segment of a file to be locked is already write-locked by
another process, or the type is a write lock (F_ZWRLCK) and the segment of a file
to be locked is already read- or write-iocked by another process.

Cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock and no
more file-locking headers are available (too many files have segments locked),
or no more record locks are available (too many file segments locked).

Cmd is F_SETLK or F_SETLKW, the type of lock (I_type) is a read lock
(F_RDLCK) or write lock (F_ZWRLCK) and the file is a NFS file with access bits set
for enforcement mode.

Cmd is F_GETLK, F_SETLK, or F_SETLKW, the file is a NFS file, and a system
error occurred on the remote node.

Cmd is F_SETLKW, when the lock is blocked by a lock from another process
and sleeping (waiting) for that lock to become free. This causes a deadlock
situation.

Cmd is either F_GETLK, F_SETLK or F_SETLKW, and arg points to an illegal
address.

A new file descriptor.

Value of close-on-exec flag (only the low-order bit is defined).
Value other than —1.

Value of file status flags and access modes.

Value other than —1.

Value other that —1.

Value other than —1.

Value other than 1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

AUTHOR
Fcntl was developed by HP, AT&T and the University of California, Berkeley.

Because in the future the external variable errno will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application programs
should expect and test for either value, for example:

(Section 2)

-3 - HP-UX Release 7.0: September 1989

FCNTL(2) FCNTL(2)

flk->1_type = F_RDLCK;
if (fentl(fd, F_SETLK, flk) == -1)
if ((errno == EACCES) | | (errno == EAGAIN))
/*
* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*/
else if ...
*

* check for other errors
*
/
SEE ALSO
chmod(2), close(2), exec(2), lockf(2), open(2), read(2), write(2), fentl(5).
lockd(1M), statd(IM), in NFS Services Reference Pages.
FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead set errno to EAGAIN
(see also APPLICATION USAGE above).

STANDARDS CONFORMANCE
fentl: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -4 - (Section 2) 43

FORK(2) FORK(2)

NAME
fork — create a new process

SYNOPSIS
#include <sys/types.h>
pid_t fork ()
DESCRIPTION
Fork causes the creation of a new process. The new process (child process) is an exact copy of

the calling process (parent process). This means that the child process inherits the following
attributes from the parent process:

real, effective, and saved user ID

real, effective, and saved group ID

list of supplementary group IDs (see getgroups(2))
process group ID

environment

file descriptors

close-on-exec flags (see exec(2))

signal handling settings (SIG_DFL, SIG_IGN, address)
signal mask (see sigvector(2))

profiling on/off status (see profil(2))

command name in the accounting record (see acct(4))
nice value (see nice(2))

all attached shared memory segments (see shmop(2))
current working directory

root directory (see chroot(2))

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

real-time priority (see rtprio(2))

Each of the child’s file descriptors shares a common open file description with the correspond-
ing file descriptor of the parent. This implies that changes to the file offset, file access mode,
and file status flags of file descriptors in the parent also affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

The child process has a unique process ID. The child process ID also does not match
any active process group ID.

The child process has a different parent process ID (which is the process ID of the
parent process).

The set of signals pending for the child process is initialized to the empty set.
The trace flag (see ptrace(2) PT_SETTRC request) is cleared in the child process.

The AFORK flag in the ac_flags component of the accounting record is set in the child
process.

Process locks, text locks, and data locks are not inherited by the child (see plock(2)).
All semadj values are cleared (see semop(2)).

The child process’s values of tms_utime, tms_stime, tms_cutime, and tms_cstime are
set to zero; see times(2).

The time left until an alarm clock signal is reset to 0 (clearing any pending alarm), and
all interval timers are set to 0 (disabled).

The vfork(2) system call can be used to fork processes more quickly than fork, but has some res-
trictions. See vfork(2) for details.

44 (Section 2) -1- HP-UX Release 7.0: September 1989

FORK(2) FORK(2)

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child process to the parent process. Otherwise, a value of —1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

The parent and child processes resume execution immediately after the fork call; they are dis-
tinguished by the value returned by fork.

ERRORS
Fork fails and no child process is created if one or more of the following is true:

[EAGAIN] The system-imposed limit on the total number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by
a single user would be exceeded.

[ENOMEM] There is insufficient swap space and/or physical memory available in which to
create the new process,

WARNINGS
Standard I/O streams (see stdio(3S)) are duplicated in the child. Therefore, if fork is called after
a buffered I/O operation without first closing or flushing the associated standard 1/O stream
(see fclose(3S)), the buffered input or output might be duplicated.

AUTHOR
Fork was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
acct(2), chroot(2), exec(2), exit(2), fentl(2), getgroups(2), lockf(2), nice(2), plock(2), profil(2),
ptrace(2), rtprio(2), semop(2), setuid(2), setpgrp(2), shmop(2), signal(5), times(2), ulimit(2),
umask(2), vfork(2), wait(2), fclose(3S), stdio(3S), acct(4).

STANDARDS CONFORMANCE
fork: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2 (Section 2) 45

FSCTL(2)

NAME

FSCTL(2)

fsctl — file system control

SYNOPSIS
#include <sys/cdfsdir.h>

#inciude <sys/cdfs.h>

int fsctl(fildes, command, outbuf, outlen)
int fildes, command, outlen;

char *outbuf;

DESCRIPTION
Fsctl provides for access to file-system-specific information. Fildes is an open file descriptor for
a file in the file system of interest. The possible values for command depend on the type of file
system. Currently, defined commands exist only for the cdfs file system (see sys/cdfsdir.h).

46

Outbuf is a pointer to the data area in which data is returned from the file system. Outlen gives
the length of the data area pointed to by outbuf.

The cdfs commands are:
CDFS_DIR_REC

CDFS_XAR

CDFS_AFID

CDFS_BFID

CDFS_CFID

(Section 2)

Returns the directory record for the file or directory indicated by fildes.
The record is returned in a structure of type cddir, defined in sys/cdfsdir.h.

Returns the extended attribute record, if any, for the file or directory indi-
cated by fildes. Because the size of an extended attribute record varies, be
sure outbuf points to a data area of sufficient size. To find the necessary
size, do the following:

1. Use statfs(2). to get the logical block size of the cdfs volume.

2. Use an fsctl call with the CDFS_DIR_REC command to get the
extended attribute record size (in blocks) for the file or directory of
interest. The mincdd_xar_len field in the returned structure contains
the size of the extended attribute record in logical blocks. (If this
field is zero, the file or directory has no extended attribute record.)

3. Multiply mincdd_xar_len by the logical block size obtained in step 1
to get the total space needed.

4. Once you get the extended attribute record, cast outbuf into a
pointer to a structure of type cdxar_iso (defined in sys/cdfsdir.h).
This enables you to access those fields which are common to all
extended attribute records. (See the EXAMPLES section of this
manual entry for an example of this process.)

If the extended attribute record contains additional system use or
application use data, that data will have to be accessed manually.

Returns the abstract file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character. Note
that the constant CDMAXNAMELEN defined in sys/cdfsdirh gives the
maximum length a file identifier can have. Thus, COMAXNAMELEN+1 can
be used for outlen and the size of outbuf.

Returns the bibliographic file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character. CDMAX-
NAMELEN+1 can be used for the value of outlen and the size of outbuf.

Returns the copyright file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character.

-1- HP-UX Release 7.0: September 1989

FSCTL(2) FSCTL(2)

CDMAXNAMELEN+1 can be used for the value of outlen and the size of
outbuf.

CDFS_VOL_ID
Returns the volume ID for the primary volume specified by fildes, ter-
minated with a NULL character. The maximum size of the volume ID is 32
bytes, so a length of 33 can be used for outlen and the size of utbuf.

CDFS_VOL_SET_ID
Returns the volume set ID for the primary volume specified by fildes, ter-
minated with a NULL character. The maximum size of the volume set ID
is 128 bytes, so a length of 129 can be used for outlen and the size of out-
buf.
EXAMPLES
The following code segment gets the extended attribute record for a file on a cdfs volume. The

filename is passed in as the first argument to the routine. Note that error checking is omitted
for brevity.

#include <sys/types.h>
#include <sys/vfs.h>
#include <fentLh>
#include <sys/cdfsdir.h>
main(arge, argv)
int argc;
char *argv[};
int fildes, size = 0;
char *malloc(), *outbuf;
struct statfs buf;

struct cddir cdrec;
struct cdxar_iso *xar;

.statfs(argv[l], &buf); /* get logical block size */
fildes = open(argv[1], O_RDONLY); /* open file arg */

/* get directory record for file arg */
fsctl(fildes, CDFS_DIR_REC, &cdrec, sizeof(cdrec));

size = buf.f_bsize * cdrec.cdd_min.mincdd_xar_len; /* compute size */

if(size) { /* if size != 0 then there is an xar */
outbuf = malloc(size); /* malloc sufficient memory */

fsctl(fildes, CDFS_XAR, outbuf, size); /* get xar */

xar = (struct cdxar_iso *)outbuf; /* cast outbuf to access fields */

HP-UX Release 7.0: September 1989 -2 (Section 2) 47

FSCTL(2) FSCTL(2)

KETURN VALUE
Fsctl returns the number of bytes read if successful. If an error occurs, —1 is returned and errno
is set to indicate the error:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT] Outbuf points to an invalid address.

[ENOENT] The requested information does not exist.

[EINVAL] Command is not a valid command.

[EINVAL] Outlen is negative, or fildes does not refer to a CDFS file system.

SEE ALSO
statfs(2), cdfs(4), cdfsdir(4), cdnode(4), cdrom(4).

48 (Section 2) -3 - HP-UX Release 7.0: September 1989

FSYNC(2) FSYNC(2)

NAME
fsync — synchronize a file’s in-core state with its state on disk

SYNOPSIS
int fsync(fildes)
int fildes;
DESCRIPTION
Fsync causes all modified data and attributes of fildes to be moved to a permanent storage dev-
ice. This normally results in all in-core modified copies of buffers for the associated file to be

written to a disk. Fsync applies to ordinary files, and applies to block special devices on sys-
tems which permit I/O to block special devices.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

ERRORS
Fsync will fail if one of the following conditions is true and errno will be set accordingly:
[EBADF] Fildes is not a valid descriptor.
[EINVAL] Fildes refers to a file type to which fsync does not apply.

RETURN VALUE
A 0 value is returned on success. A —1 value indicates an error.
BUGS
The current implementation of this call is expensive for large files.
AUTHOR
Fsync was developed by the Hewlett-Packard Company, and the University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering and Com-
puter Science.
SEE ALSO
fentl(2), fentl(5), open(2), select(2), sync(2), sync(1M).
STANDARDS CONFORMANCE
fsync: XPG3

HP-UX Release 7.0: September 1989 -1- (Section 2) 49

FTIME(2) FTIME(2)

NAME
ftime — get date and time more precisely

SYNOPSIS .
#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;
REMARKS
This facility is provided for backwards compatibility with Version 7 systems. Either time or get-
timeofday should be used for all new code.
DESCRIPTION
Ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

* Structure returned by ftime system call
*
struct timeb {

time_t time;

unsigned short millitm;

short timezone;

short dstflag;
7
The structure contains the time in seconds since 00:00:00 GMT, January 1, 1970, up to 1000 mil-
liseconds of more-precise interval, the local timezone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year. Gettimeofday should be consulted for more details on
the meaning of the timezone field.

This call can be accessed by giving the -IV7 option to [d(1).
Ftime can fail for exactly the same reasons as gettimeofday(2).

SEE ALSO
date(1), gettimeofday(2), stime(2), time(2), ctime(3C).

BUGS
The millisecond value usually has a granularity greater than one due to the resolution of the
system clock. Depending on any granularity (particularly of one) will render code non-portable.

50 (Section 2) -1- HP-UX Release 7.0: September 1989

GETACCESS(2) GETACCESS(2)

NAME

getaccess — get a user’s effective access rights to a file

SYNOPSIS

#include <unistd.h>
#include <limits.h>
#include <sys/getaccess.h>

int getaccess (path, uid, ngroups, gidset, label, privs)
char spath;

int uid;

int ngroups;

int gidset[];

void xlabel;

void *privs;

Remarks:

To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION

Getaccess identifies the access rights (read, write, execute/search) a specific user ID has to an
existing file. Path points to a path name of a file. If the call succeeds, it returns a value of zero
or greater, representing the specified user’s effective access rights (modes) to the file. The rights
are expressed as the OR of bits (R_OK, W_OK, and X_OK) whose values are defined in the header
<unistd.h>. A return of zero means that access is denied.

The uid parameter is a user ID. Special values, defined in <sys/getaccess.h>, represent the cal-
ling process’s effective, real, or saved user ID:

UID_EUID Effective user ID.
UID_RUID Real user ID.
UID_SUID Saved user ID.

Ngroups is the number of group IDs in gidset, not to exceed NGROUPS_MAX + 1
(NGROUPS_MAX is defined in <limits.h>). If the ngroups parameter is positive, the gidset
parameter is an array of group ID values to use in the check. If ngroups is a recognized negative
value, gidset is ignored. Special negative values of ngroups, defined in <sys/getaccess.h>,
represent various combinations of the process’s effective, real, or saved user ID and its supple-
mentary groups list:

NGROUPS_EGID Use process’s effective group ID only.
NGROUPS_RGID Use process’s real group ID only.
NGROUPS_SGID Use process’s saved group ID only.
NGROUPS_SUPP Use process’s supplementary groups only.

NGROUPS_EGID_SUPP Use process’s effective group ID plus supplementary groups.
NGROUPS_RGID_SUPP Use process’s real group ID plus supplementary groups.
NGROUPS_SGID_SUPP Use process’s saved group ID plus supplementary groups.

The label and privs parameters are placeholders for future extensions. For now, the values of
these parameters must be (void *) 0.

The access check rules for access control lists are described in acl(5). In addition, the W_OK bit
is cleared for files on read-only file systems or shared-text programs being executed. Note that
as in access(2), the X_OK bit is not turned off for shared-text programs open for writing because
there is no easy way to know that a file open for writing is a shared-text program.

If the caller’s user ID is 0, or if it is UID_EUID, UID_RUID, or UID_SUID (see <sys/getaccess.h>)
and the process’s respective user ID is 0, then R_.OK and W_OK are always set, except when

HP-UX Release 7.0: September 1989 -1- (Section 2) 51

GETACCESS(2) GETACCESS(2)

W_OK is cleared for files on read-only file systems or shared-text programs being executed.
X_OK is set if and only if the file is not a regular file or the execute bit is set in any of the file’s
ACL entries.

Getaccess checks each directory component of path by first using the caller’s effective user ID,
effective group ID, and supplementary groups list, regardless of the user ID specified. An error
occurs, distinct from “no access allowed,” if the caller cannot search the path to the file. (In
this case it is inappropriate for the caller to learn anything about the file.) -

Comparison of access(2) and getaccess(2)
The following table compares various attributes of access and getaccess.

[¢°]
o
i
2
D
1]
1]
—~
-

| access()

| checks all ACL entries

| uses real uid, real gid, and
: supplementary groups list

uses specified uid and
groups list; macros available
for typical values

returns all mode bits, each
on or off

same

nl

]

|

|

|

F 1
| checks specific mode value, |
| returns succeed or fail |
! checks path to file using :
| caller’s effective IDs |
| W_OK false if shared-text |
| file currently being executed |
i

|

|

|

|

I}

|

!

I

|

!

|

]

same

: W_OK false if file on same
| read-only file system

| X_OK not modified for file same
| currently open for writing

i R_OK and W_OK always true for | same

| superuser (except as above)
} X_OK always true for

| superuser

|

X_OK true for super-user
if file is not a regular

file OR execute is set in
any ACL entry

RETURN VALUE
Upon successful completion, getaccess returns a non-negative value representing the access
rights of the specified user to the specified file. If an error occurs, a value of —1 is returned and
the error code is stored in the global variable errno.

ERRORS
Getaccess fails if any of the following is true:

[EACCES] A component of the path prefix denies search permission to the caller.

[EFAULT] Path or gidset points outside the allocated address space of the process. The
reliable detection of this error is implementation dependent.

[EINVAL] Ngroups is invalid; ngroups is either zero, an unrecognized negative value, or a
value larger than NGROUPS + 1.

[EINVAL] Gidset contains an invalid group ID value.

EINVAL] ‘ The value of label or privs is not a null pointer.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG] C

" The length of the specified path name exceeds PATH_MAX bytes, or the length

52 (Section 2) -2- HP-UX Release 7.0: September 1989

GETACCESS(2) GETACCESS(2)

of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[ENOTDIR] A component of the path prefix is not a directory.
[EOPNOTSUPP] getaccess() is not supported on some types of remote files.

EXAMPLES
The following call determines the caller’s effective access rights to file “test,” and succeeds if
the user has read access:

#include <unistd.h>
#include <sys/getaccess.h>

int mode;
mode = getaccess ("test", UID_EUID, NGROUPS_EGID_SUPP,
(int %) 0, (void *) 0, (void *) 0);
if ((mode >= 0) && (mode & R_OK)) ...
Here’s one way to test access rights to file //tmp/hold” for user ID 23, group ID 109:
int gid = 109;
int mode;
mode = getaccess (" /tmp/hold", 23, 1, & gid,
(void *) 0, (void) 0);
Should the need arise, the following code builds a gidset that includes the process’s effective
group ID:
#include <limits.h>
int gidset NGROUPS_MAX + 1};
int ngroups;
gidset [0] = getegid();
ngroups = 1 + getgroups (NGROUPS_MAYX, & gidset [1]);
AUTHOR
Getaccess was developed by HP.

SEE ALSO
access(2), chmod(2), getacl(2), setacl(2), stat(2), acl(5), unistd(5).

HP-UX Release 7.0: September 1989 -3 - (Section 2) 53

GETACL(2) - GETACL(2)

NAME
getacl, fgetacl — get access control list (ACL) information

SYNOPSIS
#include <unistd.h>
#include <sys/acL.h>

int getacl (path, nentries, acl)
char spath;

int nentries;

struct acl_entry aclf};

int fgetacl (fildes, nentries, acl)
int fildes;

int nentries;

struct acl_entry acl[];

Remarks:
To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION
Getacl returns a complete listing of all ACL entries (uid.gid, mode) in an existing file’s access
control list. Path points to a path name of a file.

Similarly, fgetacl returns a complete listing of all ACL entries for an open file known by the file
descriptor fildes.

The nentries parameter is the number of entries being reported on, and is never more than the
constant NACLENTRIES defined in <sys/acl.h>. If nentries is non-zero, it must be at least as
large as the number of entries in the file’s ACL, including base entries (see setacl(2)). Getacl
returns the number of entries in the file’s ACL, as well as the ACL entries themselves in the
array of structures acl declared by the calling program.

If nentries is zero, getacl returns the number of entries in the file’s ACL, including base ACL
entries, and acl is ignored.

Entries are reported in groups of decreasing order of specificity (see setacl(2)), then sorted in
each group by user ID and group ID. The content of array entries beyond the number of
defined entries for the file is undefined.

RETURN VALUE
Upon successful completion, getacl and fgetacl return a non-negative value, If an error occurs, a
value of —1 is returned, and the global variable errno is set to indicate the error.

ERRORS
Getacl or fgetac! fail to modify the acl array if any of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[EBADF] Fildes is not a valid file descriptor.

[EACCES] A component of the path prefix denies search permission.

[EFAULT) Path or a portion of acl to be written points outside the allocated address space

of the process.

[EINVAL] Nentries is non-zero and less than the number of entries in the file’s ACL, or it
is greater than NACLENTRIES.

54 (Section 2) -1- HP-UX Release 7.0: September 1989

GETACL(2) GETACL(2)

[EOPNOTSUPP] Getacl is not supported on remote files by some networking services.
[ENFILE] The system file table is full.

[ENAMETOOLONG]
The length of path exceeds PATH_MAX bytes, or the length of a component of
path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.
EXAMPLES
The following call returns the number of entries in the ACL on file ”’ /users /bill /mcfile”.

#include <sys/aclL.h>
entries = getacl (" /users/bill/mcfile”, 0, (struct acl_entry) 0);
The following call returns in acl all entries in the ACL on the file opened with file descriptor 5.
#include <sys/acl.h>
int nentries;
struct acl_entry acl [NACLENTRIES];
entries = fgetacl (5, NACLENTRIES, acl);

DEPENDENCIES
RFA and NFS
Getacl and fsetacl are not supported on remote files.

AUTHOR
Getacl and fgetacl were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), setacl(2), stat(2), unistd(5).

HP-UX Release 7.0: September 1989 -2 - (Section 2) 55

GETAUDID(2) GETAUDID(2)

NAME

getaudid — get the audit ID (aid) for the current process
SYNOPSIS

#include <sys/audit.h>

int getaudid (

DESCRIPTION
Getaudid returns the audit ID (aid) for the current process. This call is restricted to the
superuser.
RETURN VALUE
Upon successful completion, the audit ID is returned; otherwise, a —1 is returned.
ERRORS
Getaudid fails if the following is true:

[EPERM] The caller is not a superuser.
AUTHOR

Getaudid was developed by HP.
SEE ALSO

setaudid(2).

56 (Section 2) -1- HP-UX Release 7.0: September 1989

GETAUDPROC(2) GETAUDPROC(2)

NAME
getaudproc — get the audit process flag for the calling process

SYNOPSIS
#include <sys/audit.h>

int getaudproc ()

DESCRIPTION
Getaudproc returns the audit process flag for the calling process. the audit process flag
(u_audproc) determines whether the process, run by a given user, should be audited. The pro-
cess is audited if the returned flag is 1. If the returned flag is 0, the process is not audited. This
call is restricted to the superuser.

RETURN VALUE
Upon successful completion, the audit process flag is returned; otherwise, a —1 is returned.

ERRORS
Getaudproc fails if the following is true:

[EPERM} The caller is not a superuser.
AUTHOR

Getaudproc was developed by HP.
SEE ALSO

setaudproc(2).

HP-UX Release 7.0: September 1989 -1- (Section 2) 57

GETCONTEXT(2) GETCONTEXT(2)

NAME
getcontext — return the process context for context dependent file search
SYNOPSIS
int getcontext(contextbuf length)
chai *contexibuf;
int length;
DESCRIPTION
Getcontext reads the per-process context (see context(5)) into the buffer pointed to by contextbuf.
The context is returned as a null-terminated string containing a blank-separated list of names.
The function value returned by getcontext is the length of this string, including the null termina-
tor. If this string, including the null terminator, is less than length bytes, a truncated, null-
terminated string of length bytes is returned. In particular, if length is zero, only the function
value is returned.
RETURN VALUE
Upon successful completion, the length of the context string including the null terminator is
returned. Otherwise, a value of ~1 is returned and errno is set to indicate the error.
ERRORS v
Getcontext may fail if the following is true:
[EFAULT] Contextbuf points to an illegal address. Reliable detection of this error is not
guaranteed.
EXAMPLES ’
In the following example getcontext is called once with a length parameter of zero to determine
the size of a buffer to allocate for the context.
int length;
char *contextbuf;

length = getcontext ((char *)0, 0);
contextbuf = malloc (length);
(void) getcontext (contextbuf, length);
AUTHOR
Getcontext was developed by HP.
SEE ALSO
context(5), cdf(4), getcontext(1).

58 (Section 2) -1- HP-UX Release 7.0: September 1989

GETDIRENTRIES(2) GETDIRENTRIES(2)

NAME

getdirentries — get entries from a directory in a filesystem-independent format

SYNOPSIS

#include <ndir.h>

int getdirentries(fildes, buf, nbytes, basep)
int fildes;

char *buf;

int nbytes;

long *basep;

DESCRIPTION

Getdirentries places directory entries from the directory referenced by the file descriptor fildes
into the buffer pointed to by buf, in a filesystem-independent format. Up to nbytes of data are
transferred. Nbytes must be greater than or equal to the block size associated with the file; see
stat(2). Smaller block sizes can cause errors on certain file systems.

The data in the buffer consists of a series of direct structures, each containing the following
entries:

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_name[MAXNAMLEN -+ 1};

The d_fileno entry is a number unique for each distinct file in the file system. Files linked by
hard links (see link(2)) have the same d_fileno. The d_reclen entry identifies the length, in
bytes, of the directory record. The d_name entry contains a null-terminated file name. The
d_namlen entry specifies the length of the file name. Thus the actual size of d_name can vary
from 2 to MAXNAMLEN 4 1. Note that the direct structures in the buffer are not necessarily
tightly packed. The d_reclen entry must be used as an offset from the beginning of a direct
structure to the next structure, if any.

The return value of the system call is the actual number of bytes transferred. The current posi-
tion pointer associated with fildes is set to point to the next block of entries. The pointer is not
necessarily incremented by the number of bytes returned by getdirentries. If the value returned
is zero, the end of the directory has been reached.

The current position pointer is set and retrieved by Iseek(2). Getdirentries writes the position of
the block read into the location pointed to by basep. The current position pointer can be set
safely only to a value previously returned by Iseek(2), to a value previously returned in the
location pointed to by basep, or to zero. Any other manipulation of the position pointer causes
undefined results.

RETURN VALUE

I successful, the number of bytes actually transferred is returned. Otherwise, ~1 is returned
and the global variable errno is set to indicate the error.

ERRORS

Getdirentries will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

{EFAULT] Either buf or basep points outside the allocated address space.

{EINTR] A read from a slow device was interrupted by the delivery of a signal before

any data arrived.
[EIO] An 1/0 error occurred while reading from or writing to the file system.

HP-UX Release 7.0: September 1989 -1- (Section 2) 59

GETDIRENTRIES(2) GETDIRENTRIES(2)

AUTHOR
Getdirentries was developed by Sun Microsystems, Inc.

SEE ALSO
open(2), Iseek(2).

60 (Section 2) =-2= HP-UX Release 7.0: September 1989

GETEVENT(2) GETEVENT(2)

NAME
getevent — get events and system calls that are currently being audited
SYNOPSIS
#include <sys/audit.h>
int getevent (a_syscall, a_event)
struct aud_type *a_syscall;
struct aud_event_tbl *a_event;
DESCRIPTION
Getevent gets the events and system calls being audited. The events are returned in a table
pointed to by a_event. The system calls are returned in a table pointed to by a_syscall. This call
is restricted to the superuser.
RETURN VALUE
Upon successful completion, a value of 0 is returned; otherwise, a —1 is returned.
ERRORS
Getevent fails if the following is true:

[EPERM] The caller is not a superuser.
AUTHOR

Getevent was developed by HP.
SEE ALSO

setevent(2), audevent(1M).

HP-UX Release 7.0: September 1989 -1- (Section.2) 61

GETGROUPS(2) GETGROUPS(2)

NAME
getgroups — get group access list
SYNOPSIS
#include <sys/param.h>
#inciude <sys/types.h>
int getgroups(ngroups, gidset)
int ngroups;
gid_t ‘*gidset;
DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.

The parameter ngroups indicates the number of entries which may be placed in gidset. No more
than NGROUPS, as defined in <sys/param.h>, will ever be returned.

As a special case, if the ngroups argument is zero, getgroups returns the number of group entries
for the process. In this case, the array pointed to by the gidset argument is not modified.
EXAMPLES

The following call to getgroups(2) retrieves the group access list of the calling process and stores
the group ids in array mygidset:

int ngroups = NGROUPS;
gid_t mygidsetfNGROUPS];
int ngrps;
ngrps = getgroups (ngroups, mygidset);
RETURN VALUE
A non-negative value indicates that the call succeeded, and is the number of elements returned

in gidset. A value of —1 indicates that an error occurred, and the error code is stored in the glo-
bal variable errno.

ERRORS
The possible errors for getgroups are:

[EFAULT] Gidset specifies an invalid address. The reliable detection of this error will be
implementation dependent.

[EINVAL] The argument ngroups is not zero and is less than the number of groups in the
current group access list of the process.
AUTHOR
Getgroups was developed by HP and the University of California, Berkeley
SEE ALSO
setgroups(2), initgroups(3C)

STANDARDS CONFORMANCE
getgroups: XPG3, POSIX.1, FIPS 151-1

62 (Section 2) -1- HP-UX Release 7.0: September 1989

GETHOSTNAME(2) GETHOSTNAME(2)

NAME
gethostname — get name of current host

SYNOPSIS
int gethostname(hostname, size)
char *hostname;
unsigned int size;
DESCRIPTION
Gethostname returns in the array to which hostname points, the standard host name for the
current processor as set by sethostname(2). Size specifies the length of the hostname array. Host-
name is null-terminated unless insufficient space is provided.
RETURN VALUE
Gethostname returns 0 if successful. Otherwise, —1 is returned and errno is set to indicate the

error.
ERRORS

Gethostname can fail if the following is true:

[EFAULT] Hostname points to an illegal address. The reliable detection of this error is

implementation dependent.

DEPENDENCIES

Series 300

Gethostname returns a non-negative integer if successful.

AUTHOR

Gethostname was developed by the University of California, Berkeley.
SEE ALSO

hostname(1), uname(1), sethostname(2), uname(2).

HP-UX Release 7.0: September 1989 -1- (Section 2) 63

GETITIMER(2) GETITIMER(2)

NAME
getitimer, setitimer — get/set value of interval timer

SYNOPSIS
#include <time.h>

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <time.h>. The getiti-
mer call returns the current value for the timer specified in which, while the setitimer call sets
the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
b
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading it_value when the timer expires. Setting
it_value to 0 disables a timer. Setting it_interval to 0 causes a timer to be disabled after its next
expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution.
The machine-dependent clock resolution is 1/HZ seconds, where the constant HZ is defined in
<sys/param.h>. Time values larger than an implementation-specific maximum value are
rounded down to this maximum. The maximum values for the three interval timers are
specified by the constants MAX_ALARM, MAX_VTALARM, and MAX_PROF defined in
<sys/param.h>. On all implementations, these values are guaranteed to be at least 31 days (in
seconds).

The which parameter specifies which timer to use. The possible values are ITIMER_REAL,
ITIMER_VIRTUAL, and ITIMER_PROF.

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG-
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

Interval timers are not inherited by a child process across a fork, but are inherited across an
exec.

Three macros for manipulating time values are defined in <time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values. (Beware that >= and <= do not work with the timercmp macro.)

64 (Section 2) -1- HP-UX Release 7.0: September 1989

GETITIMER(2) GETITIMER(2)

The timer used with ITIMER_REAL is also used by alarm(2). Thus successive calls to alarm,
getitimer, and setitimer set and return the state of a single timer. In addition, a call to alarm sets
the timer interval to zero.

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value —1 is returned, and a
more precise error code is placed in the global variable errno.

ERRORS
Getitimer or setitimer can fail if any of the following is true:

[EFAULT] The value structure specified a bad address. The reliable detection of this error
will be implementation dependent.
[EINVAL] A wvalue structure specified a microsecond value less that zero or greater than or
equal to one million.
[EINVAL] Which does not specify one of the three possible timers.
EXAMPLES

The following call to setitimer(2) sets the real-time interval timer to expire initially after 10
seconds and every 0.5 seconds thereafter:

struct itimerval rttimer;
struct itimerval old_rttimer;

rttimer.it_value.tv_sec = 10;
rttimer.it_value.tv_usec = 0;
rttimer.it_interval.tv_sec = 0;
rttimer.it_interval.tv_usec = 500000;
setitimer (ITIMER_REAL, &rttimer, &old_rttimer);
AUTHOR
Getitimer was developed by the University of California, Berkeley.
SEE ALSO
alarm(2), exec(2), gettimeofday(2), signal(5).

HP-UX Release 7.0: September 1989 -2- (Section 2) 65

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid, getpgrp2 — get process, process group, and parent process ID
SYNOPSIS
#include <sys/types.h>
pid_t getpid ()
pid_t getpgrp ()
pid_t getppid ()
pid_t getpgrp2 (pid)
pid_t pid;
DESCRIPTION
Getpid returns the process ID of the calling process.
Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

Getpgrp2 returns the process group ID of the specified process. If pid is zero, the call applies to
the current process. For this to be allowed, the current process and the referenced process must
be in the same session.

ERRORS
Getpgrp2 will fail if any of the following are true:

[EPERM] The current process and the specified process are not in the same session.
[ESRCH] No process can be found corresponding to that specified by pid.
AUTHOR

Getpid, getppid, getpgrp, and getpgrp2 were developed by HP, AT&T, and the University of Cal-
ifornia, Berkeley.

SEE ALSO

exec(2), fork(2), setpgrp(2), setpgid(2), signal(5).
STANDARDS CONFORMANCE

getpid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

getpgrp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
getppid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

66 (Section 2) -1~ HP-UX Release 7.0: September 1989

GETPRIVGRP(2) GETPRIVGRP(2)

NAME
getprivgrp, setprivgrp — get and set special attributes for group

SYNOPSIS
#include <sys/types.h>
#include <sys/privgrp.h>

int getprivgrp(grplist)
siruci privgrp_map giplisi{PRIV_MAXGRPS};

int setprivgrp(grpid, mask)
gid_t grpid;
int mask[PRIV_MASKSIZ];

DESCRIPTION
Setprivgtp associates a kernel capability with a group id. This allows subsetting of super—user
like privileges for members of a particular group or groups. Setprivgrp takes two arguments:
the integer group id and a mask of permissions. The mask is created by treating the access
types defined in <sys/privgrp.h> as bit numbers (using 1 for the least significant bit). Thus,
privilege number 5 would be represented by the bit 1<<(5-1) or 16. More generally, privilege
p is represented by:

mask[((p-1) / BITS_PER_INT)] & (1 << ((p-1) % BITS_PER_INT)).

As it is possible to have more than word size distinct privileges, mask is a pointer to an integer
array of size PRIV_MASKSIZ.

Setprivgrp privileges include those specified in the file <sys/privgrp.h>. A process may access
the system call protected by a specific privileged group if it belongs to or has an effective group
id of a group having access to the system call. All processes are considered to belong to the
pseudo-group PRIV_GLOBAL.

Specifying a grpid of PRIV_NONE causes privileges to be revoked on all privileged groups
having any of the privileges specified in mask. Specifying a grpid of PRIV_GLOBAL causes
privileges to be granted to all processes.

The constant PRIV_MAXGRPS in <sys/privgrp.h> defines the system limit on the number of
groups which can be assigned privileges. One of these is always the psuedo-group
PRIV_GLOBAL, allowing for PRIV_MAXGRPS-1 actual groups.

Getprivgrp returns a table of the privileged group assignments into a user supplied structure.
Grplist points to an array of structures of type privgrp_map associating a groupid with a
privilege mask. Privilege masks are formed by oring together elements from the access types
specified in <sys/privgrp.h>. The array may have gaps in it distinguished as having a
priv_groupno field of PRIV_NONE. The group number PRIV_GLOBAL gives the global
privilege mask. Only information about groups which are in the user’s group access list, or
about his real or effective group id, is returned to an ordinary user. The complete set is
returned to the super-user.

EXAMPLES
The following example prints out PRIV_GLOBAL and the group ids of the privilege groups to
which the user belongs:

#include <sys/types.h>

struct privgrp_map pgrplistfPRIV_MAXGRPS];
int i; ’

gid_t pgid;

HP-UX Release 7.0: September 1989 -1- (Section 2) 67

GETPRIVGRP(2) GETPRIVGRP(2)

getprivgrp (pgrplist);
for (i=0; i<PRIV_MAXGRPS; i++) {
if ((pgid = pgrplist[i].priv_groupno) != PRIV_NONE) {
if (pgid == PRIV_GLOBAIL)
printf ("(PRIV_GLOBAL) ");
printf ("privilege group id = %d\n", pgid);

}
}
NOTES
Only the super-user may use setprivgrp.
ERRORS
Setprivgrp returns -1 and an error code in errno if:
[EPERM] The caller is not super user.
[EFAULT] Mask points to an illegal address. The reliable detection of this error will be
implementation dependent.
[EINVAL] Mask has bits set for one or more unknown privileges.
[E2BIG] The request would require assigning privileges to more than PRIV_MAXGRPS
groups.

Getprivgrp returns -1 and an error code in errno if:
[EFAULT] Grplist points to an illegal address. The reliable detection of this error will be
implementation dependent.
Both calls return 0 on success.
DEPENDENCIES
HP Clustered Environment:
In a clustered environment privilege groups are maintained separately on each machine in

the cluster. The CHOWN privilege from diskless nodes is determined by the privilege
groups set up on the cluster server.

AUTHOR
Getprivgrp was developed by HP.

SEE ALSO
getprivgrp(1), setgroups(2), setprivgrp(1M), privgrp(4).

68 (Section 2) -2- HP-UX Release 7.0: September 1989

GETTIMEOFDAY(2) GETTIMEOFDAY(2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
#include <time.h>

int gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

int settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns and settimeofday sets the system’s notion of the current Greenwich time
and the system’s notion of the current time zone. Time is expressed in seconds and
microseconds since midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in <time.h> as:

struct timeval {
unsigned long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */
b
struct timezone {

int tz_minuteswest; /* of Greenwich */

int tz_dsttime; /* type of dst correction to apply */
%

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Savings time applies
locally during the appropriate part of the year. Programs should use this timezone information
only in the absence of the TZ environment variable.

Only the super-user may set the time of day.

EXAMPLES
The following example calls gettimeofday(2) twice. It then computes the lapsed time between
the calls in seconds and microseconds and stores the result in a timeval structure:
struct timeval first,
second,

lapsed;
struct timezone tzp;

gettimeofday (&first, &tzp);

/* lapsed time */

gettimeofday (&second, &tzp);

if (first.tv_usec > second.tv_usec) {
second.tv_usec += 1000000;

second.tv_sec--;

lapsed.tv_usec = second.tv_usec - first.tv_usec;

HP-UX Release 7.0: September 1989 -1- (Section 2) 69

GETTIMEOFDAY(2) GETTIMEOFDAY (2)

lapsed.tv_sec = second.tv_sec - first.tv_sec;
RETURN VALUE
A 0 return value indicates that the call succeeded. A —1 return value indicates an error-
occurred, and in this case an error code is stored into the global variable errno.
ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory. The reliable detection of this
error will be implementation dependent.

[EPERM] A user other than the super-user attempted to set the time.

Clustered Systems

In an HP Clustered Environment, setting the time of day sets the date and timezone on all sys-
tems in the cluster.

WARNINGS
The microsecond value usually has a granularity much greater than one due to the resolution of
the system clock. Depending on any granularity (particularly of one) will render code non-
portable.

DEPENDENCIES
Series 300

Gettimeofday has a granularity of 4 microseconds.

AUTHOR
Gettimeofday was developed by the University of California, Berkeley.

SEE ALSO
date(1), stime(2), time(2), ctime(3C).

70 (Section 2) -2 - HP-UX Release 7.0: September 1989

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group, and effective group
IDs

SYNOPSIS
#include <sys/types.h>

uid_t getuid ()
uid_t geteuid ()
gid_t getgid)
gid_t getegid ()

DESCRIPTION
Getuid returns the real-user-1D of the calling process.

Geteuid returns the effective-user-ID of the calling process.

Getgid returns the real-group-ID of the calling process.

Getegid returns the effective-group-ID of the calling process.

There is no way to ascertain the saved-user-ID or saved-group-ID of a process.

SEE ALSO
setuid(2).

STANDARDS CONFORMANCE
getuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

getegid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
geteuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
getgid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 71

IOCTL(2) IOCTL(2)

NAME

joctl — control device

SYNOPSIS

#include <sys/ioctlLh>

ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

Ioctl performs a variety of functions on character special files (devices). The write-ups of vari-
ous devices in Section (7) discuss how ioctl applies to them. The type of arg is dependent on
the specific ioct! call, as described in Section (7).

Request is made up of several fields. They encode the size and direction of the argument (refer-
enced by arg), as well as the desired command. An enumeration of the request fields are:

I0C_IN Argument is read by the driver. (That is, the argument is copied from the
application to the driver.)

10C_OUT Argument is written by the driver. (That is, the argument is copied from the
driver to the application.)

IOCSIZE_MASK Number of bytes in the passed argument. A nonzero size indicates that arg is
a pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.

IOCCMD_MASK The request command itself.

When both IOC_IN and IOC_OUT are zero, it can be assumed that request is not encoded for
size and direction, for compatibility purposes. Requests which do not require any data to be
passed and requests which use arg as a value (as opposed to a pointer), have the IOC_IN bit set
to one and the IOCSIZE_MASK field set to zero.

The following macros are used to create the request argument. X and y are concatenated
(x<<8) | y) to form IOCCMD and shifted into the proper location according to
IOCCMD_MASK. T is the type (e.g. struct hpib_cmd) of the actual argument that the request

references, and its size is taken and shifted into the appropriate place according to
IOCSIZE_MASK.

_IOR(x,y,t) Sets IOC_OUT and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOW(x,y,t) Sets IOC_IN and initializes the values at IOCCMD_MASK and
IOCSIZE_MAGSK accordin gly.

_IOWR(x,y,t) Sets both IOC_IN and IOC_OUT and initializes the values at IOCCMD_MASK
and IOCSIZE_MASK.

Note: any data structure referenced by arg may not contain any pointers.

RETURNS

If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

IToct! will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] The request is not appropriate to the selected device.
[EINVAL] Request or arg is not valid.

[EINTR] A signal was caught during the ioct system call.

72 (Section 2) -1- HP-UX Release 7.0: September 1989

IOCTL(2) IOCTL(2)

[EPERM] Typically this error indicates that an ioctl request was attempted that is forbid-
den in some way to the calling process.
WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.
AUTHOR
Ioctl was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.
SEE ALSO
ioctl(5), termio(7).

STANDARDS CONFORMANCE
ioctl: SVID2, XPG2

HP-UX Release 7.0: September 1989 -2- (Section 2) 73

KILL(2)

NAME

KILL(2)

kill, raise — send a signal to a process or a group of processes

SYNOPSIS

#include <signal.h>
int kill (pid, sig)
pid_t pid;

int sig;

int raise (sig)

int sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal to be sent is specified by sig and is
either one from the list given in signal(2), or 0.

Raise sends signal sig to the executing program. The signal to be sent is specified by sig and is
either one from the list given in signal(2), or 0.

If sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can
be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved user ID of the
receiving process, unless the effective user ID of the sending process is super-user. As a single
special case, the continue signal SIGCONT can be sent to any process that is a member of the
same session as the sending process.

The value KILL_ALL_OTHERS is defined in the file <sys/signal.Lh> and is guaranteed not to
be the ID of any process in the system or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL_ALL_OTHERS, sig is sent to the process
whose process ID is equal to pid. Pid can equal 1 unless sig is SIGKILL or SIGSTOP.

If pid is 0, sig is sent to all processes excluding special system processes whose process group
ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig is sent to all processes
excluding special system processes whose real or saved user ID is equal to the real or effective
user ID of the sender.

If pid is —1 and the effective user ID of the sender is super-user, sig is sent to all processes
excluding special system processes.

If pid is KILL_ALL_OTHERS, kill behaves much as when pid is equal to —1, except that sig is
not sent to the calling process.

If pid is negative but not —1 or KILL_ALL_OTHERS, sig is sent to all processes (excluding spe-
cial system processes) whose process group ID is equal to the absolute value of pid, and whose
real and/or effective user ID meets the constraints described above for matching user IDs.

ERRORS

74

Kill fails and no signal is sent if one or more of the following is true:

[EINVAL] Sig is not a valid signal number or zero.

[EINVAL] Sig is SIGKILL or SIGSTOP and pid is 1 (procl).

[EPERM] The user ID of the sending process is not super-user and its real or effective

user ID does not match the real or saved user ID of the receiving process.

[EPERM] The sendihg and receiving processes are not in the same session.

(Section 2) -1- HP-UX Release 7.0: September 1989

KILL(2) KILL(2)

[ESRCH] No process or process group can be found corresponding to that specified by
pid.

Raise will fail and no signal will be sent if the following is true:

[EINVAL] Sig is not a valid signal number or zero.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

AUTHOR
Kill was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

STANDARDS CONFORMANCE
kill: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

raise: ANSI C

HP-UX Release 7.0: September 1989 -2 - (Section 2) 75

LINK(2) LINK(2)

NAME
link — link to a file
SYNOPSIS
int link (pathl, path2)
char spathl, spath2;
DESCRIPTION
Pathl points to a path name naming an existing file. Path2 points to a path name naming the
new directory entry to be created. Link creates a new link (directory entry) for the existing file.
ERRORS
Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] A component of either path prefix does not exist.

[ENOSPC] The directory to contain the file cannot be extended.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by pathl does not exist.

[EEXIST] The link named by path2 exists.

[EPERM] The file named by pathl is a directory and the effective user ID is not super-
user.

[EXDEV] The link named by path2 and the file named by pathl are on different logical
devices (file systems).

[ENOENT] Path? points to a null path name.

[EACCES] The requested link requires writing in a directory that does not permit writing.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENOENT] Pathl or path2 is null.

[EMLINK] The maximum number of links to a file would be exceeded.

[ENAMETOOLONG]

Either path specified exceeds PATH_MAX bytes, or a component of either path
specified exceeds NAME_MAX while POSIX_NO_TRUNC is in effect.
[ELOOP] Too many symbolic links were encountered in translating either path name.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO

cp(1), link(1M), symlink(2), symlink(4), unlink(2).
STANDARDS CONFORMANCE

link: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

76 (Section 2) -1- HP-UX Release 7.0: September 1989

LOCKF(2) LOCKF(2)

NAME

lockf — provide semaphores and record locking on files

SYNOPSIS

#include <unistd.h>

int lockf(fildes, function, size)
int fildes, function;
long size;

DESCRIPTION

Lockf will allow regions of a file to be used as semaphores (advisory locks) or accessible only by
the locking process (enforcement mode record locks). Other processes that attempt to access
the locked resource will either return an error or sleep until the resource becomes unlocked. All
the locks for a process are removed when the process closes the file or terminates.

Fildes is an open file descriptor. The file descriptor must have been opened with write-only
permission (O_WRONLY) or read-write permission (O_RDWR) in order to establish a lock with
this function call (see open(2)).

If the calling process is a member of a group that has the PRIV_LOCKRDONLY privilege (see
setprivgrp(2)), it can also use lockf to lock files opened with read-only permission (O_RDONLY).

Function is a control value that specifies the action to be taken. The permissible values for func-
tion are defined in <unistd.h> as follows:

#define F_ULOCK 0 /* unlock a region */
#define F_LOCK 1 /*lock a region */

#define F_TLOCK 2 /* test and lock a region */
#define F_TEST 3 /* test region for lock */

All other values of function are reserved for future extensions and will result in an error return if
not implemented.

F_TEST is used to detect if a lock by another process is present on the specified region. Lockf
returns zero if the region is accessible and —1 if it is not; in this case errno will be set to
EACCES. F_LOCK and F_TLOCK both lock a region of a file if the region is available.
F_ULOCK removes locks from a region of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource to be locked
starts at the current offset in the file, and extends forward for a positive size, and backward for
a negative size (the preceding bytes up to but not including the current offset). If size is zero,
the region from the current offset through the end of the largest possible file is locked (that is,
from the current offset through the present or any future end-of-file). An area need not be allo-
cated to the file in order to be locked, as such locks may exist past the end of the file.

The regions locked with F_LOCK or F_TLOCK may, in whole or part, contain or be contained
by a previously locked region for the same process. When this occurs or if adjacent regions
occur, the regions are combined into a single region. If the request requires that a new element
be added to the table of active locks and this table is already full, an error is returned, and the
new region is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not available:
F_LOCK will cause the calling process to sleep until the resource is available, and the
F_TLOCK will return an EACCES error if the region is already locked by another process.

F_ULOCK requests may, in whole or part, release one or more locked regions controlled by the
process. When regions are not fully released, the remaining regions are still locked by the pro-
cess. Releasing the center section of a locked region requires an additional element in the table

HP-UX Release 7.0: September 1989 -1- (Section 2) 77

LOCKF(2) LOCKF(2)

of active locks. If this table is full, an EDEADLK error is returned, and the requested region is
not released.

Regular files with the file mode of S_LENFMT not having the group execute bit set will have an
enforcement policy enabled. With enforcement enabled, reads and writes that would access a
locked region will sleep until the entire region is available if O_NDELAY is cleared, but will
return ~1 with errno set if O_NDELAY is set. File access by other system functions, such as
exec(2), are not subject to the enforcement policy. Locks on directories, pipes, and special files
are advisory only; no enforcement policy will be used.

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by
accessing the locked resource of another process. Thus, calls to fentl(2), lockf(2), read(2), or
write(2) scan for a deadlock prior to sleeping on a locked resource. Deadlock is not checked for
the wait(2) and pause(2) system calls, so potential for deadlock is not eliminated. A creat(2) call
or an open(2) call with the O_CREATE and O_TRUNC flags set on a regular file will return
EAGAIN error if another process has locked part of the file and the file is currently in enforce-
ment mode.

NETWORKING FEATURES
NFS
The advisory record-locking capabilities of lockf(2) are implemented throughout the net-
work by the “network lock daemon”; see lockd(1IM). If the file server crashes and is
rebooted, the lock daemon attempts to recover all locks associated with the crashed server.
If a lock cannot be reclaimed, the process that held the lock is issued a SIGLOST signal.

Only advisory record locking is implemented for NFS files.

RETURN VALUE :

Upon successful completion, a value of 0.is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Lockf fails if any of the following occur:
[EACCES] Function is F_TLOCK or F_TEST and the region is already locked by another
process.
[EBADF] Fildes is not a valid, open file descriptor.

[EDEADLK] A deadlock would occur or the number of entries in the system lock table
would exceed a system-dependent maximum. HP-UX guarantees this value to
be at least 50.

[EINTR] A signal was caught during the lockf system call.

[EINVAL] Function is not one of the functions specified above.

[EINVAL] Size plus current offset produces a negative offset into the file.

[EINVAL] The resulting upper bound of the region to be locked would be greater than

230, or the current offset is greater than 230.

[ENOLCK] Function is F_TLOCK or F_LOCK and the file is a NFS file with access bits set
for enforcement mode.

[ENOLCK] The file is a NFS file and a system error occurred on the remote node.

WARNINGS
Deadlock conditions may arise when either the wait(2) or pause(2) system calls are used in con-
junction with enforced locking; see those pages for details.

File and record locking using file descriptors obtained through dup(2) or link(2) may not work
as expected. For example, unlocking regions that were locked using either file descriptor may

78 (Section 2) -2- HP-UX Release 7.0: September 1989

LOCKEF(2) LOCKF(2)

also unlock regions that were locked using the other file descriptor.

Unexpected results may occur in processes that use buffers in the user address space. The pro-
cess may later read/write data which is or was locked. The standard I/O package, stdio(3S), is
the most common source of unexpected buffering.

In a hostile environment, locking may be misused by holding key public resources locked. This
is particularly true with public read files that have enforcement enabled.

it is not recommended that the PRIV_LOCKRDONLY capability be used, as it is provided only
for backward compatibility. This feature may be modified or dropped from the future releases
of HP-UX.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a

section of a file is already locked by another process, portable application programs should
expect and test for either value. For example:

if (lockf(fd, F_TLOCK, siz) == -1)
if ((errno == EAGAIN) || (errno == EACCES))
%

* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*/
else if ...
*

* check for other errors

*/
SEE ALSO
chmod(2), close(2), creat(2), fcntl(2), open(2), pause(2), read(2), stat(2), wait(2), write(2),
unistd(5).

lockd(1M), statd(1M), in NFS Services Reference Pages.

FUTURE DIRECTIONS
The error condition that currently sets errno to EACCES will instead set errno to EAGAIN.
(See also APPLICATION USAGE above.)

STANDARDS CONFORMANCE
lockf: SVID2, XPG2

HP-UX Release 7.0: September 1989 -3 - (Section 2) 79

LSEEK(2) LSEEK(2)

NAME
Iseek — move read/write file pointer; seek
SYNOPSIS

#include <sys/types.h>
#include <unistdh>

off_t Iseek (fildes, offset, whence)
int fildes;

off_t offset;

int whence;

DESCRIPTION
Lseek sets the file pointer associated with the file descriptor as follows:

If whence is SEEK_SET, the pointer is set to offset bytes.
If whence is SEEK_CUR, the pointer is set to its current location plus offset.
If whence is SEEK_END, the pointer is set to the size of the file plus offset.

These symbolic constants are defined in <unistd.h>.

RETURN VALUE
When Iseek completes successfully, it returns a non-negative integer, which is the resulting file
offset as measured in bytes from the beginning of the file. Otherwise, a value of —1 is returned
and errno is set to indicate the error.)

ERRORS
Lseek fails and the file offset remains unchanged if one or mqre of the following is true:

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or FIFO.

[EINVAL and SIGSYS signal]
Whence is not one of the supported values.

[EINVAL] The resulting file offset would be negative.

WARNINGS .
Some devices are incapable of seeking. The value of the file offset associated with such a dev-
ice is undefined.

Using Iseek with a whence of SEEK_END on device special files is not supported and the results
are not defined.

SEE ALSO
creat(2), dup(2), fentl(2), open(2), unistd(5).

STANDARDS CONFORMANCE
Iseek: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

80 (Section 2) -1- HP-UX Release 7.0: September 1989

MKDIR(2) MKDIR(2)

NAME
mkdir — make a directory file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkdir(path, mode)
char *path;
mode_t mode;

DESCRIPTION
Mkdir creates a new directory file named by path. The file permission bits of the new directory
are initialized from mode, and are modified by the process’s file mode creation mask. For each
bit set in the process’s file mode creation mask, the corresponding bit in the new directory’s
mode is cleared (see umask(2)).

The directory’s owner ID is set to the process’s effective-user-ID. If the set-group-ID bit of the
parent directory is set, the directory’s group ID is set to group ID of the parent directory. Other-
wise, the directory’s group ID is set to the process’s effective-group-ID. The set-group-ID bit of
the new directory is set to the same value as the set-group-ID bit of the parent directory.

Symbolic constants defining the access permission bits are found in the <sys/stath> header
and are used to construct the argument mode. The value of the argument mode is the bitwise
inclusive OR of the values of the desired permissions.

S_IRUSR Read by owner.

S_IWUSR Write by owner.

S_IXUSR Execute (search) by owner.

S_IRGRP Read by group.

S_IWGRP Write by group.

S_IXGRP Execute (search) by group.

$_IROTH Read by others (that is, anybody else).
S_IWOTH Write by others.

S_IXOTH Execute (search) by others.

Access Control Lists (ACLs)

On systems implementing access control lists, the directory is created with three base ACL
entries, corresponding to the file access permission bits (see acl(5)).

RETURN VALUE
Upon successful completion, mkdir returns a value of 0; a return value of —1 indicates an error,
and an error code is stored in errno.

ERRORS
Mkdir fails and no directory is created if any of the following is true:

[EACCES] A component of the path prefix denies search permission.

[EACCES] The parent directory of the new directory denies write permission.

[EEXIST] The named file already exists.

[EFAULT] Path points outside the process’s allocated address space. The reliable detec-
tion of this error is implementation dependent.

[E1O] An 1/0 error occurred while writing to the file system.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMLINK] The maximum number of links to the parent directory, {LINK_MAX}, would be
exceeded.

HP-UX Release 7.0: September 1989 -1- (Section 2) 81

MKDIR(2) MKDIR(2)

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length

of a component of the path name exceeds NAME_MAX bytes whlle
_POSIX_NO_TRUNC is in effect.

Tn T T

[ENOENT] A component of the path prenx does not exist.

[ENOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.
AUTHOR

Mkdir was developed by the University of California, Berkeley.
SEE ALSO

chmod(2), setacl(2), stat(2), umask(2), acl(5).

STANDARDS CONFORMANCE
mkdir: SVID2, XPG3, POSIX.1, FIPS 151-1

82 (Section 2) -2- HP-UX Release 7.0:- September 1989

MKNOD(2)

NAME

mknod — make a directory, or a special or regular file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int mknod (path, mode, dev)

char «path;

mode_t mode;
dev_t dev;

int mkrnod(path, mode, dev, cnodeid)

char *path;

int mode;

dev_t dev;
cnode_t cnodeid;

DESCRIPTION

MKNOD(2)

Mknod creates a new file named by the path name pointed to by path. The mode of the new
file is specified by the mode argument. Mkrnod is the same as mknod but is used to make device
files that can be accessed from a different cnode identified by the additional parameter cnodeid.
A cnodeid value of 0 creates a "generic" device file that can be accessed by any cnode.

Symbolic constants defining the file type and file access permission bits are found in the
<sys/stat.h> header file and are used to construct the mode argument. The value of the mode
argument should be the bitwise inclusive OR of the values of the desired file type, miscellane-
ous mode bits, and access permissions. If the S_IFMT portion of mode has a value of 0, mknod
creates a regular file. The mode value 0044000 (S_CDF | S_IFDIR) is used with mkrnod to indi-
cate a hidden directory (see cdf(4)).

S_IFMT
S_IFNWK
S_IFIFO
S_IFCHR
S_IFDIR
S_IFBLK
S_IFREG
S_ISUID
S_ISGID
S_ENFMT
S_ISVTX
S_IRWXU
S_IRUSR
S_IWUSR
S_IXUSR
S_IRWXG
S_IRGRP
S_IWGRP
S_IXGRP
S_IRWXO
S_IROTH
S_IWOTH
S_IXOTH

The owner ID of the file is set to the effective-user-ID of the process.

File type mask

Network special file

FIFO special file

Character special file
Directory node

Block special file

Regular file

Set user ID on execution
Set group ID on execution
Record locking enforced
Save text image after execution
Permission mask for owner
Read by owner

Write by owner

Execute (search) by owner
Permission mask for group
Read by group

Write by group

Execute (search) by group
Permission mask for others
Read by others

Write by others

Execute (search) by others

HP-UX Release 7.0: September 1989 -1-

If the set-group-ID bit of
the parent directory is set, the directory’s group ID is set to the group ID of the parent directory.

(Section 2)

83

MKNOD(2) MKNOD(2)

Otherwise, the directory’s group ID is set to the effective-group-ID of the process.

The file access permission bits of mode are modified by the process’s file mode creation mask:
for each bit set in the process’s file mode creation mask, the corresponding bit in the file’s mode
is cleared (see umask(2)).

On systems implementing access control lists (ACLs), the directory is created with three base
ACL entries, corresponding to the file access permission bits (see acl(5)).
Dev is meaningful only if mode indicates a block or character special file, and is ignored other-
wise. It is an implementation- and configuration-dependent specification of a character or block
1/O device. Dev is created by using the makedev macro defined in <sys/sysmacros.h>. The
makedev macro takes as arguments the major and minor device numbers, whose value and
interpretation are implementation dependent. The result of makedev is an object of type dev_t.
Mknod can be invoked only by the super-user for file types other than FIFO special.

WARNINGS
Proper discretion should be used when using mkriod to create generic device files. A generic
device file accessed from different cnodes applies to different physical devices. Thus the file’s
ownership and permissions may not be appropriate in the context of all the cnodes.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Mknod fails and the new file is not created if one or more of the following is true:

[EACCES] Path is in a directory that denies write permission, mode is for a FIFO special
file, and the caller is not a super-user.

[EACCES] A component of the path prefix denies search permission.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] Path is null.
[ENOENT)] A component of the path prefix does not exist.
[ENOSPC] Not enough space on the file system.
[ENOTDIR] A component of the path prefix is not a directory.
[EPERM] The effective-user-ID of the process does not match that of the super-user, and
the file type is not FIFO special.
[EROFS] The directory in which the file is to be created is located on a read-only file
system.
AUTHOR
Mknod was developed by AT&T and HP.
SEE ALSO

mkdir(2), mkdir(1), mknod(1M), chmod(2), exec(2), setacl(2), umask(2), cdf(4), fs(4), mknod(4),

84 (Section 2) -2- HP-UX Release 7.0: September 1989.

MKNOD(2) MKNOD(2)

acl(5).

STANDARDS CONFORMANCE
mknod: SVID2, XPG2

HP-UX Release 7.0: September 1989 -3 - (Section 2) 85

MOUNT(2)

NAME

MOUNT(2)

mount — mount a file system

SYNOPSIS

int mount (spec, dir, rwflag)
char sspec, *dir;

int rwflag;

DESCRIPTION

Mount requests that a removable file system contained on the block special device file identified
by spec be mounted on the directory identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory on the
mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1,
writing is forbidden, otherwise writing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS

Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[ENOTDIR] A component of a path prefix is not a directory.)

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] Dir is not a directory.

[EFAULT] Spec or dir points outside the allocated address space of the process. The reli-
able detection of this error will be implementation dependent.

[EBUSY] Dir is currently mounted on, is someone’s current working directory, or is oth-
erwise busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY] There are no more mount table entries.

[ENOENT] Spec or dir is null.

[EACCES] A component of the path prefix denies search permission.

[ENAMETOOLONG]
The length of a specified path name exceeds PATH_MAX bytes, or the length of
a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating either path name.

WARNINGS

If mount is called from the program level (i.e. not called from mount(1M)), the table of mounted
devices contained in /etc/mnttab is not updated.

86 (Section 2)

-1- HP-UX Release 7.0: September 1989

MOUNT(2) MOUNT(2)

DEPENDENCIES
HP Clustered Environment
When mount is called from a diskless node (cluster client), spec is interpreted as a device
attached to the cluster server. This behavior is subject to change in future releases, and
use in applications is not recommended.
SEE ALSO
mount(1M), umount(2).
STANDARDS CONFORMANCE
mount: SVID2, XPG2

HP-UX Release 7.0: September 1989 -2- (Section 2) 87

MSGCTL(2)

NAME

MSGCTL(2)

msgctl — message control operations

SYNOPSIS

#include <sys/types.h>
#incilude <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

Msgctl provides a variety of message control operations as specified by cmd. The following
cmds are available:

IPC_STAT

IPC_SET

IPC_RMID

ERRORS

Place the current value of each member of the data structure associated with msqid
into the structure pointed to by buf. The contents of this structure are defined in
the glossary.

Set the value of the following members of the data structure associated with msgid
to the corresponding value found in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /x only low 9 bits +/

msg_qgbytes

This c¢md can only be executed by a process that has an effective user ID equal to
either that of super user or to the value of either msg_perm.uid or msg_perm.cuid
in the data structure associated with msgid. Only super user can raise the value of
msg_qgbytes.

Remove the message queue identifier specified by msgid from the system and des-
troy the message queue and data structure associated with it. This cmd can only be
executed by a process that has an effective user ID equal to either that of super-user
or to the value of either msg_perm.uid or msg_perm.cuid in the data structure
associated with msgid.

Msgctl will fail if one or more of the following are true:

[EINVAL)
[EINVAL]
[EACCES]

[EPERM]

[EPERM]

[EFAULT]

RETURN VALUE

Msgqid is not a valid message queue identifier.
Cmad is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is denied to the
calling process (see the glossary).

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of super-user and it is not equal to the value of
either msg_perm.uid or msg_perm.cuid in the data structure associated with
msqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to the value of

msg_qgbytes, and the effective user ID of the calling process is not equal to that
of super user.

Buf points to an illegal address. The reliable detection of this error will be
implementation dependent.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and

88 (Section 2)

-1- HP-UX Release 7.0: September 1989

MSGCTL(2)

errno is set to indicate the error.
SEE ALSO

iperm(1), ipes(1), msgget(2), msgop(2), stdipc(3C).

STANDARDS CONFORMANCE
msgctl: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2-

MSGCTL(2)

(Section 2)

89

MSGGET(2)

NAME
msgget

SYNOPSIS

MSGGET(2)

— get message queue

#include <sys/types.h>
#inciude <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION

Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are created for key
if one of the following is true:

Key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available
resources. The identifier will never be returned by another call to msgget until it has
been released by a call to msgctl. The identifier should be used among the calling pro-
cess and its descendents; however, it is not a requirement. The resource can be
accessed by any process having the proper permissions.

Key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new message queue identifier is initialized
as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.
Msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.
Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

ERRORS
Msgget will fail if one or more of the following are true:
[EACCES] A message queue identifier exists for key, but operation permission as specified
by the low-order 9 bits of msgflg would not be granted.
[ENOENT] A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is
“false”.
[ENOSPC] A message queue identifier is to be created but the system-imposed limit on

[EEXIST]

the maximum number of allowed message queue identifiers system wide would
be exceeded.

A message queue identifier exists for key but ((msgflg & IPC_CREAT) && (
msgflg & IPC_EXCL)) is “true”.

RETURN VALUE

Upon successful completion, a non-negative integer, namely a message queue identifier, is
returned. Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

ipcrm(1), ipes(1), msgetl(2), msgop(2), stdipc(3C).

90 (Section 2) -1- HP-UX Release 7.0: September 1989

MSGGET(2) MSGGET(2)

STANDARDS CONFORMANCE
msgget: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2 - (Section 2) 91

MSGOP(2) MSGOP(2)

NAME
msgsnd, msgrcv — message operations

SYNOPSIS
#include <sys/types.h>
#inciude <sys/ipc.h>
#include <sys/msg.h>
int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
void *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
void xmsgp;
int msgsz;
long msgtyp;
int msgflg;
DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message queue identifier
specified by msqid.
Msgp points to a user-defined buffer that must contain first a field of type long that will specify
the type of the message, followed by a data portion that will hold the data bytes of the mes-
sage. The structure below is an example of what this user-defined buffer might look like:

long mtype; /* message type */
char mtextf]; /* message text x/

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrcv below). Mtext is any text of length msgsz bytes. Msgsz can range from 0 to a system-
imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see message queue
identifier in the Glossary).

The total number of messages on all queues system-wide is equal to the system-
imposed limit.

These actions are as follows:

If (msgfly & IPC_NOWAIT) is “true”’, the message is not sent and the calling process
returns immediately.

If (msgfly & IPC_NOWAIT) is “false”, the calling process suspends execution until one
of the following occurs:

The condition responsible for the suspension no longer exists, in which case
the message is sent.

Msgid is removed from the system (see msgctl(2)). When this occurs, errno is
set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal to be caught. In this case the message is
not sent and the calling process resumes execution in the manner prescribed in
signal(5).

Upon successful completion, the following actions are taken with respect to the data structure
associated with msgid:

92 (Section 2) -1- HP-UX Release 7.0: September 1989

MSGOP(2) MSGOP(2)

Msg_qnum is incremented by 1.
Msg_lspid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue identifier specified
by msgid and places it in the structure pointed to by msgp. This structure is composed of the
following members:

long mtype; /* message type */
char mtext[}; /* message text x/

Mtype is the received message’s type as specified by the sending process. Mtext is the text of
the message. Msgsz specifies the size in bytes of mtext. The received message is truncated to
msgsz bytes if it is larger than msgsz and (msgfl & MSG_NOERROR) is “true”’. The truncated
part of the message is lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to
the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not on the queue.
These are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the calling process will return immediately with a
return value of —1 and errno set to ENOMSG.

If (msgfly & IPC_NOWAIT) is “false”, the calling process will suspend execution until
one of the following occurs:

A message of the desired type is placed on the queue.

Msgid is removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this case a mes-
sage is not received and the calling process resumes execution in the manner
prescribed in signal(5)).

Upon successful completion, the following actions are taken with respect to the data structure
associated with msgid.

Msg_qnum is decremented by 1.
Msg_lrpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

ERRORS
Msgsnd fails and no message is sent if one or more of the following is true:
[EINVAL] Msgid is not a valid message queue identifier.
[EACCES] Operation permission is denied to the calling process.
[EINVAL] Mtype is less than 1.
[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &

IPC_NOWAIT) is “true”.
[EINVAL] Msgsz is less than zero or greater than the system-imposed limit.

HP-UX Release 7.0: September 1989 -2 - (Section 2) 93

MSGOP(2)

[EFAULT]

[EIDRM]
[EINTR]

MSGOP(2)

Msgp points to an illegal address. The reliable detection of this error is imple-
mentation dependent.

The message queue identifier msqid has been removed from the system.

w

The function msgsnd was interrupted by a signal.

Msgrev fails and no message is received if one or more of the following is true:

[EINVAL]
[EACCES]
[EINVAL]
[E2BIG]
[ENOMSG]

[EFAULT]

[EIDRM]
[EINTR]

RETURN VALUES
Upon successful completion, the return value is as follows:

94

Msgid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Msgsz is less than 0.

Mtext is greater than msgsz and (msgflg & MSG_NOERROR) is “false”.

The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is “true”.

Msgp points to an illegal address. The reliable detection of this error is imple-
mentation dependent.

The message queue identifier msqid has been removed from the system.
The function msgrcv was interrupted by a signal.

Msgsnd returns a value of 0.

Msgrco returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of —1 is returned and errno is set to indicate the error.
WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.

SEE ALSO
ipcs(1), msgetl(2), msgget(2), signal(5), stdipc(3C).
STANDARDS CONFORMANCE

msgrev: SVID2, XPG2, XPG3

msgsnd: SVID2, XPG2, XPG3

(Section 2)

-3 - HP-UX Release 7.0: September 1989

NICE(2) NICE(2)

NAME

nice — change priority of a process
SYNOPSIS

int nice (incr)

int incr;
DESCRIPTION

Nice adds the value of incr to the nice value of the calling process. A process’s nice value is a
positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system.
Requests for values above or below these limits result in the nice value being set to the
corresponding limit.

RETURN VALUE

Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

Note that nice assumes a user process priority value of 20. If the super-user of your system has
changed the user process priority value to something less than 20, certain increments can cause
nice to return —1, which is indistinguishable from an error return.

ERRORS
[EPERM] Nice will fail and not change the nice value if incr is negative or greater than
40 and the effective user ID of the calling process is not super-user.
SEE ALSO

nice(1), exec(2).

STANDARDS CONFORMANCE
nice: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 2) 95

OPEN(2)

NAME

OPEN(2)

open — open file for reading or writing
SYNOPSIS
#include <sys/types.h>
#inciude <sys/stat.h>
#include <fentlh>

int open (path, oflag [, mode])

char spath;
int oflag;

mode_t mode;

DESCRIPTION
Path points to a path name naming a file; it must not exceed PATH_MAX bytes in length. Open
opens a file descriptor for the named file and sets the file status flags ‘according to the value of
oflag. Oflag values are constructed by OR-ing flags from the list below.

Exactly one of the flags O_RDONLY, O_WRONLY, or O_RDWR must be used in composing the
value of oflag. If none or more than one is used, the behavior is undefined. Several other flags
listed below can be changed by using fentl while the file is open. See fentl(2) and fentl(5) for

9

details.
O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY

O_NONBLOCK

O_APPEND
O_CREAT

(Section 2)

Open for reading only.

Open for writing only.

Open for reading and writing.

This flag might affect subsequent reads and writes. See read(2) and write(2).
When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:

An open for reading-only returns without delay. An open for writing-
only returns an error if no process currently has the file open for read-
ing.

If O_NDELAY is clear:

An open for reading-only does not return until a process opens the file
for writing. An open for writing-only does not return until a process
opens the file for reading.

When opening a file associated with a communication line:
If O_NDELAY is set:

The open returns without waiting for carrier.
If O_NDELAY is clear:

The open does not return until carrier is present.

Same effect as O_NDELAY for open(2), but slightly different effect in read(2)
and write(2). Only one of O_NONBLOCK and O_NDELAY may be specified.

If set, the file offset is set to the end of the file prior to each write.

If the file exists, this flag has no effect, except as noted under O_EXCL below.
Otherwise, the owner ID of the file is set to the effective user ID of the process,
the group ID of the file is set to the effective group ID of the process if the set-
group-ID bit of the parent directory is not set, or to the group ID of the parent
directory if the set-group-ID bit of the parent directory is set. The file access

-1- HP-UX Release 7.0: September 1989

OPEN(2) OPEN(2)

permission bits of the file mode are set to the value of mode modified as fol-
lows (see creat(2)):

For each bit set in the file mode creation mask of the process, the
corresponding bit in the new file’s mode is cleared (see umask(2)).

The "save text image after execution" bit of the mode is cleared. See
chmod(2).
On systems with access control lists, three base ACL entries are created

corresponding to the file access permissions (see acl(5)).

O_TRUNC If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open fails if the file exists.

O_NOCTTY If set, and path identifies a terminal device, open does not cause the terminal to
become the controlling terminal for the process.

O_SYNC If a file is opened with O_SYNC or if that flag is set with the F_SETFL option of

fentl, file system writes for the file are done through the cache to the disk as
soon as possible, and the process blocks until this is completed. This flag is
ignored by all I/O calls except write, and is ignored for files other than ordi-
nary files and block special devices on those systems. that permit I/O to block
special devices.

The name O_SYNCIO is a synonym for O_SYNC, and is defined for backward compatibility in
<fentlh>.

The file pointer used to mark the current position within the file is set to the beginning of the
file.

The new file descriptor is set to remain open across exec system calls; see fentl(2).

EXAMPLES
The following call to open opens file inputfile for reading only and returns a file descriptor for
inputfile. For an example of reading from file inputfile, see the read(2) manual page.

int myfd;

myfd = open ("inputfile", O_RDONLY);
The following call to open opens file outputfile for writing and returns a file descriptor for
outputfile. For an example of preallocating disk space for outputfile, see the prealloc(2) manual
page. For an example of writing to outputfile, see the write(2) manual page.
int outfd;
outfd = open ("outputfile", O_WRONLY);

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

ERRORS
Open fails and the file is not opened if one of the following conditions is true. Errno is set
accordingly:
[EACCES} Oflag permission is denied for the named file.
[EACCES] A component of the path prefix denies search permission.
[EACCES] The file does not exist and the directory in which the file is to be created does

not permit writing.

HP-UX Release 7.0: September 1989 -2 (Section 2) 97

OPEN(2) OPEN(2)

[EAGAIN] One or more segments of a pre—existing file have been locked with lockf or
fentl by some other process, and O_TRUNC is set.

[EAGAIN] The file exists, enforcement mode file/record locking is set, and there are out-
standing record locks on the file (see chmod(2)).

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[EFAULT] Path points outside the allocated address space of the process.

[EINTR] A signal was caught during the open system call, and the system call was not
restarted (see signal(5) and sigvector(2)).

[EINVAL] Oflag specifies both O_WRONLY and O_RDWR.

[EINVAL] Oflag specifies both O_NONBLOCK and O_NDELAY.

[EISDIR] The named file is a directory and oflag is write or read/write.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMFILE] The maximum number of file descriptors allowed are currently open.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENFILE] The system file table is full.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist, or the file itself does not exist and O_CREAT is not set).

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process
has the file open for reading.

[ENXIO} The named file is a character special or block special file, and the device associ-
ated with this special file does not exist.

[EROFS] The named file resides on a read-only file system and oflag is write or
read /write.

[ETXTBSY] The file is open for execution and oflag is write or read/write. Normal execut-

able files are only open for a short time when they start execution. Other exe-
cutable file types may be kept open for a long time, or indefinitely under some
circumstances.
DEPENDENCIES
HP Clustered Environment:
Attempting to open a device file with a st_rcnode value that does not match the cnode ID
of the machine on which the calling process is running (or "0") will fail with an EOPNOT-
SUPP error.
AUTHOR
Open was developed by HP, AT&T, and the University of California, Berkeley.
SEE ALSO
chmod(2), close(2), creat(2), dup(2), fentl(2), lockf(2), lseek(2), read(2), select(2), setacl(2),
umask(2), write(2), acl(5), fentl(5), signal(5).
STANDARDS CONFORMANCE .
open: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

98 (Section 2) -3 - HP-UX Release 7.0: September 1989

PATHCONF(2) PATHCONE(2)

NAME

pathconf, fpathconf — get configurable pathname variables

SYNOPSIS

#include <unistd.h>

long pathconf (path, name)
char xpath;
int name;
long fpathconf (fildes, name)
int fildes, name;
DESCRIPTION
The pathconf and fpathconf functions provide a method for applications to determine the value

of a configurable limit or option associated with a file or directory (see limits(5) and
<unistd.h>).

For pathconf, the path argument points to the path name of a file or directory.

For fpathconf, the fildes argument is an open file descriptor.

For both functions, the name argument represents the variable to be queried regarding the file or
directory to which the other argument refers.

The following table lists the configuration variables available from pathconf and fpathconf, and
lists for each variable the associated value of the name argument:

Variable ! Value of name | Notes
LINK_MAX | _PC_LINK_MAX |1
MAX_CANON | _PC_MAX_CANON 12
MAX_INPUT | _PC_MAX_INPUT I 2
NAME_MAX | _PC_NAME_MAX 13,4
PATH_MAX | _PC_PATH_MAX l45
PIPE_BUF | _PC_PIPE_BUF | 6
_POSIX_CHOWN_RESTRICTED | _PC_CHOWN_RESTRICTED | 7, 8
_POSIX_NO_TRUNC | _PC_NO_TRUNC 3,4
_POSIX_VDISABLE | _PC_V_DISABLE I 2

The variables in the table are defined as constants in <limits.h> or <unistd.h> if they do not
vary from one pathname to another. The associated values of the name argument are defined in
<unistd.h>.

RETURN VALUE
The following Notes further qualify the table above.

1.
2.

If path or fildes refers to a directory, the value returned applies to the directory itself.

If the variable is constant, the value returned is identical to the variable’s definition in
<limits.h> or <unistdh> regardless of the type of fildes or path. The behavior is
undefined if path or fildes does not refer to a terminal file.

If path or fildes refers to a directory, the value returned applies to the filenames within the
directory.

If path or fildes does not refer to a directory, pathconf or fpathconf returns —1 and sets
errno to EINVAL.

If path or fildes refers to a directory, the value returned is the maximum length of a rela-
tive path name when the specified directory is the working directory.

If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies to the
pipe or FIFO itself. If path or fildes refers to a directory, the value returned applies to any

HP-UX Release 7.0: - September 1989 -1- (Section 2) 99

PATHCONF(2) PATHCONF(2)

FIFOs that exist or can be created within the directory. If PIPE_BUF is a constant, the
value returned is identical to the definition of PIPE_BUF in <limits.h> regardless of the
type of fildes or path. The behavior is undefined for a file other than a directory, FIFO, or
pipe.

7. If path or fildes refers to a directory, the value returned applies to files of any type, other
than directories, that exist or can be created within the directory.

8. _POSIX_CHOWN_RESTRICTED is defined if the privilege group PRIV_GLOBAL has
been granted the CHOWN privilege. (See getprivgrp(2) and chown(2).) In all other cases,
_POSIX_CHOWN_RESTRICTED is undefined and pathconf or fpathconf returns —1
without changing errno. To determine if chown can be performed on a file, it is simplest
to attempt the chown operation and check the return value for failure or success.

If the variable corresponding to name is not defined for path or fildes, the pathconf and fpathconf
functions succeed and return a value of —1, without changing the value of errno.

Upon any other successful completion, these functions return the value of the named variable
with respect to the specified file or directory, as described above.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS

The pathconf and fpathconf functions fail if one of the following is true:

[EACCES]) A component of the path prefix denies search permission.

[EBADF] The fildes argument is not a valid open file descriptor.

[EFAULT] Path points outside the allocated address space of the process.

[EINVAL] The value of name is not valid, or the implementation does not support an
association of the variable name with the specified file.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The file named by path does not exist (for example, path is null or a com-
ponent of path does not exist).
[ENOTDIR] A component of the path prefix is not a directory.
EXAMPLES

100

The following example sets val to the value of MAX_CANON for the device file being used as
the standard input. If the standard input is a terminal, this value is the maximum number of
input characters that can be entered on a single input line before typing the newline character:
if (isatty(0))
val = fpathconf(0, _.PC_MAX_CANON);

The following code segment shows two calls to pathconf, one to determine whether a file name
longer than NAME_MAX bytes will be truncated to NAME_MAX bytes in the /tmp directory,
and if so, another call to determine the actual value of NAME_MAX so that an error can be
printed if a user-supplied file name, stored in filebuf, will be truncated in this directory:

extern int errno;
char *filebuf;

errno = 0; /* reset errno */

(Section 2) -2 - HP-UX Release 7.0: September 1989

PATHCONF(2) PATHCONEF(2)

if (pathconf("/tmp" _PC_NO_TRUNC) == —-1)
/* _POSIX_NO_TRUNC is not in effect for this directory */
if (strlen(filebuf) > pathconf(" /tmp", PC_LNAME_MAX)) {
fprintf(stderr, "Filename %s too long.\n", filebuf);
/* take error action */
}
else
if {errno) {
perror("pathconf");
/* take error action */

}
/* otherwise, _POSIX_NO_TRUNC is in effect for this directory */
if ((fd = open(filebuf, O_CREAT, mode)) < 0)

perror(filebuf);

DEPENDENCIES
NFS/RFA
ERRORS
[EOPNOTSUPP] Path or fildes refers to a file for which a value for name cannot be
determined. In particular, _PC_LINK_MAX, _PC_NAME_MAX,
_PC_PATH_MAX, _PC_CHOWN_RESTRICTED, and
_PC_NO_TRUNC, cannot be determined for an NFS or RFA file.
AUTHOR
Pathconf and fpathconf were developed by HP.
SEE ALSO
errno(2), chown(2), limits(5), unistd(5), termio(7).
STANDARDS CONFORMANCE
pathconf: XPG3, POSIX.1, FIPS 151-1
fpathconf: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -3 - (Section 2) 101

PAUSE(2) PAUSE(2)

NAME
pause — suspend process until signal
SYNOPSIS
pause ()
DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored or blocked (masked) by the calling process.
If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal-catching
function (see signal(5)), the calling process resumes execution from the point of suspension;
with a return value of —1 from pause and errno set to EINTR.

WARNING

Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.

SEE ALSO

alarm(2), kill(2), sigvector(2), wait(2), signal(5).
STANDARDS CONFORMANCE

pause: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

102 (Section 2) -1- HP-UX Release 7.0: September 1989

PIPE(2) PIPE(2)

NAME
pipe — create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2};
DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file descriptors, fildes[0] and
fildes[1]. Fildes[0] is opened for reading and fildes[1] is opened for writing.
A read-only file descriptor fildes[0] accesses the data written to fildes[1] on a first-in-first-out
(FIFO) basis. For details of the I/O behavior of pipes see read(2) and write(2).
EXAMPLES
The following example uses pipe to implement the command string "Is | sort":

#include <sys/types.h>

pid_t pid;

int pipefd[2];

/* Assumes file descriptor 0 and 1 are open */
pipe (pipefd);

if ((pid = fork() == (pid_t)0) {
close(1); /* close stdout */
dup (pipefd[1]);
execlp ("Is", "1s", (char *)0);

}

else if (pid > (pid_t)0) {
close(0); /* close stdin */
dup (pipefd[0]);
execlp ("sort", "sort", (char *)0);

}

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Pipe fails if one or more of the following is true:

[EMFILE] NFILE - 1 or more file descriptors are currently open.

[ENFILE] The system file table is full.

[ENOSPC] The file system lacks sufficient space to create the pipe.
SEE ALSO

sh(1), read(2), write(2), popen(35).

STANDARDS CONFORMANCE
pipe: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 103

PLOCK(2)

NAME

PLOCK(2)

plock — lock process, text, or data in memory

SYNOPSIS

#include <sys/lock.h>

int plock (op)

int op;
DESCRIPTION

Plock allows the calling process to lock the text segment of the process (text lock), its data seg-
ment (data lock), or both its text and data segment (process lock) into memory. - Locked seg-
ments are immune to all routine swapping. Plock also allows these segments to be unlocked.
To use this call, the calling process must be a member of a privilege group allowing plock (see
setprivgrp on getprivgrp(2)) or the effective user ID of the calling process must be super-user.
Op specifies the following: '

PROCLOCK
TXTLOCK
DATLOCK
UNLOCK
EXAMPLES

lock text and data segments into memory (process lock)
lock text segment into memory (text lock)
lock data segment into memory (data lock)

remove locks

The following call to plock locks the calling process in memory:
plock (PROCLOCK);

RETURN VALUE

Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

ERRORS

Plock will fail and not perform the requested operation if one or more of the following are true:

[EPERM)]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]
[EINVAL]
[EINVAL]
[ENOMEM]

SEE ALSO

The effective user ID of the calling process is not super-user and the user does
not have PRIV_MLOCK.

Op is equal ‘to PROCLOCK and a process lock, a text lock, or a data lock already
exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock already exists on the
calling process.

Op is equal to DATLOCK and a data lock, or a process lock already exists on the
calling process.

Op is equal to UNLOCK and no type of lock exists on the calling process.
Op is not equal to either PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.
Plock not allowed in [vfork, exec] window (see vfork(2)).

There is not sufficient lockable memory in the system to satisfy the locking
request.

exec(2), exit(2), fork(2).

STANDARDS CONFORMANCE
plock: SVID2, XPG2

104 (Section 2)

-1- HP-UX Release 7.0: - September.1989

PREALLOC(2) PREALLOC(2)

NAME
prealloc — preallocate fast disk storage

SYNOPSIS
int prealloc (fildes, size)
int fildes;
unsigned size;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, pen, dup, or fentl system call for an ordinary file
of zero length. It must be opened writable, since it will be written to by prealloc. Size is the size
in bytes to be preallocated for the file specified by fildes. At least size bytes will be allocated.
space is be allocated in an implementation-dependent fashion for fast sequential reads and
writes. The EOF in an extended file will be left at the end of the preallocated area. The current
file pointer is left at zero. The file is zero-filled.

Using prealloc on a file does not give the file an attribute that is inherited when copying or res-
toring the file using a program such as cp(1) or tar(1). It simply ensures that disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be
extended beyond these limits by write operations past the original end of file. However, this
space will not necessarily be allocated using any special strategy.
EXAMPLES
Assuming a process has opened a file for writing, the following call to prealloc preallocates at
least 50 000 bytes on disk for the file represented by file descriptor outfd:
prealloc (outfd, 50000);

DEPENDENCIES
Since the exact effect and performance benefits obtainable by using this call vary with the
implementation of the file system, performance related details are described in the system
administrator manuals for each specific machine.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Prealloc will fail and no disk space will be allocated if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor opened for writing.
[ENOTEMPTY] Fildes not associated with an ordinary file of zero length.

[ENOSPC] Not enough space left on device to allocate the requested amount; no space
was allocated.
[EFBIG] Size exceeds the maximum file size or the process’s file size limit. See ulimit(2).
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.
AUTHOR
Prealloc was developed by the Hewlett-Packard Company.
SEE ALSO
prealloc(1), creat(2), dup(2), fentl(2), open(2), read(2), ulimit(2), write(2).
WARNINGS

The allocation of the file space is highly dependent on current disk usage. A successful return
does not tell you how fragmented the file actually might be if the disk is nearing its capacity.

HP-UX Release 7.0: September 1989 -1 (Section 2) 105

PROFIL(2) PROFIL(2)

NAME

profil — execution time profile

SYNOPSIS

#include <sys/param.h>

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick, offset is subtracted from it, and the
result is multiplied by scale. If the resulting number corresponds to a word inside buff, that
word is incremented. The number of samples per second for a given implementation is given
by HZ as found in <sys/param.h>

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0177777 (octal) gives a 1-1 mapping of pc’s to words in buff; 077777 (octal) maps each pair of
instruction words together. 02(octal) maps all instructions onto the beginning of buff (producing
a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an exec is executed, but remains on in child and parent both
after a fork. Profiling will be turned off if an update in buff would cause a memory fault.

RETURN VALUE

Not defined.

SEE ALSO

prof(1), monitor(3C).

STANDARDS CONFORMANCE

106

profil: SVID2, XPG2

(Section 2) -1- HP-UX Release 7.0: September 1989

PTRACE(2) PTRACE(2)

NAME

ptrace — process trace

SYNOPSIS

#include <sys/ptrace.h>

int ptrace(request, pid, addr, data, addr2);
int request, pid, addr, data, addr2;

REMARKS

Much of the functionality of this capability is highly dependent on the underlying hardware.
An application that uses this system call should not be expected to be portable across architec-
tures or implementations.

DESCRIPTION

Ptrace provides a means by which a process may control the execution of another process. Its
primary use is for the implementation of breakpoint debugging; see adb(1). The traced process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a
stopped state and the tracing process is notified via wait(2). When the traced process is in the
stopped state, the tracing process can examine and modify the "core image" using ptrace. Also,
the tracing process can cause the traced process either to terminate or continue, with the possi-
bility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and is one of the fol-

lowing:

PT_SETTRC This request must be issued by a child process if it is to be traced by its parent.
It turns on the child’s trace flag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func;
see signal(2). The pid, addr, data, and addr2 arguments are ignored, and a
return value is not defined for this request. Peculiar results ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the tracing process. For each, pid is the pro-
cess ID of the process being traced, which must be in a stopped state before these requests are
made.

PT_RIUSER, PT_RDUSER

With these requests, the word at location addr in the address space of the
traced process is returned to the tracing process. If instruction (I) and data (D)
space are separated, request PT_RIUSER returns a word from I space, and
request PT_RDUSER returns a word from D space. If I and D space are not
separated, either request PT_RIUSER or request PT_RDUSER may be used
with equal results. The data and addr2 arguments are ignored. These two
requests fail if addr is not the start address of a word, in which case a value of
-1 is returned to the tracing process and its errno is set to EIO.

PT_RUAREA With this request, the word at location addr in the USER area of the traced pro-
cess in the system’s address space (see <sys/user.h>) is returned to the tracing
process. Addresses in this area are system dependent, but start at zero. The
limit can be derived from <sys/user.h>. The data and addr2 arguments are
ignored. This request fails if addr is not the start address of a word or is out-
side the area, in which case a value of —1 is returned to the tracing process and
its errno is set to EIO.

PT_WIUSER, PT_WDUSER
With these requests, the value given by the data argument is written into the
address space of the traced process at location addr. Request PT_WIUSER

HP-UX Release 7.0: September 1989 -1- (Section' 2) 107

PTRACE(2)

108

PT_WUAREA

PT_CONTIN

PT_EXIT

PT_SINGLE

PT_ATTACH

PTRACE(2)

writes a word into I space, and request PT_WDUSER writes a word in D
space. Upon successful completion, the value written into the address space of
the traced process is returned to the tracing process. The addr2 argument is
ignored. These two requests fail if addr is not the start address of a word, or if
gddr |Q a]nrzhnn_ mna p‘ll‘ﬂ prr\rpr‘]nrn Qpi\f‘ﬂ ﬂnf‘ DI"]’\D"‘ Annﬂ’\pr p“ccﬁQs IQ exe-

cuting in that space or the tracing process does not have write access for the
executable file corresponding to that space. Upon failure a value of -1 is

returned to the tracing process and its errno is set to EIO.

With this request, a few entries in the traced process” USER area can be writ-
ten. Data gives the value that is to be written and addr is the location of the
entry. The addr2 argument is ignored. The few entries that can be written are
dependent on the architecture of the system, but include the user data registers,
auxiliary data registers, and status register (the set of registers, or bits in regis-
ters, which the user’s program could modify).

This request causes the traced process to resume execution. If the data argu-
ment is 0, all pending signals including the one that caused the traced process
to stop are canceled before it resumes execution. If the data argument is a
valid signal number, the traced process resumes execution as if it had incurred
that signal, and any other pending signals are canceled. The addr argument
must be equal to 1 for this request. The addr2 argument is ignored. Upon suc-
cessful completion, the value of data is returned to the tracing process. This
request fails if data is not 0 or a valid signal number, in which case a value of
—1 is returned to the tracing process and its errno is set to EIO.

This request causes the traced process to terminate with the same consequences
as exit(2). The addr, data, and addr2 arguments are ignored.

This request causes a flag to be set so that an interrupt occurs upon the com-
pletion of one machine instruction, and then executes the same steps as listed
above for request PT_CONTIN. If the processor does not provide a trace bit,
this request returns an error. This effectively allows single stepping of the
traced process.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware.

This request stops the process identified by pid and allows the calling process
to trace it. Process pid does not have to be a child of the calling process, but
the effective user ID of the calling process must match the real and saved wuid

. of process pid (unless the effective user ID of the tracing process is superuser).

PT_DETACH

The calling process can use the wait(2) system call to wait for process pid to
stop. The addr, data, and addr2 arguments are ignored.

This request detaches the traced process pid and allows it to contmue its execu-
tion in the manner of PT_CONTIN.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent exec(2) calls. If
a traced process calls exec, it stops before executing the first instruction of the new image show-
ing signal SIGTRAP.

ERRORS
In general, ptrace fails if one or more of the following is true:

[EIO]
[EPERM]

(Section 2)

Request is an illegal number.

The specified process cannot be attached for tracing.

-2- HP-UX Release 7.0: September 1989

PTRACE(2) PTRACE(2)

[ESRCH]} Pid identifies a process to be traced that does not exist or has not executed a
ptrace with request PT_SETTRC.
DEPENDENCIES
Series 300

The following additional requests are available:

PT_RFPREGS With this request, the child’s floating point accelerator register set is
returned to the parent process in addr. Addr must be the address of a
buffer of at least 136 bytes. The first 128 bytes contains the 16 double
precision floating point registers and the next 8 bytes contains the status
and control registers. The data argument is ignored. This request fails if
the child process is not using the floating point accelerator, in which case
a value of —1 is returned to the parent process and the parent’s errno is
set to EIO. This request also fails if addr is a bad address, in which case a
value of —1 is returned to the parent process and the parent’s errno is set
to EFAULT.

PT_WFPREGS With this request, the child’s floating point accelerator register set is writ-
ten from the buffer pointed to by addr. Addr must be the address of a
buffer of at least 136 bytes. The first 128 bytes contains the new values
for the 16 double precision floating point registers and the next 8 bytes
contains the new values for the status and control registers. The data
argument is ignored. This request fails if the child process is not using the
floating point accelerator, in which case a value of ~1 is returned to the
parent process and the parent’s errno is set to EIO. This request also fails
if addr is a bad address, in which case a value of —1 is returned to the
parent process and the parent’s errno is set to EFAULT.

Series 800
The request PT_WUAREA is not supported. Therefore, it returns —1, sets errno to EIO
and does not affect the USER area of the traced process.

If the addr argument to a PT_CONTIN or PT_SINGLE request is not 1, the Instruction
Address Offset Queue (program counter) is loaded with the values addr and addr+4 before
execution resumes. Otherwise, execution resumes from the point where it was inter-
rupted.

If the addr argument to a PT_DETACH request is not 1, the Instruction Address Offset
Queue is loaded with the values addr and addr2.

Additional requests are available:

PT_RUREGS With this request, the word at location addr in the save_state structure at
the base of the per-process kernel stack is returned to the tracing process.
Addr must be word-aligned and less than STACKSIZE*NBPG (see
<sys/param.h> and <machine/param.h>). The save_state structure
contains the registers and other information about the process. The data
and addr2 arguments are ignored.

PT_WUREGS The save_state structure at the base of the per-process kernel stack is
written, as it is read with request PT_RUREGS. Only a few locations can
be written in this way: the general registers, most floating point registers,
a few control registers, and certain bits of the interruption processor
status word. The addr2 argument is ignored.

PT_RDTEXT, PT_RDDATA
These requests are identical to PT_RIUSER and PT_RDUSER except that
the data argument specifies the number of bytes to read and the addr2

HP-UX Release 7.0: September 1989 -3- (Section 2) 109

PTRACE(2) PTRACE(2)

argument specifies where to store that data in the tracing process.

PT_WRTEXT, PT_WRDATA
These requests are identical to PT_WIUSER and PT_WDUSER except
that the data argument specifies the number of bytes to write and the
addr2 argument specifies where to read that data in the tracing process.

SEE ALSO
adb(1), exec(2), signal(2), wait(2).

STANDARDS CONFORMANCE
ptrace: SVID2, XPG2

110 (Section 2) -4 - HP-UX Release 7.0: September 1989

READ(2) READ(2)

NAME

read, readv — read input

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

#include <sys/types.h>
#include <sys/uio.h>

int readv (fildes, iov, iovcnt)
int fildes;

struct iovec *iov;

int iovent;

DESCRIPTION

Read attempts to read nbyte bytes from the file associated with the file descriptor into the buffer
pointed to by buf. Readv performs the same action but scatters the input data into the iovcnt
buffers specified by the elements of the iovec array: iov{0], iov[1], ..., iov[iovent - 1].
For readv, the iovec structure is defined as:
struct iovec {
caddr_t iov_base;
int iov_len;
b
Each iovec entry specifies the base address and length of an area in memory where data should
be placed. Readv always fills one area completely before proceeding to the next area. The
iovec array can be at most MAXIOV long.
On devices capable of seeking, the read starts at a position in the file given by the file offset
associated with fildes. Upon return from read, the file offset is incremented by the number of
bytes actually read.

Devices incapable of seeking always read from the current position. The value of a file offset
associated with such a device is undefined.

When attempting to read from a regular file with enforcement-mode file and record locking set
(see chmod(2)), and the segment of the file to be read is blocked by a write lock owned by
another process, the behavior is determined by the O_NDELAY and O_NONBLOCK file status
flags:

If O_NDELAY or O_NONBLOCK is set, the read function returns —1 and errno is set to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the read function does not return until the
blocking write lock is removed.

When attempting to read from an empty pipe (or FIFO):
If O_NONBLOCK is set, the read returns —1 and errno is set to EAGAIN.
If O_NDELAY is set, the read returns a 0.

If O_NDELAY and O_NONBLOCK are clear, the read blocks until data is written to the
file or the file is no longer open for writing. i

When attempting to read a file associated with a tty that has no data currently available:

HP-UX Release 7.0: September 1989 -1- (Section 2) 111

READ(2)

READ(2)

If O_NONBLOCK is set, the read returns —1 and errno is set to EAGAIN.
If O_NDELAY is set, the read returns a 0.
If O_NDELAY and O_NONBLOCK are clear, the read blocks until data becomes avail-

able.

RETURN VALUE

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if

the file is associated with a communication line (see ioct!(2) and termio(7)), or
the number of bytes left in the file is less than nbyte bytes.

When an end-of-file is reached, a value of 0 is returned Otherwise, a —1 is returned and errno
is set to indicate the error.

ERRORS
Read fails if one of the following conditions is true:

[EBADF]|
[EINTR]
[EAGAIN}

[EDEADLK]

[EFAULT]

[EIO]

[EISDIR]

[ENOLCK]

Fildes is not a valid file descriptor open for reading.
A signal was caught during the read system call.

Enforcement-mode file and record locking is set, O_NDELAY or
O_NONBLOCK is set, and there is a blocking write lock.

A resource deadlock would occur as a result of this operation (see lockf(2) and
fentl(2)).

Buf points outside the allocated address space. The reliable detection of this
error is implementation dependent.

The process is in a background process group and is attempting to read from
its controlling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group of the process is orphaned.

An attempt was made to read a directory on an NFS file system using the read
system call.

The system record lock table is full, preventing the read from sleeping until the
blocking write lock is removed.

In addition, readv can return one of the following errors:

[EFAULT]

Iov_base or iov points outside of the allocated address space. The reliable detection of
this error is implementation dependent.

[EINVAL]

[EINVAL]

Iovcnt is less then or equal to 0, or greater than MAXIOV.

The sum of iov_Ien values in the iov array exceeded UINT_MAX (see <limits.h>).

EXAMPLES

112

Assuming a process opened a file for reading, the following call to read(2) reads BUFSIZ bytes

from the file into the buffer pointed to by mybuf:
#include <stdio.h> /* include this for BUFSIZ definition */

char mybuf[BUFSIZ];
int nbytes, fildes;

nbytes = read (fildes, mybuf, BUFSIZ);

(Section 2)

-2 - HP-UX Release 7.0: September 1989

READ(2) READ(2)

WARNINGS
Record locking might not be enforced by the system, depending on the setting of the file’s
mode bits (see lockf(2)).

The character-special devices, and raw disks in particular, apply constraints on how read can be
used. See the specific Section (7) entries for details on particular devices.

Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.

In general, avoid using read to get the contents of a directory; use the readdir library routine, see
directory(3C).
DEPENDENCIES
NFS
When obtaining the contents of a directory on an NFS file system, the readdir library
routine must be used; see directory(3C). Read returns with an error if used to read a
directory using NFS.

AUTHOR
Read was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), lockf(2), open(2), pipe(2), select(2), ustat(2), tty(7),
directory(3C).

STANDARDS CONFORMANCE
read: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -3 - (Section 2) 113

READLINK(2) READLINK(2)

NAME
readlink — read value of a symbolic link
SYNOPSIS
readlink(path, buf, bufsiz)
char *path, *buf;
int bufsiz;
DESCRIPTION
Readlink obtains the path name pointed to by the symbolic link, path. This path name is placed
in the buffer buf, which has size bufsiz. The path name is not null terminated when returned.
RETURN VALUE
If the call succeeds, it returns the count of characters placed in the buffer. If an error occurs, it
returns a —1 and places the error code in the global variable errno.
ERRORS
Readlink will fail and the file mode will be unchanged if:
[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]
A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect, or path exceeds PATH_MAX bytes.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[ELOOP] Too many symbolic links were encountered in translating the path name.
[EINVAL] The named file is not a symbolic link.
[EFAULT] Buf points outside the process’ allocated address space. Reliable detection of
this error is implemenation dependent.
AUTHOR
Readlink was developed by the University of California, Berkeley.
SEE ALSO

stat(2), Istat(2), symlink(2), symlink(4).

114 (Section 2) -1- HP-UX Release 7.0: September 1989

REBOOT(2) REBOOT(2)

NAME
reboot — boot the system

SYNOPSIS
#include <sys/reboot.h>

int reboot (RB_LAUTOBOOT [| RB_NOSYNC]);
int reboot (RB_HALT [| RB_NOSYNC]);
int reboot (howto, device_file [, filename [, server_linkaddress]});
int howto;
char *device_file, *filename;
char *server_linkaddress;
DESCRIPTION
Reboot causes the system to reboot. Howto is a mask of reboot options (see <sys/reboot.h>),
specified as follows:

RB_AUTOBOOT A file system sync is performed (unless RB_LNOSYNC is set) and the pro-
cessor is rebooted from the default device and file.

RB_HALT The processor is simply halted. A sync of the file system is performed
unless the RB_LNOSYNC flag is set. RB_LHALT should be used with caution.

RB_NOSYNC A sync of the file system is not performed.

RB_NEWDEVICE The device_file argument is used as the file name of the device from
which to reboot.

RB_NEWFILE The filename argument is used as the name of the file being rebooted.

RB_NEWSERVER The additional optional parameter, server_linkaddress, specifies the ETH-

ERNET link address of a new boot server. The server_linkaddress is a 12-
character hexadecimal number that has the same format as the machine
ID field of /etc/clusterconf. The Ox prefix is optional.

This allows a standalone system or HP cluster server to reboot and join
an HP cluster as a diskless client, or for an existing diskless client to join a
different HP cluster.

Device_file specifies the "boot device," the device from which the reboot occurs. Device_file
must be a block or character special file name and is used only if the RE_LNEWDEVICE option is
set.

If the RB_NEWFILE option is set, filename specifies the "boot file", the name of the file being
rebooted. This file will be loaded into memory by the bootstrap and control passed to it.
If the RB_NEWSERVER option is set, reboot(2) does not verify that server_linkaddress is a valid
ETHERNET address, nor that the specified server is valid or provides the required service.
If the boot device is not a LAN device, the server_linkaddress information is ignored. The boot

device is considered a LAN device if the previous boot was from a LAN device or if a LAN dev-
ice is specified via the RB_NEWDEVICE option.

Unless the RB_LNOSYNC flag has been specified, reboot(2) unmounts all mounted file systems
and marks them clean so that it will not be necessary to run fsck(1IM) on these files systems
when the system reboots.

Only the super-user can reboot a machine.

RETURN VALUE

If successful, this call never returns. Otherwise, a —1 is returned and an error code is returned
in the global variable errno.

HP-UX Release 7.0: September 1989 -1- (Section 2) 115

REBOOT(2)

ERRORS

REBOOT(2)

Reboot fails if any of the following is true:

[EFAULT] Device_file points outside the allocated address space of the pro-
cess.

[ENAMETOOLONG] the path name specified by device_file exceeds PATH_MAX bytes,
or the length of a component of the path name exceeds
NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

[EINVAL] Device_file is not a block or a character device.
[ENET] The device specified by device_file is remote.
[ENOENT] The file specified by device_file does not exist.
[ENOTDIR] A component of the path prefix specified by device_file is not a
directory.
[ENXIO] The device named by device_file does not exist.
[EPERM] The effective user ID of the caller is not super-user.
DEPENDENCIES
Series 300

Filename must be one of the files listed by the boot ROM at power-up.

The default device, file, and server for RB_AUTOBOOT are those from which the system
was previously booted.

If the RB_NEWDEVICE option is used and device_file specifies a LAN device, the
RB_NEWSERVER option and server_linkaddress parameter must also be used.

If an invalid server_linkaddress is specified with the RB_NEWSERVER option, or if the
requested server does not respond, the Series 300 boot ROM displays the message BOOT-
ING A SYSTEM and retries infinitely, or until the requested server responds or the system
is rebooted manually.

Series 800

AUTHOR

The RB_NEWDEVICE, RB_NEWFILE, and RB_NEWSERVER options and the -device_file,
filename and server_linkaddress parameters are ignored, and, therefore, none of the errors
associated with them are returned.

The defautlt file and device for RB_LAUTOBOOT are /hp-ux on the current root device.

Reboot was developed by HP and the University of California, Berkeley.

SEE ALSO

reboot(1M), clusterconf(4).

116 (Section 2) -2- HP-UX Release 7.0: September 1989

RENAME(2)

NAME

RENAME(2)

rename — change the name of a file

SYNOPSIS
#include <stdio.h>

rename(source, target)
const char *source, *target;

DESCRIPTION

Rename causes the file named source to be renamed target. If target exists, it is first removed.
Both source and target must be of the same type (that is, either directories or non-directories),
and must reside on the same file system.

If target can be created or if it existed before the call, rename guarantees that an instance of tar-
get will exist, even if the system crashes in the midst of the operation.

If the final component of source is a symbolic link, the symbolic link is renamed, not the file or
directory to which the symbolic link points.

RETURN VALUE

If the operation succeeds, 0 is returned. If not, rename returns —1 and the global variable errno
indicates the reason for the failure.

ERRORS

Rename will fail and neither file will be affected if any of the following is true:

[EACCES]
[EACCES]

[EBUSY]

[EFAULT]

[EINVAL]

[EISDIR]
[ELOOP]

[ENAMETOOLONG]

[ENOENT]

[ENOSPC]

[ENOTDIR]
[ENOTDIR]
[ENOTEMPTY]
[EROFS]

A component of either path prefix denies search permission.

The requested link requires writing to a directory without write permis-
sion.

Target is an existing directory that is the mount point for a mounted file
system.,

Source or target points outside the allocated address space of the process.
The reliable detection of this error is implementation dependent.

4

Source is a parent directory of target, or an attempt is made to rename “.
or ...

Target is a directory, but source is not.

Too many symbolic links were encountered in translating either path
name.

A component of either path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

A component of the source path does not exist, or a path prefix of target
does not exist.

The destination directory cannot be extended, because of a lack of space
on the file system containing the directory.

A component of either path prefix is not a directory.
Source is a directory, but target is not.
Target is a directory and is not empty.

The requested link requires writing in a directory on a read-only file sys-
tem.

HP-UX Release 7.0: September 1989 -1- (Section 2) 117

RENAME(2) RENAME(2)

[EXDEV] The paths named by source and target are on different logical devices (file
systems).
AUTHOR

Rename was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
open(2).

STANDARDS CONFORMANCE
rename: XPG3, POSIX.1, FIPS 151-1, ANSI C

118 (Section 2) -2- HP-UX Release 7.0: - September 1989

RMDIR(2) RMDIR(2)

NAME
rmdir — remove a directory file
SYNOPSIS
rmdir(path)
char *path;
DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must be empty
(except for files "." and "..") before it can be removed.
RETURN VALUE
A 0 is returned if the directory removal succeeds; otherwise, a —1 is returned and an error code
is stored in the global location errno.
ERRORS
The named file is removed unless one or more of the following is true:

[EACCES]) A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EBUSY] The directory to be removed is the mount point for a mounted file system.

[EEXIST] The named directory is not empty. It contains files other than "." and "..".

[EFAULT] Path points outside the process’s allocated address space. The reliable detec-
' tion of this error is implementation dependent.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path is not a directory.

[EROFS] The directory entry to be removed resides on a read-only file system.

[EINVAL] The path is ".".

[ELOOP] Too many symbolic links were encountered in translating the path name.
AUTHOR

Rmdir was developed by the University of California, Berkeley.
SEE ALSO

mkdir(2), unlink(2).

STANDARDS CONFORMANCE
rmdir: SVID2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1~ (Section 2) 119

RTPRIO(2) RTPRIO(2)

NAME

rtprio — change or read realtime priority

SYNOPSIS

#include <sys/rtprio.h>

rtprio (pid, prio)
int pid, prio;

DESCRIPTION

Rtprio is used to set or read the realtime priority of a process. If pid is zero, it names the calling
process; otherwise it gives the pid of the process. When setting the realtime priority of another
process, the real or effective user ID of the calling process must match the real or saved user ID
of the process to be modified, or the effective user ID of the calling process must be that of
super-user. The calling process must also be a member of a privilege group allowing rtprio (see
getprivgrp(2)) or the effective user ID of the calling process must be super-user. Simply reading
realtime priorities requires no special privilege.

Real time scheduling policies differ from the normal timesharing policies in that the realtime
priority is used to absolutely order all realtime processes; this priority is not degraded over time.
All realtime processes are of higher priority than normal user and system processes, although
some system processes may run at realtime priorities. If there are several eligible processes at
the same priority level, they will be run in a round robin fashion as long as no process with
higher priority intervenes. A realtime process will receive cpu service until it either voluntarily
gives up the cpu or is preempted by a process of equal or higher priority. Interrupts may also
preempt a realtime process.

Valid realtime priorities run from zero to 127. Zero is the highest (most important) priority.
This realtime priority is inherited across forks and execs.

Prio specifies the following:

0-127 Set process to this realtime priority.

RTPRIO_NOCHG
Do not change realtime priority. This is used for reading the process realtime
priority.

RTPRIO_RTOFF - Set this process to no longer have a realtime priority. It will resume a normal

timesharing priority. Any process, regardless of privilege, is allowed to turn off
its own realtime priority using a pid of zero.

EXAMPLES

The following call to rtprio sets the calling process to a real-time priority of 90:
rtprio (0, 90);

RETURN VALUE

If no error occurs, rtprio will return the pid’s former (before the call) realtime priority. If the
process was not a realtime process, RTPRIO_RTOFF will be returned. If an error does occur, -1 is
returned and errno is set to one of the values described in the ERRORS section.

ERRORS
[EINVAL] Prio is not RTPRIO_NOCHG, RTPRIO_RTOFF, or in the range of 0 to 127.
[EPERM] The calling process is not the super—user and neither its real or effective
user—id match the real or saved user—id of the process indicated by pid.
[EPERM] The group access list of the calling process does not contain a group having
PRIV_RTPRIO capability and prio is not RTPRIO_NOCHG, or RTPRIO_RTOFF with
a pid of zero.
120 (Section 2) -1- HP-UX Release 7.0: September 1989

RTPRIO(2) RTPRIO(2)

[ESRCH] No process can be found corresponding to that specified by pid.

DEPENDENCIES
Series 800:
Because processes executing at realtime priorities get scheduling preference over a system
process executing at a lower priority, unexpected system behavior can occur after a power
failure. For example, when init(1M) receives the powerfail signal SIGPWR, it normally
reloads programmable hardware such as terminal multiplexers. If a higher-priority real-
time process is eligible to run after the power failure, running of init is delayed. This con-
dition temporarily prevents terminal input to any process, including realtime shells of
higher priority than the eligible realtime process. To avoid this situation, a realtime pro-
cess should catch SIGPWR and suspend itself until init has finished its powerfail process-
ing.
AUTHOR
Rtprio was developed by HP.

SEE ALSO
rtprio(1), getprivgrp(2), nice(2), plock(2).

WARNINGS
Normally, compute bound programs should not be run at realtime priorities, because all time
sharing work on the cpu would come to a complete halt.

HP-UX Release 7.0: September 1989 -2 - (Section 2) 121

SELECT(2) SELECT(2)

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <time.h>

int select(nfds, readfds, writefds, exceptfds, timeout)
int nfds, *readfds, *writefds, *exceptfds;
struct timeval *timeout;

DESCRIPTION
Select examines the file descriptors specified by the bit masks readfds, writefds and exceptfds.
The bits from 0 through nfds-1 are examined. File descriptor f is represented by the bit 1<<f in
the masks. More formally, a file descriptor is represented by:

fdsf(f / BITS_PER_INT)] & (1 << (f % BITS_PER_INT))

When select completes successfully it returns the three bit masks modified as follows: For each
file descriptor less than nfds, the corresponding bit in each mask is set if the bit was set upon
entry and the file descriptor is ready for reading, writing or has an exceptional condition pend-
ing.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com-
plete. If timeout is a zero pointer, the select waits until an event causes one of the masks to be
returned with a valid (non-zero) value. To poll, the timeout argument should be non-zero,
pointing to a zero valued timeval structure. Specific implementations may place limitations on
the maximum timeout interval supported. The constant MAX_ALARM defined in
<sys/param.h> specifies the implementation-specific maximum (in seconds). Whenever
timeout -specifies a value greater than this maximum, it is silently rounded down to this max-
imum. On all implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds).

Note that the use of a timeout does not affect any pending timers set up by alarm(2) or setiti-
mer(2).

Any or all of readfds, writefds, and exceptfds may be given as 0 if no descriptors are of interest.
If all the masks are given as 0 and timeout is not a zero pointer, select blocks for the time
specified, or until interrupted by a signal. If all the masks are given as 0 and timeout is a zero
pointer, select blocks until interrupted by a signal.

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.

EXAMPLES
The following call to select checks if any of 4 terminals are ready for reading. Select will time
out after 5 seconds if no terminals are ready for reading. Note that the code for opening the
terminals or reading from the terminals is not shown in this example. Also, note that this
example must be modified if the calling process has more than 32 file descriptors open. Follow-
ing this first example is an example of select with more than 32 file descriptors.

#define MASK(f) (1 << (f)
#define NTTYS 4

int tty[NTTYS};

int ttymask[NTTYS};
int readmask = 0;

int readfds;

int nfound, i;

struct timeval timeout;

122 (Section 2) -1- HP-UX Release 7.0: September 1989

SELECT(2) SELECT(2)

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code

* for opening the terminals is not shown here.
*/

for (i=0; i < NTTYS; i++) {
ttymask[i] = MASK(tty[i]);
readmask |= ttymaskl[il;

}

timeout.tv_sec = 5;
timeout.tv_usec = 0;
readfds = readmask;

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*
if (nfound = select (NTTYS+3, &readfds, 0, 0, &timeout)) == -1)
perror ("select failed");
else if (nfound == 0)
printf ("select timed out \n");
else for (i=0; i < NTTYS; i++)
if (ttymask{i] & readfds)
/* Read from tty[i]. The code for reading
* is not shown here.
*

else printf ("tty[%d] is not ready for reading \n",i);

The following example is the same as the previous example, except that it will work for more
than 32 open files. Definitions for howmany, fd_set, and NFDBITS are in <sys/types.h>.

#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>

#define MASK(f) (1 << ()
#define NTTYS NOFILE - 3
#define NWORDS howmany(FD_SETSIZE, NFDBITS)

int tty[NTTYS};

int ttymask[NTTYS];

struct fd_set readmask, readfds;
int nfound, i, j, k;

struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code

* for opening the terminals is not shown here.
*

for (k=0; k < NWORDS; k++)
readmask.fds_bits[k] = 0;

HP-UX Release 7.0: September 1989 -2 - (Section 2) 123

SELECT(2)

RETURN VALUE

Select returns the number of descriptors contained in the bit masks, or —1 if an error occurred.

SELECT(2)

for (i=0, k=0; i < NTTYS && k< NWORDS; k++)
for (j=0; j < NFDBITS && i < NTTYS; j++, i++) {
ttymask[i] = MASK(tty{i]);
readmask.fds_bits[k] |= ttymask[i];
\ .

timeout.tv_sec = 5;
timeout.tv_usec = 0;
for (k=0; k < NWORDS; k++)
readfds.fds_bits[k] = readmask.fds_bits[k];

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*
/
if ((nfound = select (NTTYS+3, &readfds, 0, 0, &timeout)) == -1)
perror ("select failed");
else if (nfound == 0)
printf ("select timed out \n");
else for (i=0, k=0; i < NTTYS && k < NWORDS; k++)
for (j=0; j < NFDBITS && i < NTTYS; j++, i++)
if (ttymask[i] & readfds.fds_bits[k])
/* Read from tty[i]. The code for reading
* is not shown here.
*

else printf ("tty[%d] is not ready for reading \n",i);

If the time limit expires then select returns 0 and all the masks are cleared.

ERRORS
An error return from select indicates:

[EBADF]|
[EINTR]

[EFAULT]

[EINVAL)
[EINVAL]

WARNINGS

Check all

One or more of the bit masks specified an invalid descriptor.

A signal was delivered before any of the selected for events occurred or before

the time limit expired.

One or more of the pointers was invalid. The reliable detection of this error

will be implementation dependent.
Invalid timeval passed for timeout.

The value of nfds is less than zero.

references to signal(5) for appropriateness on systems that support sigvector(2).

Sigvector(2) can affect the behavior described on this page.

The file descriptor masks are always modified on return, even if the call returns as the result of

a timeout.

DEPENDENCIES

124

Series 300

Select(2) supports the following devices and file types:

(Section 2)

pipes

fifo special files (named pipes)

All serial interfaces

All ITEs and HP-HIL input devices

-3 - HP-UX Release 7.0: September 1989

SELECT(2) SELECT(2)

pty(7) special files
HP 98643 LAN interface card driver

File types not supporting select(2) always return true.

Series 800
Select(2) supports the following devices and file types:
pipes
fifo special files (named pipes)
all serial devices
All ITEs and HP-HIL input devices
hpib(7) special files
8pio(7) special files
lan(7) special files
pty(7) special files
The convention for device files that do not support select(2) is to always return true for
those conditions the user is selecting on.

Consult the individual device manual pages to determine the extent to which any particu-
lar driver supports select(2).

HP Clustered Environment .
In a clustered environment, select is not supported for distributed fifos, i.e., fifos that are
open simultaneously on multiple machines. In this case an error of EINVAL is returned.

AUTHOR
Select was developed by HP and the University of California, Berkeley.

SEE ALSO
fentl(2), read(2), write(2).

HP-UX Release 7.0: September 1989 -4 - (Section 2) 125

SEMCTL(2) SEMCTL(2)

NAME
semctl — semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, semnum, cmd;
union semun {
int val;
struct semid_ds sbuf;
ushort array;
} arg;
DESCRIPTION
Semctl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid and semnum:
GETVAL Return the value of semval (see the glossary).

SETVAL Set the value of semval to arg.val. When this cmd is successfully exe-
cuted, the semadj value corresponding to the specified semaphore in all
processes is cleared.

GETPID Return the value of sempid.
GETNCNT Return the value of semnent.
GETZCNT Return the value of semzcent.
The following cmds return and set, respectively, every semval in the set of semaphores.
GETALL Place semvals into array pointed to by arg.array.

SETALL Set semvals according to the array pointed to by arg.array. When this
cmd is successfully executed the semadj values corresponding to each
specified semaphore in all processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of this
structure are defined in the glossary.

IPC_SET Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
by arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /+ only low 9 bits x/

This cmd can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of either sem_perm.uid
or sem_perm.cuid in the data structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal
to either that of super-user or to the value of either sem_perm.uid or
sem_perm.cuid in the data structure associated with semid.

126 (Section 2) -1~ HP-UX Release 7.0: September 1989

SEMCTL(2)

EXAMPLES

SEMCTL(2)

The following call to semct! initializes the set of 4 semaphores to the values 0, 1, 0 and 1
respectively. This example assumes the process has a valid semid representing a set of 4 sema-
phores as shown on the semget(2) manual page. For an example of performing "P" and "V"
operations on the semaphores below, refer to the semop(2) manual page.

ushort semarray[4];

ERRORS

semarray[0] = 0;
semarray[1] = 1;
semarray[2] = 0;
semarray(3] = 1;

semctl (mysemid, 0, SETALL, semarray);

Semctl will fail if one or more of the following are true:

[EINVAL]
[EINVAL]
[EINVAL]
[EACCES]
[ERANGE]

[EPERM]

[EFAULT]

RETURN VALUE

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than or equal sem_nsems.

Cmd is not a valid command.

Operation permission is denied to the calling process (see the glossary).

Cmd is SETVAL or SETALL and the value to which semval is to be set is
greater than the system imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of super-user and it is not equal to the value of
either sem_perm.uid or sem_perm.cuid in the data structure associated with
semid.

Arg.buf or arg.array points to an illegal address. The reliable detection of this
error will be implementation dependent.

Upon successful completion, the value returned depends on cmd as follows:

GETVAL
GETNCNT
GETZCNT
GETPID
All others

The value of semval.
The value of semncnt.
The value of semzent.
The value of sempid.
A value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

iperm(1), ipes(1), semget(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semctl: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2 - (Section 2) 127

SEMGET(2) SEMGET(2)

NAME

semget — get set of semaphores

SYNOPSIS

#include <sys/types.h>
i aleedn oy Jima L

S
Finauae <sys;/ipl.aa>

#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;

int nsems, semflg;

DESCRIPTION

Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are
created for key if one of the following is true:

Key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available
resources. The identifier will never be returned by another call to semget until it has
been released by a call to semctl. The identifier should be used among the calling pro-
cess and its descendents; however, it is not a requirement. The resource can be
accessed by any process having the proper permissions.

Key does not already have a semaphore identifier associated with it, and (semfly &
IPC_CREAT) is ““true”.

Specific behavior may be requested by or'ing the following masks into semflg.
IPC_CREAT: Create a semaphore identifier, if one does not already exist for key.

IPC_EXCL: If IPC_CREAT is specified and key already has a semaphore identifier
associated with it, return an error.

The low-order 9 bits of semflg are the semaphore operation permissions which are defined in
the glossary.

Upon creation, the data structure associated with the new semaphore identifier is initialized as
follows:

In the operation-permission structure, sem_perm.cuid and sem_perm.uid are set equal
to the effective-user-ID of the calling process, while sem_perm.cgid and sem_perm.gid
are set to the effective-group-ID of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg.
Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

EXAMPLES

The following call to semget returns a semid associated with the key returned by ftok(*myfile",
"A’). If a semid associated with the key does not exist, a new semid, set of 4 semaphores and
associated data structure will be created. If a semid for the key already exists, the semid is sim-
ply returned.

ERRORS

128

int semid;
mysemid = semget (ftok(*myfile",’A’), 4, IPC_CREAT | 0600);
Semget will fail if one or more of the following are true:
[EINVAL] Nsems is either less than or equal to zero or greater than the system-imposed
limit.

(Section 2) -1- HP-UX Release 7.0: September 1989

SEMGET(2)

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

RETURN VALUE

SEMGET(2)

A semaphore identifier exists for key, but operation permission as specified by
the low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is
“false”.

A semaphore identifier is to be created bui the system-imposed limit on the
maximum number of allowed semaphore identifiers system wide would be
exceeded.

A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ((semflg & IPC_CREAT) && (semflg &
IPC_EXCL)) is “true”.

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

ipcrm(1), ipes(1), semctl(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semget: SVID2, XPG2, XPG3

HP-UX Release 7.0:

September 1989 -2 - (Section 2) 129

SEMOP(2) SEMOP(2)

NAME

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipch>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf *sops;

int nsops;

DESCRIPTION

130

Semop is used to atomically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. Sops is a pointer to the array of
semaphore-operation structures. Nsops is the number of such structures in the array. The con-
tents of each structure includes the following members:

ushort sem_num; /* semaphore number %/
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num. Semaphore array operations are atomic, in that none of the
semaphore operations will be performed until blocking conditions on all of the semaphores in
the array have been removed.

Sem_op specifies one of three semaphore operations as follows:
If sem_op is a negative integer, one of the following will occur:

If semval (see semaphore identifier in the Glossary) is greater than or equal to the
absolute value of sem_op, the absolute value of sem_op is subtracted from semval.
Also, if (sem_flg & SEM_UNDO) is “true”, the absolute value of sem_op is added to
the calling process’s semadj value (see the Glossary and exit(2)) for the specified
semaphore.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT)
is “true”, semop will return immediately.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT)
is ““false”, semop will increment the semncnt associated with the specified sema-
phore and suspend execution of the calling process until one of the following con-
ditions occur:

Semval becomes greater than or equal to the absolute value of sem_op. When
this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of sem_op is subtracted from semval and, if
(sem_flg & SEM_UNDO) is “true”, the absolute value of sem_op is added to the
calling process’s semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the
system (see semctl(2)). When this occurs, errno is set equal to EIDRM, and a
value of —1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and
the calling process resumes execution in the manner prescribed in signal(5).

(Section 2) -1- HP-UX Release 7.0: September 1989

SEMOP(2) SEMOP(2)

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg &
SEM_UNDO) is “true”, the value of sem_op is subtracted from the calling process’s semadj value
for the specified semaphore.

If sem_op is zero, one of the following will occur:

If semval is zero, semop will proceed to the next semaphore operation specified by sops,
or return immediately if this is the last operation.

If semval is not equal to zers and {sem_flg & IPC_NOWAIT) is “true”, semop will return
immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “false”, semop will incre-
ment the semzcent associated with the specified semaphore and suspend execution of the
calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the sys-
tem. When this occurs, errno is set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semzcent associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(5).

EXAMPLES
The following call to semop atomically performs a "P" or "get" operation on the second sema-
phore in the semaphore set and a "V" or "release" operation on the third semaphore in the set.
This example assumes the process has a valid semid which represents a set of 4 semaphores as
shown on the semget(2) manual page. It also assumes that the semvals of the semaphores in
the set have been initialized as shown on the semct!(2) manual page.

struct sembuf sops[4];

sops[0].sem_num = 1;
sops[0}.sem_op = -1;/* P (get) */
sops[0].sem_flg = 0;
sops[1}.sem_num = 2;
sops[l].sem_op = 1;/* V (release) */
sops[1].sem_flg = 0;

semop (mysemid, sops, 2);

ERRORS
Semop will fail if one or more of the following are true for any of the semaphore operations
specified by sops:

[EINVAL] Semid is not a valid semaphore identifier.

[EFBIG] Sem_num is less than zero or greater than or equal to the number of sema-
phores in the set associated with semid.

[E2BIG] Nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process (see the Glossary).

[EAGAIN] The operation would result in suspension of the calling process but (sem_flg &
IPC_NOWAIT) is “true”.

[ENOSPC] The limit on the number of individual processes requesting an SEM_UNDO

would be exceeded.

HP-UX Release 7.0: September 1989 -2- (Section 2) 131

SEMOP(2)

[EINVAL]

[ERANGE]
[ERANGE]

[EFAULT)

SEMOP(2)

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

An operation would cause a semadj value to overflow the system-imposed
limit.

Sops points to an illegal address. The reliable detection of this error will be
implementation dependent. :

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set equal to the process ID of the calling process. The value of sem_otime
in the data structure associated with the semaphore identifier will be set to the current time.

RETURN VALUE

If semop returns due to the receipt of a signal, a value of —1 is returned to the calling process
and errno is set to EINTR. If it returns due to the removal of a semid from the system, a value
of —1 is returned and errno is set to EIDRM.

Upon successful completion, a non-negative value is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.

SEE ALSO

ipcs(1), exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C), signal(5).

STANDARDS CONFORMANCE
semop: SVID2, XPG2, XPG3

132 (Section 2)

-3~ HP-UX Release 7.0: September 1989

SETACL(2) SETACL(2)

NAME
setacl, fsetacl — set access control list (ACL) information

SYNOPSIS
#include <unistd.h>
#include <sys/acLh>

int setacl (path, nentries, acl)
char xpath;

int nentries;

struct acl_entry acl[};

int fsetacl (fildes, nentries, acl)
int fildes;

int nentries;

struct acl_entry acl[];

Remarks:
To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION

Setacl sets an existing file’s access control list (ACL) or deletes optional entries from it. Path
points to a path name of a file.

Similarly, fsetacl sets an existing file’s access control list for an open file known by the file
descriptor fildes.

The effective user ID of the process must match the owner of the file or be the superuser to set
a file’s ACL.

A successful call to setacl deletes all of a file’s previous optional ACL entries (see explanation
below), if any. The nentries parameter indicates how many valid entries are defined in the acl
parameter. If it is zero or greater, the new ACL is applied to the file. If any of the file’s base
entries (see below) is not mentioned in the new ACL, it is retained but its access mode is set to
zero (no access). Hence, routine calls of setacl completely define the file’s ACL.

As a special case, if nentries is negative (that is, a value of ACL_DELOPT (defined in
<sys/acLh>)), the acl parameter is ignored, all of the file’s optional entries, if any, are deleted,
and its base entries are left unaltered.

Some of the miscellaneous mode bits in the file’s mode might be turned off as a consequence of
calling setacl. See chmod(2).

Access Control Lists
An ACL consists of a series of entries. Entries can be categorized in four levels of specificity:

(u.g, mode) applies to user u in group g
(u.%, mode) applies to user 4 in any group
(%.g, mode) applies to any user in group g
(%.%, mode) applies to any user in any group

Entries in the ACL must be unique; no two entries can have the same user ID (uid) and group ID
(gid) (see below). Entries can appear in any order. The system orders them as needed for
access checking,

The <sys/aclh> header file defines ACL_NSUSER as the non-specific uid value and
ACL_NSGROUP as the non-specific gid value represented by “%" above. If uid in an entry is
ACL_NSUSER, it is a %.g entry. If gid in an entry is ACL_NSGROUP, it is a u.% entry. If both
uid and gid are non-specific, the file’s entry is %.%.

HP-UX Release 7.0: September 1989 -1- (Section 2) 133

SETACL(2) . SETACL(2)

The <unistd.h> header file defines meanings of mode bits in ACL entries (R_OK, W_OK, and
X_OK). Irrelevant bits in mode values must be zero.

Every file’s ACL has three base entries which cannot be added or deleted, but only modified.
The base ACL entries are mapped directly from the file’s permission bits.

(<file’s owner> . ACL_NSGROUP, <file’s owner mode bits>)
(ACL_NSUSER . <file’s group>, <file’s group mode bits>)
(ACL_NSUSER . ACL_NSGROUP, <file’s other mode bits>)

In addition, up to 13 optibnal ACL entries can be set to restrict or grant access to a file.

Altering a base ACL entry’s modes with setacl changes the file’s corresponding permission bits.
The permission bits can be altered also with chmod(2) and read with stat(2).

The number of entries allowed per file (see NACLENTRIES in <sys/acLh>) is small for space
and performance reasons. User groups should be created as needed for access control purposes.
Since ordinary users cannot create groups, their ability to control file access with ACLs might be
somewhat limited.

RETURN VALUE
Upon successful completion, setacl and fsetacl return a value of zero. If an error occurs, a value
of —1 is returned and the file’s ACL is not modified. The global variable errno is set to indicate

the error.
ERRORS

Setacl and fsetacl fail if any of the following is true:

[ENOTDIR}] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path

; does not exist).

[EBADF] Fildes is not a valid file descriptor.

[EACCES] A component of the path prefix denies search permission.

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not superuser.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path or acl points outside the allocated address space of the process, or acl is
not as large as indicated by nentries.

[EINVAL] There is a redundant entry in the ACL, or acl contains an invalid uid, gid, or
mode value.

[E2BIG] An attempt was made to set an ACL with more than NACLENTRIES entries.

[EOPNOTSUPP] Setacl is not supported on remote files by some networking services.

[ENOSPC] Not enough space on the file system.

[ENFILE] System file table is full.

[ENAMETOOLONG]

The length of path exceeds PATH_MAX bytes, or the length of a component of
path exceeds NAME_MAX bytes while _POSIX_ZNO_TRUNC is in effect.
[ELOOP} Too many symbolic links were encountered in translating the path name.
EXAMPLES ’

The following code fragment defines and sets an ACL on file “../shared”” which allows the file’s
owner to read, write, and execute/search the file, and user 103, group 204 to read the file.

134 (Section 2) -2~ HP-UX Release 7.0: September 1989

SETACL(2) SETACL(2)

#include <unistd.h>
#include <sys/stat.h>
#include <sys/acl.h>
char #filename = "../shared";
struct acl_entry acl [2];
struct stat statbuf;
if (stat (filename, & statbuf) < 0)
error (...);
acl [0] . uid = statbuf . st_uid; /+ file owner x/
acl [0] . gid = ACL_NSGROUP;
acl [0] . mode = R_OK | W_OK | X_OK;
acl [1] . uid = 103;
acl [1] . gid = 204;
acl [1] . mode = R_OK;
if (setacl (filename, 2, acl))
error (..);

The following call deletes all optional ACL entries from “filel”:
setacl (*filel", ACL_DELOPT, (struct acl_entry %) 0);

DEPENDENCIES
RFA and NFS
Setacl and fsetacl are not supported on remote files.

AUTHOR
Setacl and fsetacl were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), getacl(2), stat(2), unistd(5).

HP-UX Release 7.0: © September 1989 -3 - (Section 2) 135

SETAUDID(2) SETAUDID(2)

NAME
setaudid — set the audit ID (aid) for the current process
SYNOPSIS
#include <sys/audit.h>
int setaudid (audid)
aid_t audid;
DESCRIPTION
Setaudid sets the audit ID (aid) for the current process. This call is restricted to the superuser.
RETURN VALUE
Upon successful completion, setaudid returns a value of 0; otherwise, a —1 is returned.

ERRORS
Setaudid fails if one of the following is true:

[EPERM] The caller is not a superuser.
[EINVAL] The audit ID (audid) is invalid.
AUTHOR
Setaudid was developed by HP.
SEE ALSO
getaudid(2).

136 (Section 2) - 1= HP-UX Release 7.0: September 1989

SETAUDPROC(2) SETAUDPROC(2)

NAME
setaudproc — controls process level auditing for the current process and its decendents

SYNOPSIS
#include <sys/audit.h>

int setaudproc (aflag)
int aflag;

DESCRIPTION
Setaudproc controls process level auditing for the current process and its decendents. It accom-
plishes this by setting or clearing the u_audproc flag in the u area of the calling process. When
this flag is set, the system audits the process; when it is cleared, the process is not audited.
This call is restricted to superusers.

One of the following aflags must be used:

AUD_PROC Audit the calling process and its decendents.
AUD_CLEAR Do not audit the calling process and its decendents.

The u_audproc flag is inherited by the descendents of a process. consequently, the effect of a
call to setaudproc is not limited to the current process, but will propagate to all its decendents as
well. For example, if setaudproc is called with the AUD_PROC flag, all subsequent audited sys-
tem calls in the current process and its decendents will be audited until setaudproc is called with
the AUD_CLEAR flag.

Further, setaudproc performs its action regardless of whether the user executing the process has
been selected to be audited or not. For example, if setaudproc is called with the AUD_PROC (or
the AUD_CLEAR) flag, all subsequent audited system calls will be audited (or not audited),
regardless of whether the user executing the process has been selected for auditing or not.

Due to these features, setaudproc should not be used in most self-auditing applications.
Audswitch(2) should be used when the objective is to suspend auditing within a process without
affecting its decendents or overriding the user selection aspect of the auditing system.

RETURN VALUE
Upon successful completion, a value of 0 is returned; otherwise, —1 is returned.

AUTHOR
Setaudproc was developed by HP.

SEE ALSO
getaudproc(2), audswitch(2), audusr(1M), audevent(1M), audit(5).

HP-UX Release 7.0: September 1989 -1- (Section 2) 137

SETEVENT(2) SETEVENT (2)

NAME
setevent — set current events and system calls which are to be audited
SYNOPSIS
#include <sys/audith>
int setevent (a_syscall, a_event)
struct aud_type *a_syscall;
struct aud_event_tbl *a_event;
DESCRIPTION
Setevent sets the events and system calls to be audited. The event and system call settings in
the tables pointed to by a_syscall and a_event become the current settings. This call is restricted
to the superuser.
RETURN VALUE
Upon successful completion, setevent returns a value of 0; otherwise, a —1 is returned.
ERRORS
Setevent fails if the following is true:

[EPERM] The caller is not a superuser.
AUTHOR .

Setevent was developed by HP.
SEE ALSO

getevent(2), audevent(1M).

138 (Section 2) -1- HP-UX Release 7.0:: September 1989

SETGROUPS(2) SETGROUPS(2)

NAME
setgroups — set group access list

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
setgroups(ngroups, gidset)
int ngroups;
gid_t *gidset;
DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGROUPS, as defined in <sys/param.h>.

Only the superuser may set new groups by adding to the group access list of the current user
process; any user may delete groups from it.

RETURN VALUE
A 0 value is returned on success, —1 on error, with an error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the superuser and has attempted to set new groups.
[EFAULT] The address specified for gidset is outside the process address space. The reli-
able detection of this error will be implementation dependent.
[EINVAL] Ngroups is greater than NGROUPS or not positive.
[EINVAL} An entry in gidset is not a valid group ID.
AUTHOR

Setgroups was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
getgroups(2), initgroups(3C)

HP-UX Release 7.0: September 1989 -1- (Section 2) 139

SETHOSTNAME(2) SETHOSTNAME(2)

NAME
sethostname — set name of host cpu
SYNOPSIS
sethostname(name, namelen)
char *name;
int namelen;
DESCRIPTION
This call sets the name of the host processor to name, which has a length of namelen characters.
This is normally executed by /etc/rc when the system is bootstrapped. Host names are limited
to MAXHOSTNAMELEN characters; MAXHOSTNAMELEN is defined in <sys/param.h>.
ERRORS
Sethostname fails and returns an error if:

[EPERM] It is not executed by the superuser.
[EFAULT] Name points to an illegal address. The reliable detection of this error is imple-
mentation dependent.
AUTHOR
Sethostname was developed by the University of California, Berkeley.
SEE ALSO

hostname(1), uname(1), gethostname(2), uname(2).

140 (Section 2) -1~ HP-UX Release 7.0: September 1989

SETPGID(2)

NAME

SETPGID(2)

setpgid, setpgrp2 — set process group ID for job control

SYNOPSIS

#include <sys/types.h>

int setpgid(pid,pgid)

pid_t pid, pgid;

int setpgrp2(pid,pgid)

pid_t pid, pgid;
DESCRIPTION

Setpgid or setpgrp2 causes the process specified by pid to join an existing process group or create
a new process group within the session of the calling process. The process group ID of the pro-
cess whose process ID is pid is set to pgid. If pid is zero, the process ID of the calling process is
used. If pgid is zero, the process ID of the indicated process is used. The process group ID of a
session leader does not change.

Setpgrp2 is provided for backward compatibility only.

ERRORS

Setpgid or setpgrp2 fails and no change occurs if any of the following are true:

[EACCES]

[EINVAL]

(EPERM]
[EPERM]

(EPERM]

[ESRCH]

RETURN VALUE

The value of pid matches the process ID of a child process of the cal-
ling process and the child process has successfully executed one of the
exec(2) functions.

The value of pgid is less than zero or is outside the range of valid pro-
cess group ID values.

The process indicated by pid is a session leader.

The value of pid is valid but matches the process ID of a child process
of the calling process, and the child process is not in the same session
as the calling process.

The value of pgid does not match the process ID of the process indi-
cated by pid and there is no process with a process group ID that
matches the value of pgid in the same session as the calling process.

The value of pid does not match the process ID of the calling process or
of a child process of the calling process.

Upon successful completion, setpgid or setpgrp2 returns zero. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

AUTHOR

Setpgid and setpgrp2 were developed by HP and the University of California, Berkeley.

SEE ALSO

bsdproc(2), exec(2), exit(2), fork(2), getpid(2), kill(2), setsid(2), signal(2), termio(7).

STANDARDS CONFORMANCE

setpgid: XPG3, POSIX.1,

setpgrp2: not applicable

FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 141

SETRESUID(2) SETRESUID(2)

NAME
setresuid, setresgid — set real, effective, and saved user and group IDs
SYNOPSIS
int setresuid (ruid, euid, suid)
int ruid, euid, suid;
int setresgid (rgid, egid, sgid)
int rgid, egid, sgid;
DESCRIPTION
Setresuid sets the real, effective and/or saved user ID of the calling process.
If the current real, effective or saved user ID is equal to the super-user’s user ID, setresuid sets
the real, effective and saved user IDs to ruid, euid and suid, respectively. Otherwise, setresuid

will only set the real, effective and saved user IDs if ruid, euid and suid each match at least one
of the current real, effective or saved user IDs.

I ruid, euid or suid is -1, setresuid will leave the current real, effective or saved user ID
unchanged.

Setresgid sets the real, effective and/or saved group ID of the calling process.

If the current real, effective or saved user ID is equal to the super-user’s user ID, setresgid sets
the real, effective and saved group IDs to rgid, egid and sgid, respectively. Otherwise, setresgid
will only set the real, effective and saved group IDs if rgid, egid and sgid each match at least one
of the current real, effective or saved group IDs.

If rgid, egid or sgid is -1, setresgid will leave the current real, effective or saved group ID

unchanged.
ERRORS
Setresuid and setresgid will fail and return -1 if:
[EINVAL] Ruid, euid or suid (rgid, egid or sgid) is not a valid user (group) ID.
[EPERM] None of the conditions above are met.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

AUTHOR
Setresuid and setresgid were developed by HP.

SEE ALSO
exec(2), getuid(2), setuid(2).

142 (Section 2) -1- HP-UX Release 7.0: September 1989

SETSID(2) SETSID(2)

NAME
setsid, setpgrp — create session and set process group ID

SYNOPSIS
#include <sys/types.h>
pid_t setsid()

pid_t setpgrp()

DESCRIPTION
If the calling process is not a process group leader, setsid or setpgrp creates a new session. The
calling process becomes the session leader of this new session, becomes the process group
leader of a new process group, and has no controlling terminal. The process group ID of the
calling process is set equal to the process ID of the calling process. The calling process is the
only process in the new process group, and the only process in the new session.
Setpgrp is provided for backward compatibility only. -

ERRORS
No change occurs if any of the following conditions occur. In addition, setsid fails with the fol-
lowing errors:

[EPERM] The calling process is already a process group leader.

[EPERM] The process group ID of a process other than the calling process
matches the process ID of the calling process.

RETURN VALUE
Setpgrp returns the value of the process group ID of the calling process.

Upon successful completion, setsid returns the value of the new process group ID of the calling
process. Otherwise, a value of —1 is returned and errno is set to indicate the error.

AUTHOR .
Setpgrp and setsid were developed by HP and AT&T.

SEE ALSO)
exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setpgrp: SVID2, XPG2

setsid: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 143

SETUID(2) SETUID(2)

NAME
setuid, setgid — set user and group IDs

SYNOPSIS
#include <sys/types.h>
int setuid (uid)
uid_t uid;
int setgid (gid)
gid_t gid;
DESCRIPTION
Setuid sets the real-user-ID (ruid), effective-user-ID (euid), and/or saved-user-ID (suid) of the cal-
ling process. The super-user’s euid is zero. The following conditions govern setuid’s behavior:

If the euid is zero, setuid sets the ruid, euid, and suid to uid.

If the euid is not zero, but the argument uid is equal to the ruid or the suid, setuid sets
the euid to uid; the ruid and suid remain unchanged. (If a set-user-ID program is not
running as super-user, it can change its euid to match its ruid and reset itself to the pre-
vious euid value.)

If the euid is not zero, but the argument uid is equal to the euid, and the calling process
is a member of a group that has the PRIV_SETRUGID privilege (see privgrp(4)), setuid
sets the ruid to uid; the euid and suid remain unchanged.

Setgid sets the real-group-ID (rgid), effective-group-ID (egid), and/or saved-group-ID (sgid) of the
calling process. The following conditions govern setgid’s behavior:

If the euid is zero, setgid sets the rgid and egid to gid.

If the euid is not zero, but the rgid or sgid is equal to gid, and the calling process is a
member of a group that has the PRIV_SETRUGID privilege (see privgrp(4)), setgid sets
the egid to gid; the rgid and sgid remain unchanged.
If the euid is not zero, but the gid is equal to the egid, setgid sets the rgid to gid; the egid
and sgid remain unchanged.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.
ERRORS
Setuid and setgid fail and return —1 if either of the following is true:

[EPERM] None of the conditions above are met.
[EINVAL] Uid (gid) is not a valid user (group) ID.
WARNINGS

It is recommended that the PRIV_SETRUGID capability be avoided, as it is provided for back-
ward compatibility. This feature may be modified or dropped from future HP-UX releases.
When changing the real user ID and real group ID, use of setresuid(2) and setresgid(2) are
recommended instead.

AUTHOR
Setuid was developed by AT&T, the University of California, Berkeley and HP.
Setgid was developed by AT&T.

SEE ALSO
exec(2), getprivgrp(2), getuid(2), setresuid(2) privgrp(4).

144 (Section 2) -1- HP-UX Release 7.0: September 1989

SETUID(2) SETUID(2)

STANDARDS CONFORMANCE
setuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

setgid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2- (Section 2) 145

SHMCTL(2) SHMCTL(2)

NAME
shmctl — shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

Shmctl provides a variety of shared memory control operations as specified by cmd. The follow-
ing cmds are available:

IPC_STAT Place the current value of each member of the data structure associated with
shmid into the structure pointed to by buf. The contents of this structure are
defined in the glossary.

IPC_SET Set the value of the following members of the data structure associated with
shmid to the corresponding value found in the structure pointed to by buf:
shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits %/

This ¢cmd can only be executed by a process that has an effective user ID equal to either that of
super-user or to the value of either shm_perm.uid or shm_perm.cuid in the data structure
associated with shmid.

IPC_RMID

Remove the shared memory identifier specified by shmid from the system and destroy the
shared memory segment and data structure associated with it. If the segment is attached to one
or more processes, then the segment key is changed to IPC_PRIVATE and the segment is marked
removed. The segment will disappear when the last attached process detaches it. This cmd can
only be executed by a process that has an effective user ID equal to either that of super-user or

to the value of either shm_perm.uid or shm_perm.cuid in the data structure associated with
shmid.

SHM_LOCK
Lock the shared memory segment specified by shmid in memory. This cmd can only be exe-
cuted by a process that either has an effective user ID equal to super-user or has an effective
user ID equal to the value of either shm_perm.uid or shm_perm.cuid in the data structure
associated with shmid and has PRIV_MLOCK privilege (see setprivgrp on getprivgrp(2)).
SHM_UNLOCK
Unlock the shared memory segment specified by shmid. This cmd can only be executed by a
process that either has an effective user ID equal to super-user or has an effective user ID equal
to the value of either shm_perm.uid or shm_perm.cuid in the data structure associated with
shmid and has PRIV_MLOCK privilege (see setprivgrp on getprivgrp(2)).

EXAMPLES
The following call to shmctl locks in memory the shared memory segment represented by mysh-

mid. This example assumes the process has a valid shmid, which can be obtained by calling
shmget(2).

146 (Section 2) -1- HP-UX Release 7.0: September 1989

SHMCTL(2) SHMCTL(2)

shmct]l (myshmid, SHM_LOCK, 0);

The following call to shmctl removes the shared memory segment represented by myshmid.
This example assumes the process has a valid shmid, which can be obtained by calling
shmget(2).

shmctl (myshmid, IPC_RMID, 0);

ERRORS
Shmectl will fail if one or more of the following are true:
[EINVAL] Shmid is not a valid shared memory identifier.
[EINVAL] Cmd is not a valid command.
[EACCES] Cmd is equal to IPC_STAT and operation permission is denied to the calling
process (see glossary).
[EPERM] Cmd is equal to IPC_RMID, IPC_SET, SHM_LOCK, or SHM_UNLOCK and the

effective user ID of the calling process is not equal to that of super-user and it
is not equal to the value of either shm_perm.uid or shm_perm.cuid in the
data structure associated with shmid.

[EPERM] Cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user ID of the
calling process is not equal to that of super-user and the calling process does
not have PRIV_MLOCK privilege (see setprivgrp on getprivgrp(2)).

[EINVAL] Cmd is equal to SHM_UNLOCK and the shared-memory segment specified by
shmid is not locked in memory.

[EFAULT] Buf points to an illegal address. The reliable detection of this error will be
implementation dependent. ‘
[ENOMEM]} Cmd is equal to SHM_LOCK and there is not sufficient lockable memory to fill

the request.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.
DEPENDENCIES
Series 300
[EACCES] Shmid is the id of a shared memory segment currently being used by the sys-
tem to implement other features (see graphics(7) and iomap(7)).
AUTHOR
Shmctl was developed by AT&T and HP.
SEE ALSO
ipcrm(1), ipes(1), shmget(2), shmop(2), stdipc(3C).
STANDARDS CONFORMANCE
shmctl: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2 - (Section 2) 147

SHMGET(2) SHMGET(2)

NAME
shmget — get shared memory segment
SYNOPSIS
#include <sys/types.h>
#include <sys/ipch>
#include <sys/shm.h>
int shmget (key, size, shmflg)
key_t key;
int size, shmflg;
DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size
size bytes (see glossary) are created for key if one of the following is true:

Key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available
resources. The identifier will never be returned by another call to shmget until it has
been released by a call to shmctl. The identifier should be used among the calling pro-
cess and its descendents; however, it is not a requirement. The resource can be
accessed by any process having the proper permissions.

Key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new shared memory identifier is initialized
as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equai to the low-order 9 bits of shmflg.
Shm_segsz is set equal to the value of size.

Shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.
Shm_ctime is set equal to the current time.

EXAMPLES

The following call to shmget returns a unique shmid for the newly created shared memory seg-
ment of 4096 bytes:

int myshmid;

myshmid = shmget IPC_PRIVATE, 4096, 0600);

ERRORS

Shmget will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed minimum or greater than the system-
imposed maximum.

[EACCES] A shared memory identifier exists for key but operation permission (see glos-
sary) as specified by the low-order 9 bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for key but the size of the segment associated
with it is less than size and size is not equal to zero.

[ENOENT] A shared memory identifier does not exist for key and (shmflg & IPC_CREAT) is
“false”.

[ENOSPC] A shared memory identifier is to be created but the system-imposed limit on

the maximum number of allowed shared memory identifiers system wide

148 (Section 2) -1- HP-UX Release 7.0: September 1989

SHMGET(2) SHMGET(2)

would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill the
request.)

[EEXIST] A shared memory identifier exists for key but ((shmflg & IPC_CREAT) &&

(shmflg & IPC_EXCL)) is “true”.
RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is
returned. Otherwise, a value of —1 is returned and errno is set to indicate the error.
SEE ALSO
iperm(1), ipes(1), shmetl(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmget: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2 - - (Section 2) 149

SHMOP(2) SHMOP(2)

NAME
shmat, shmdt — shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipch>
#include <sys/shm.h>
char sshmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr;
DESCRIPTION
Shmat attaches the shared memory segment associated with the shared memory identifier
specified by shmid to the data segment of the calling process.

On Series 800 systems, if the shared memory segment is not already attached, shmaddr must be
specified as zero and the segment is attached at a location selected by the operating system.
That location is identical in all processes accessing that shared memory object.

If the shared memory segment is already attached, a non-zero value of shmaddr is accepted,
provided the specified address is identical to the current attach address of the segment.

On Series 300 systems, shmaddr can be specified as a non-zero value as a machine-dependent
extension (see DEPENDENCIES below). However, those systems do not necessarily guarantee
that a given shared memory object appears at the same address in all processes that access it,
unless the user specifies an address.

The segment is attached for reading if (shmflg & SHM_RDONLY) is “true” otherwise it is
attached for reading and writing It is not possible to attach a segment for write only.

Shmdt detaches from the calling process’s data segment the shared memory segment located at
the address specified by shmaddr.

RETURN VALUE
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared memory segment.
Shmdt returns a value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Shmat fails and does not attach the shared memory segment if one or more of the following is

true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process.

[ENOMEM] The available data space is not large enough to accommodate the shared
memory segment.

[EINVAL] Shmaddr is not zero and the machine does not permit non-zero values or
shmaddr is not equal to the current attach location for the shared memory seg-
ment.

[EMFILE] The number of shared memory segments attached to the calling process exceed

the system-imposed limit.

150 (Section 2) -1- HP-UX Release 7.0: September 1989

SHMOP(2) SHMOP(2)

Shmdt fails and returns —1 if the following is true:

[EINVAL] Shmdt fails and does not detach the shared memory segment if shmaddr is not
the data segment start address of a shared memory segment.
EXAMPLES
The following call to shmat attaches the shared memory segment to the process. This example
assumes the process has a valid shmid, which can be obtained by calling shmget(2).
char *shmotr, *chmat();

.......... prr, Tshmat

shmptr = shmat(myshmid, (char *)0, 0);
The following call to shmdt then detaches the shared memory segment.
shmdt (shmptr);
DEPENDENCIES
Series 300

Shmaddr can be non-zero, and if it is, the segment is attached at the address specified by
one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system. The selected value varies for each process accessing that shared
memory object.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is “true”, the segment is attached
at the address given by (shmaddr - (shmaddr % SHMLBA)). The character % is the C
language modulus operator.

If shmaddr is not equal to zero and (shmfly & SHM_RND) is “false”, the segment is
attached at the address given by shmaddr.

This form of shmat fails and does not attach the shared memory segment if one or more of
the following is true:

[EACCES] Shmid is the ID of a shared memory segment currently being used by the
system to implement other features (see graphics(7) and iomap(7)).

[EINVAL] Shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr %
SHMLBA)) is an illegal address.

[EINVAL] Shmaddr is not equal to zero, (shmfly & SHM_RND) is “false”, and the

value of shmaddr is an illegal address.

[ENOMEM] The calling process is locked (see plock(2)) and there is not sufficient lock-
able memory to support the process-related data structure overhead.

Series 800
Shmat will fail and return —1 if the following is true:

[EINVAL] The calling process is already attached to shmid.

SEE ALSO
ipes(1), exec(2), exit(2), fork(2), shmctl(2), shmget(2), stdipc(3C).

STANDARDS CONFORMANCE
shmat: SVID2, XPG2, XPG3

shmdt: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -2- (Section 2) 151

SIGACTION(2) Series 300 Only SIGACTION(2)

NAME
sigaction — examine and change signal action
SYNOPSIS
#include <signal.h>
int sigaction (sig, act, oact)
int sig ;
struct sigaction *act, *oact ;
DESCRIPTION
Sigaction allows the calling process to examine and specify the action to be taken on delivery of
a specific signal. The argument sig specifies the signal; acceptable values are defined in

<signal.h>. More details on the semantics of specific signals can be found on the signal(5)
manual page.

The sigaction structure and type sigset_t are defined in <signal.h>.

Act and oact are pointers to sigaction structures that include the following elements:

void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

Unless it is a null pointer, the argument act points to a structure specifying the action to be
taken when delivering the specified signal. If the argument oact is not a null pointer, the action
previously associated with the signal is stored in the location pointed to by oact. If the argument
act is a null pointer, signal handling is unchanged; thus sigaction can be used to inquire about
the current handling of a given signal.

The sa_handler member of the sigaction structure is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these values are as follows:
SIG_DFL Execute default action for signal.

Upon receipt of the signal sig, the default action (specified on signal(5)) is per-
formed. The default action for most signals is to terminate the process.

A pending signal is discarded (whether or not it is blocked) if sigaction is set to
SIG_DFL for a pending signal whose default action is to ignore the signal (as
in the case of SIGCHLD).

SIG_IGN Ignore the signal.
Setting a signal action to SIG_IGN causes a pending signal to be discarded,
whether or not it is blocked.
The SIGKILL and SIGSTOP signals cannot be ignored.

function address Catch the signal.
Upon receipt of the signal sig, the receiving process executes the signal-
catching function pointed to by sa_handler. The signal-catching function is

entered as a C language function call. Details on the arguments passed to this
function can be found on the signal(5) manual page.

The signals SIGKILL and SIGSTOP cannot be caught.

When a signal is caught by a signal-catching function installed by sigaction, a new mask is cal-
culated and installed for the duration of the signal-catching function, or until a call is made to
sigprocmask(2) or sigsuspend(2). This mask is formed by taking the union of the current signal
mask, the signal to be delivered, and unless the SA_RESETHAND flag is set (see below), the
signal mask specified in the sa_mask field of the sigaction structure associated with the signal

152 (Section 2) -1- HP-UX Release 7.0: September 1989

SIGACTION(2) Series 300 Only SIGACTION(2)

being delivered. If and when the signal-catching function returns normally, the original signal
mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is expli-
citly requested, or until one of the exec(2) functions is called.

If the previous action for sig was established by signal(2), the values of the fields returned in the
structure pointed to by oact are unspecified; in particular, oact->sa_handler is not necessarily the
same value passed to signal(2). However, if a pointer to the same structure or a copy thereof is
passed to a subsequent call to sigaction(2) via the act argument, handling of the signal is rein-
stated as if the original call to signal(2) were repeated.

The set of signals specified by the sa_mask field of the sigaction structure pointed to by the act
argument cannot block the SIGKILL or SIGSTOP signal. This is enforced by the system
without causing an error to be indicated.

The sa_flags field in the sigaction structure can be used to modify the behavior of the specified
signal. The following flag bits, defined in the <signal.h>> header, can be set in sa_flags:

SA_NOCLDSTOP Do not generate SIGCHLD when untraced children stop (see ptrace(2)).
SA_ONSTACK Use the space reserved by sigspace(2) for signal processing.

SA_RESETHAND Use the semantics of signal(2). The signal mask specified by the sa_mask
field is not used when setting up the effective signal mask for the signal
handler. If the signal is not one of those marked "not reset when caught"
(see signal(5)), the default action for the signal is reinstated when the sig-
nal is caught, prior to entering the signal-catching function. The "not
reset when caught" distinction is insignificant when sigaction is called and
SA_RESETHAND is not set.

RETURN VALUE
Upon successful completion, sigaction returns a value of 0. Otherwise a value of —1 is returned
and errno is set to indicate the error.

ERRORS
Sigaction fails and no new signal-catching function is installed if one of the following is true:

[EINVAL] The value of the sig argument is not a valid signal number, or an attempt is
made to supply an action other than SIG_DFL for the SIGKILL or SIGSTOP sig-
nal.

[EFAULT] Act or oact points to an invalid address. The reliable detection of this error is
implementation dependent.

AUTHOR
Sigaction was derived from the IEEE Standard POSIX 1003.1-1988.
SEE ALSO

ptrace(2), sigprocmask(2), sigpending(2), sigspace(2), sigsuspend(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigaction: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2 - (Section 2) 153

SIGBLOCK(2) SIGBLOCK(2)

NAME
sigblock — block signals

SYNOPSIS
#include <signal.h>
long sigblock(mask);
long mask;
DESCRIPTION

Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signal i is blocked if the i-th bit in mask is 1, as specified with the
macro sigmask(i).

It is not possible to block signals that cannot be ignored, as documented in signal(5); this res-
triction is silently imposed by the system.
Sigsetmask(2) can be used to set the mask absolutely.
RETURN VALUE
The previous set of masked signals is returned.
EXAMPLES

The following call to sighlock adds the SIGUSR1 and SIGUSR2 signals to the mask of signals
currently blocked for the process:

long oldmask;

oldmask = sigblock (sigmask (SIGUSR1) | sigmask (SIGUSR2));
WARNINGS
Sigblock should not be used in conjunction with the facilities described under sigset(2V).
AUTHOR
Sigblock was developed by the University of California, Berkeley.
SEE ALSO
kill(2), sigprocmask(2), sigsetmask(2), sigvector(2).

154 (Section 2) -1~ HP-UX Release 7.0: September 1989

SIGNAL(2) SIGNAL(2)

NAME
signal — specify what to do upon receipt of a signal

SYNOPSIS
#include <signalh>

void (signal (sig, action))()
int sig;
void (xaction)();

void action (sig [, code, scp]

int sig, code;

struct sigcontext * scp;
DESCRIPTION

Signal allows the calling process to choose one of three ways to handle the receipt of a specific
signal. Sig specifies the signal and action specifies the choice.

Acceptable values for sig are defined in <signal.h>. The specific signals are described in full on
the signal(5) manual page.

The value of the action argument specifies what to do upon the receipt of signal sig, and should
be one of the following:

SIG_DFL Execute the default action, which varies depending on the signal. The default
action for most signals is to terminate the process (see signal(5)).

A pending signal is discarded (whether or not it is blocked) if action is set to
SIG_DFL but the default action of the pending signal is to ignore the signal (as
in the case of SIGCLD).

SIG_IGN Ignore the signal.
When signal is called with action set to SIG_IGN and an instance of the signal
sig is pending, the pending signal is discarded, whether or not it is blocked.
The SIGKILL and SIGSTOP signals cannot be ignored.

address Catch the signal.
Upon receipt of the signal sig, reset the value of action for the caught signal to
SIG_DFL (except signals marked with "not reset when caught"; see signal(5)),
call the signal-catching function to which address points, and resume executing
the receiving process at the point it was interrupted.

The signal-catching function is called with the following three parameters:

sig The signal number.

code A word of information usually provided by the hardware.

scp A pointer to the machine-dependent structure sigcontext defined in
<signal.h>,

Depending on the value of sig, code can be zero and/or scp can be NULL. The meanings of
code and scp and the conditions determining when they are other than zero or NULL are imple-
mentation dependent (see DEPENDENCIES below). It is possible for code to always be zero,
and scp to always be NULL.

The pointer scp is valid only during the context of the signal-catching function.

The signals SIGKILL and SIGSTOP cannot be caught.

HP-UX Release 7.0: September 1989 -1~ (Section 2) 155

SIGNAL(2) SIGNAL(2)

RETURN VALUE

Upon successful completion, signal returns the previous value of action for the specified signal
sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.

ERRORS
Signal fails if the following is true:
[EINVAL] Sig is an illegal signal number, or is equal to SIGKILL or SIGSTOP.

EXAMPLES
The following call to signal sets up a signal-catching function for the SIGINT signal:

void myhandler();
(void) signal(SIGINT, myhandler);

WARNINGS

Signal should not be used in conjunction with the facilities described under bsdproc(2), sigac-
tion(2), sigset(2V), or sigvector(2).

The signal function does not detect an invalid value for the action argument, and if it does not
equal SIG_DFL or SIG_IGN, or point to a valid function address, subsequent receipt of the sig-
nal sig causes undefined results.

DEPENDENCIES
Series 300

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL,

code has the following values:
0 illegal instruction;
6 check instruction;
7 TRAPV;
8 privilege violation.

Refer to the MC6800xx processor documentation for more detailed information about
the meaning of the SIGILL errors.

For SIGFPE, code has the following values:

0 software floating point exception;

5 integer divide-by-zero.

Ox8xxxxxx
any value with the high-order bit set indicates an exception while using the
HP98248 floating point accelerator. The value of (code &~ 0x8000000) is the
value of the HP 98248 status register. Refer to the HP 98248 documentation for
more detailed information.

other
any other value indicates an exception while using the MC68881 or MC68882
floating point coprocessor. The value of code is the value of the MC68881 or
MC68882 status register. Refer to the MC68881 documentation for more
detailed information.

Series 800
The structure pointer scp is always defined.

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code
has the following values:

8 illegal instruction trap;

9 break instruction trap;

10 privileged operation trap;

11 privileged register trap.

156 (Section 2) -2 - HP-UX Release 7.0: September 1989

SIGNAL(2) SIGNAL(2)

For SIGFPE, code has the following values:
12 overflow trap;
13 conditional trap;
14 assist exception trap;
22 assist emulation trap.

AUTHOR
Signal was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), init(1M), exit(2), kill(2), 1seek(2), pause(2), sigaction(2), sigvector(2), wait(2), abort(3C),
setjmp(3C), signal(5).

STANDARDS CONFORMANCE
signal: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -3 - (Section 2) 157

SIGPAUSE(2) SIGPAUSE(2)

NAME
sigpause — atomically release blocked signals and wait for interrupt
SYNOPSIS
#include <signal.h>
long sigpause(mask)
long mask;
DESCRIPTION
Sigpause blocks signals according to the value of mask in the same manner as sigsetmask(2), then
atomically waits for an unmasked signal to arrive. On return sigpause restores the current signal

mask to the value that existed before the sigpause call. When no signals are to be blocked, a
value of OL is used for mask.

In normal usage, a signal is blocked using sigblock(2). To begin a critical section variables
modified on the occurrence of the signal are examined to determine that there is no work to be
done, and the process pauses, awaiting work by using sigpause with the mask returned by sig-
block.

RETURN VALUE
Sigpause will terminate when it is interrupted by a signal. When sigpause terminates, it will
return —1 and set errno to EINTR.

EXAMPLES |
The following call to sigpause waits until the calling process receives a signal:

sigpause (OL);

The following example blocks the SIGIO signal until sigpause is called. When a signal is
received at the sigpause statement, the signal mask is restored to its value before sigpause was
called:

long savemask;

savemask = sigblock (sigmask (SIGIO));

/* critical section */

sigpause (savemask);

WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.
Sigpause should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
Sigpause was developed by the University of California, Berkeley.

SEE ALSO
sigblock(2), sigsetmask(2), sigsuspend(2), sigvector(2).

158 (Section 2) -1~ HP-UX Release 7.0: September 1989

SIGPENDING(2) SIGPENDING(2)

NAME
sigpending — examine pending signals
SYNOPSIS
#include <signal.h>
int sigpending (set)
sigset_t *set ;
DESCRIPTION
Sigpending stores sets of signals that are blocked from delivery and are pending to the calling
process, at the location pointed to by set.
RETURN VALUE
Upon successful completion, sigpending returns a value of 0. Otherwise a value of —1 is
returned and errno is set to indicate the error.
ERRORS
Sigpending fails if the following is true:

[EFAULT] Set points to an invalid address. The reliable detection of this error is imple-
mentation dependent.
AUTHOR
Sigpending was derived from the IEEE Standard POSIX 1003.1-1988.
SEE ALSO

sigaction(2), sigsuspend(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigpending: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 159

SIGPROCMASK(2) SIGPROCMASK(2)

NAME

sigprocmask — examine and change blocked signals

SYNOPSIS

#include <signal.h>

int sigprocmask (how, set, oset)
int how ;
sigset_t *set, *oset ;

DESCRIPTION

Sigprocmask allows the calling process to examine and/or change its signal mask.

Unless it is a null pointer, the argument set points to a set of signals to be used to change the
currently blocked set.

The argument how indicates how the set is changed, and consists of one of the following values
(see <signal.h>):

SIG_BLOCK The resulting set is the union of the current set and the signal set pointed
to by set.
SIG_UNBLOCK The resulting set is the intersection of the current set and the complement

of the signal set pointed to by set.
SIG_SETMASK The resulting set is the signal set pointed to by set.

If the argument oset is not a null pointer, the previous signal mask is stored in the location
pointed to by oset. If set is a null pointer, the value of the argument how is insignificant and the
process’s signal mask is unchanged; thus the call can be used to inquire about currently blocked
signals.

If any pending unblocked signals remain after the call to sigprocmask, at least one of those sig-
nals is delivered before the call to sigprocmask returns.

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system
without causing an error to be indicated.

The process’s signal mask is not changed if sigprocmask fails for any reason.

RETURN VALUE

Upon successful completion, sigprocmask returns a value of 0. Otherwise a value of —1 is
returned and errno is set to indicate the error.

ERRORS

Sigprocmask fails if one or more of the following is true:
[EINVAL] The value of the how argument is not equal to one of the defined values.
[EFAULT] Set or oset points to an invalid address. The reliable detection of this error is

implementation dependent.

AUTHOR

Sigprocmask was derived from the IEEE Standard POSIX 1003.1-1988.

SEE ALSO

sigaction(2), sigsuspend(2), sigpending(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE

160

sigprocmask: XPG3, POSIX.1, FIPS 151-1

(Section 2) -1- HP-UX Release 7.0: September 1989

SIGSET(2V) SIGSET(2V)

NAME

sigset, sighold, sigrelse, sigignore, sigpause — signal management
SYNOPSIS

#include <signal.h>

void (+ sigset (sig, func)))

int sig;

int (x func X);

-

int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

-

int sigpause (sig)
int sig;

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is
defined in signal(5), along with the meaning and side effects of each signal. An alternate
mechanism for handling these signals is defined here. The facilities described here should not
be used in conjunction with the other facilities described under signal(2), sigvector(2), sig-
block(2), sigsetmask(2), sigpause(2) and sigspace(2).

Sigset allows the calling process to choose one of four ways to handle the receipt of a specific
signal. Sig specifies the signal and func specifies the choice.

Sig can be any one of the signals described under signal(5) except SIGKILL or SIGSTOP.

Func is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD or a function address. The
actions prescribed by SIG_DFL and SIG_IGN are described under signal(5). The action
prescribed by SIG_HOLD and function address are described below:

SIG_HOLD Hold signal.
The signal sig is held upon receipt. Any pending signal of this signal type
remains held. Only one signal of each type is held.
Note: the signals SIGKILL, SIGCONT and SIGSTOP cannot be held.

function address Catch signal.

Func must be a pointer to a function, the signal-catching handler, that is called
when signal sig occurs. Sigset specifies that the process calls this function upon
receipt of signal sig. Any pending signal of this type is released. This handler
address is retained across calls to the other signal management functions listed
here. Upon receipt of the signal sig, the receiving process executes the signal-
catching function pointed to by func as described under signal(5) with the fol-
lowing differences:

Before calling the signal-catching handler, the system signal action of sig is set
to SIG_HOLD. During a normal return from the signal-catching handler, the
system signal action is restored to func and any held signal of this type is
released. If a non-local goto (longjmp(3C)) is taken, sigrelse must be called to
restore the system signal action to func and release any held signal of this type.

HP-UX Release 7.0: September 1989 -1- (Section 2) 161

SIGSET(2V) SIGSET(2V)

Sighold(2) holds the signal sig. Sigrelse(2) restores the system signal action of sig to that
specified previously by sigset. Sighold and sigrelse are used to establish critical regions of code.
Sighold is analogous to raising the priority level and deferring or holding a signal until the prior-
ity is lowered by sigrelse.

Sigignore sets the action for signal sig to SIG_IGN. (See signai(5)).
Sigpause suspends the calling process until it receives an unblocked signal. If the signal sig is
held, it is released before the process pauses. Sigpause is useful for testing variables that are

changed when a signal occurs. For example, sighold should be used to block the signal first,
then test the variables. If they have not changed, call sigpause to wait for the signal.

These functions can be linked into a program by giving the —1V3 option to Id(1).

RETURN VALUE

Upon successful completion, sigset returns the previous value of the system signal action for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the
error. SIG_ERR is defined in <signal.h>.

For the other functions, a 0 value indicates that the call succeeded. A —1 return value indicates
an error occurred and errno is set to indicate the reason.

ERRORS .

The sigset function fails and the system signal action for sig is not changed if the following
occurs:

[EFAULT] The func argument points to memory that is not a valid part of the process
address space. The reliable detection of this error is implementation depen-
dent.

The sigset, sighold, sigrelse, sigignore, and sigpause functions fail and the system signal action for
sig is not changed if one of the following occurs:

[EINVAL] Sig is not a valid signal number.

[EINVAL] An attempt is made to ignore, hold, or supply a handler for a signal that can-
not be ignored, held, or caught; see signal(5).

The sigpause function returns when the following occurs:
[EINTR] A signal was caught.

WARNINGS

These signal facilities should not be used in conjunction with bsdproc(2), signal(2), sigvector(2),
sighlock(2), sigsetmask(2), sigpause(2) and sigspace(2).

SEE ALSO

162

kill(1), kill(2), signal(2), pause(2), wait(2), abort(3C), setjmp(3C), signal(5).

(Section 2) -2- HP-UX Release 7.0: September 1989

SIGSETMASK(2) SIGSETMASK (2)

NAME
sigsetmask — set current signal mask

SYNOPSIS
#include <signal.h>

long sigsetmask(mask);
long mask;
CRIPTION
Sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signal i is
blocked if the i-th bit in mask, as specified with the macro sigmask(i), is a 1.

It is not possible to mask signals that cannot be ignored, as documented in signal(5); this restric-
tion is silently imposed by the system.

Sigblock(2) can be used to add elements to the set of blocked signals.

RETURN VALUE
The previous set of masked signals is returned.

EXAMPLES
The following call to sigsetmask causes only the SIGUSR1 and SIGUSR2 signals to be blocked:

long oldmask;
oldmask = sigsetmask (sigmask (SIGUSR1) | sigmask (SIGUSR2));

WARNINGS

Sigsetmask should not be used in conjunction with the facilities described under sigset(2V).
AUTHOR

Sigsetmask was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigblock(2), sigpause(2), sigprocmask(2), sigvector(2).

HP-UX Release 7.0: September 1989 -1-) (Section 2) 163

SIGSPACE(2) SIGSPACE(2)

NAME

sigspace — assure sufficient signal stack space

SYNOPSIS

#include <sys/types.h>

size_t sigspace(stacksize)
size_t stacksize;

DESCRIPTION

Sigspace requests additional stack space that is guaranteed to be available for processing signals
received by the calling process.

If the value of stacksize is positive, it specifies the size of a space, in bytes, which the system
guarantees to be available when processing a signal. If the value of stacksize is zero, any
guarantee of space is removed. If the value is negative, the guarantee is left unchanged; this
can be used to interrogate the current guaranteed value.

When a signal’s action indicates that its handler should use the guaranteed space (specified with
a sigaction(2), sigvector(2) or sigvec (on bsdproc(2)) call), the system checks to see if the process
is currently using that space. If the process is not currently using that space, the system
arranges for that space to be available for the duration of the signal handler’s execution. If that
space has already been made available (due to a previous signal) no change is made. The nor-
mal stack discipline is resumed when the signal handler first using the guaranteed space is
exited.

The guaranteed space is inherited by child processes resulting from a successful fork(2) system
call, but the guarantee of space is removed after any exec(2) system call.

The guaranteed space cannot be increased in size automatically, as is done for the normal stack.
If the stack overflows the guaranteed space, the resulting behavior of the process is undefined.

Guaranteeing space for a stack can interfere with other memory allocation routines, in an
implementation-dependent manner.

During normal execution of the program the system checks for possible overflow of the stack.
Guaranteeing space might cause the space available for normal execution to be reduced.

Leaving the context of a service routine abnormally, such as by longjmp on setjmp(3C), removes
the guarantee that the ordinary execution of the program will not extend into the guaranteed
space. It might also cause the program to lose forever its ability to automatically increase the
stack size, causing the program to be limited to the guaranteed space.

RETURN VALUE

Upon successful completion, the size of the former guaranteed space is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

ERRORS

Sigspace fails and the guaranteed amount of space remains unchanged if the following occurs:

[ENOMEM] The requested space cannot be guaranteed either because of hardware limita-
tions or because some software-imposed limit would be exceeded.

WARNINGS

164

The guaranteed space is allocated using malloc(3C). This use might interfere with other heap
management mechanisms.

Methods for calculating the required size are not well developed.
Sigspace should not be used in conjunction with the facilities described under sigset(2V).

Sigspace should not be used in conjunction with sigstack(2).

(Section 2) -1- HP-UX Release 7.0: September 1989

SIGSPACE(2) SIGSPACE(2)

DEPENDENCIES
Series 300
The kernel overhead taken in the reserved space is 608 bytes on Series 300. This over-
head must be included in the requested amount. These values are subject to change in
future releases.
AUTHOR
Sigspace was developed by HP.
SEE ALSO
sigaction(2), sigstack(2), sigvector(2), malloc(3C), setjmp(3C).

HP-UX Release 7.0: September 1989 -2 - (Section 2) 165

SIGSTACK(2) SIGSTACK(2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int sigstack (ss, oss)
struct sigstack xss, xoss;

DESCRIPTION

Sigstack allows the calling process to indicate to the system an area of its address space to be
used for processing signals received by the process.

The correct use of sigstack(2) is hardware dependent, and therefore is not portable between
different implementations of HP-UX (see DEPENDENCIES below). Sigspace(2) is portable
between different implementations of HP-UX and it should be used when the application does
not need to know where the signal stack is located. Sigstack is provided for compatability with
other systems that provide this functionality. Users should note that there is no guarantee that
functionality similar to this is even possible on some architectures.

If the value of the ss argument is not a null pointer, it is assumed to point to a struct sigstack
structure, which includes the following members:

int ss_onstack; non-zero when signal stack is in use
void *ss_sp; signal stack pointer

The value of the ss_onstack member indicates whether the process wants the system to use a
signal stack when delivering signals; the value of the ss_sp member indicates the desired loca-
tion (see DEPENDENCIES) of the signal stack area in the process’s virtual address space.

If the ss argument is a null pointer, the current signal stack context is not changed.

If the 0ss argument is not a null pointer, it should point to a variable of type struct sigstack; the
current signal stack context is returned in that variable. The value stored in the ss_onstack
member tells whether the process is currently using a signal stack, and if so, the value stored in
the ss_sp member is the current stack pointer for the stack in use.

If the oss argument is a null pointer, the current signal stack context is not returned.

When a signal’s action indicates its handler should execute on the signal stack (specified by cal-
ling sigaction(2), sigvector(2), or sigvec (on bsdproc(2))), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack,

the system arranges a switch to the signal stack for the duration of the signal handler’s execu-
tion.

The signal stack context is inherited by child processes resulting from a successful fork(2) system
call, but the context is removed after an exec(2) system call.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Sigstack fails and the signal stack context remains unchanged if the following is true:

[EFAULT] Either of ss or 0ss is not a null pointer and points outside the allocated address
space of the process. The reliable detection of this error is implementation
dependent.

WARNINGS

Sigstack(2) should not be used in conjunction with sigspace(2).

166 (Section 2) -1- HP-UX Release 7.0: September 1989

SIGSTACK(2) SIGSTACK(2)

User-defined signal stacks do not grow automatically, as does the normal process stack. If a
signal stack overflows, the resulting behavior of the process is undefined.

Methods for calculating the required stack size are not well developed.

Leaving the context of a service routine abnormally, such as by longjmp (on setjmp(3C)), might
remove the guarantee that the ordinary execution of the program does not extend into the
guaranteed space. It might also cause the program to lose forever its ability to automatically
increase the stack size, causing the program to be limited to the guaranteed space.
DEPENDENCIES
Series 300
Stack addresses grow from high addresses to low addresses; therefore the signal stack
address provided to sigstack(2) should point to the end of the space to be used for the sig-
nal stack. This address should be aligned to a four-byte boundary.

Series 800
Stack addresses grow from low addresses to high addresses; therefore the signal stack
address provided to sigstack(2) should point to the beginning of the space to be used for
the signal stack. This address should be aligned to an eight-byte boundary.

AUTHOR
Sigstack was developed by HP and the University of California, Berkeley.

SEE ALSO
sigspace(2), setjmp(3C).

HP-UX Release 7.0: September 1989 -2 - (Section 2) 167

SIGSUSPEND(2) Series 300 Only SIGSUSPEND(2)

NAME
sigsuspend — wait for a signal
SYNOPSIS
#include <signal.h>
int sigsuspend (sigmask)
sigset_t *sigmask ;
DESCRIPTION
Sigsuspend replaces the process’s current signal mask with the set of signals pointed to by sig-
mask, and then suspends the process until delivery of a signal that either executes a signal
handler or terminates the process.
If the signal terminates the process, sigsuspend never returns. If the signal executes a signal

handler, sigsuspend returns after the signal handler returns, and restores the signal mask to the
set that existed prior to the sigsuspend call.

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system
without causing an error to be indicated.

RETURN VALUE
Since sigsuspend suspends a process indefinitely, there is no successful completion return value.
If a return occurs, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Sigsuspend fails if one or more of the following is true:

[EINTR] Sigsuspend was interrupted by receipt of a signal.
[EFAULT] Sigmask points to an invalid address. The reliable detection of this error is
implementation dependent.
AUTHOR .
Sigsuspend was derived from the IEEE Standard POSIX 1003.1-1988.
SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3C), signal(5).
STANDARDS CONFORMANCE
sigsuspend: XPG3, POSIX.1, FIPS 151-1

168 (Section 2) -1- HP-UX Release 7.0: September 1989

SIGVECTOR(2) SIGVECTOR(2)

NAME

sigvector — software signal facilities

SYNOPSIS

#include <signal.h>
sigvector(sig, vec, ovec)
int sig;

struct sigvec *vec, *ovec;

DESCRIPTION

The system defines a set of signals that can be delivered to a process. The set of signals is
defined in signal(5), along with the meaning and side effects of each signal. This manual page,
along with those for sigblock(2), sigsetmask(2), sigpause(2), and sigspace(2), defines an alternate
mechanism for handling these signals that assures the delivery of signals and integrity of signal
handling procedures. The facilities described here should not be used in the same program as
signal(2).

With the sigvector interface, signal delivery resembles the occurrence of a hardware interrupt:
the signal is blocked from further occurrence, the current process context is saved, and a new
one is built. A process can specify a handler function to be invoked when a signal is delivered,
or specify that a signal should be blocked or ignored. A process can also specify that a default
action should be taken by the system when a signal occurs. It is possible to ensure a minimum
amount of stack space for processing signals using the sigspace(2) call.

All signals have the same priority. Signal routines execute with the signal that causes their
invocation to be blocked, although other signals can yet occur. A global signal mask defines
the set of signals currently blocked from delivery to a process. The signal mask for a process is
initialized from that of its parent (normally 0). It can be changed with a sighlock(2), sigset-
mask(2), or sigpause(2) call, or when a signal is delivered to the process.

A signal mask is represented as a long, with one bit representing each signal being blocked.
The following macro defined in <signal.Lh> is used to convert a signal number to its
corresponding bit in the mask:

#define sigmask(signo) (1L << (signo-1))

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process, it is delivered to the process.
When a signal is delivered, the current state of the process is saved, a new signal mask is calcu-
lated (as described below), and the signal handler is invoked. The call to the handler is
arranged so that if the signal handling routine returns normally, the process resumes execution
in the same context as before the signal’s delivery. If the process wishes to resume in a
different context, it must arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the duration of the
process’ signal handler (or until a sighlock(2) or sigsetimask(2) call is made). This mask is formed
by taking the current signal mask, computing the bitwise inclusive OR with the value of
vec.sv_mask (see below) from the most recent call to sigvector for the signal to be delivered, and,
unless the SV_RESETHAND flag is set (see below), setting the bit corresponding to the signal
being delivered. When the user’s signal handler returns normally, the original mask is restored.

Sigvector assigns a handler for the signal specified by sig. Vec and ovec are pointers to sigvec
structures that include the following elements:

void (*sv_handler)();
long sv_mask;
long sv_flags;

HP-UX Release 7.0: September 1989 -1- (Section2) 169

SIGVECTOR(2) SIGVECTOR(2)

If vec is non-zero, it specifies a handler routine (sv_handler), a mask (sv_mask) that the system
should use when delivering the specified signal, and a set of flags (sv_flags) that modify the
delivery of the signal. If ovec is non-zero, the previous handling information for the signal is
returned to the user. If vec is zero, signal handling is unchanged: thus, the call can be used to
en alhniit tha maweant handling of a ivron cinna'l ¥ nor anﬂ nmor noint to tho came ctruc.

nquire about the current handling of a given signal. If vec and ovec point to the same struc

ture, the value of vec is read prior to being overwritten.

The sv_flags field can be used to modify the receipt of signals. The following flag bits are
defined:

SV_ONSTACK Use the sigspace allocated space
SV_BSDSIG Use the Berkeley signal semantics
SV_RESETHAND Use the semantics of signal(2)

If SV_ONSTACK is set, the system uses, or permits the use of, the space reserved for signal
processing in the sigspace(2) system call.

If SV_BSDSIG is set, the signal is given the Berkeley semantics. The following signal is affected
by this flag:

SIGCLD In addition to being sent when a child process dies, the signal is also sent
when any child’s status changes from running to stopped. This would nor-
mally be used by a program such as csh(1) when maintaining process groups
under Berkeley job control.

If SV_RESETHAND is set, the signal handler will be installed with the same semantics as a
handler installed with signal(2). This affects the signal mask set up during the signal handler
(see above) and whether the handler is reset after a signal is caught (see below).

If SV_RESETHAND is not set, once a signal handler is installed, it remains installed until
another sigvector call is made or an exec(2) system call is performed. If SV_RESETHAND is set
and the signal is not one of those marked "not reset when caught" under signal(5), the default
action is reinstated when the signal is caught, prior to entering the signal-catching function.
The "not reset when caught" distinction is not significant when sigvector is called and
SV_RESETHAND is not set.

The default action for a signal can be reinstated by setting sv_handler to SIG_DFL; this default
usually results in termination of the process. If sv_handler is SIG_IGN the signal is usually sub-
sequently ignored, and pending instances of the signal are discarded. The exact meaning of
SIG_DFL and SIG_IGN for each signal is discussed in signal(5).

Certain system calls can be interrupted by a signal; all other system calls complete before the
signal is serviced. The scp pointer described in signal(5) is never null if sigvector is supported.

Scp points to a machine-dependent sigcontext structure. All implementations of this structure
include the fields:

int sc_syscall;
char sc_syscall_action;

The value SYS_NOTSYSCALL for the sc_syscall field indicates that the signal is not interrupting
a system call; any other value indicates which system call it is interrupting.

If a signal that is being caught occurs during a system call that can be interrupted, the signal
handler is immediately invoked. If the signal handler exits normally, the value of the
sc_syscall_action field is inspected; if the value is SIG_RETURN, the system call is aborted and
the interrupted program continues past the call. The result of the interrupted call is -1 and
errno is set to EINTR. If the value of the sc_syscall_action field is SIG_RESTART, the call is
restarted. A call is restarted if, in the case of a read(2) or write(2) system call, it had transferred
no data. If some data had been transferred, the operation is considered to have completed with
a partial transfer, and the sc_syscall value is SYS_NOTSYSCALL. Other values are undefined

170 (Section 2) -2- HP-UX Release 7.0: © September 1989

SIGVECTOR(2) SIGVECTOR(2)

and reserved for future use.

Exiting the handler abnormally (such as with longjmp on setjmp(3C)) aborts the call, leaving the
user responsible for the context of further execution. The value of scp->sc_syscall_action is
ignored when the value of scp->sc_syscall is SYS_NOTSYSCALL. Scp->sc_syscall_action is
always initialized to SIG_RETURN before invocation of a signal handler. When an system call
that can be interrupted is interrupted by multiple signals, if any signal handler returns a value
of SIG_RETURN in scp->sc_syscall_action, all subsequent signal handlers are passed a value of
SYS_NOTSYSCALL in scp->sc_syscaii.

Note that calls to read(2), write(2) or ioctl(2) on fast devices (disks) cannot be interrupted, but
1/0 to a slow device (teletype) can be interrupted. Other system calls, such as those used for
networking, also can be interrupted on some implementations. In these cases additional values
can be specified for scp->sc_syscall. Programs that look at the values of scp->sc_syscall always
should compare them to these symbolic constants; the numerical values represented by these
constants might vary among implementations. System calls that can be interrupted and their
corresponding values for scp->sc_syscall are listed below:

Call sc_syscall value

read (slow devices) SYS_READ

readv (slow devices) SYS_READV
write (slow devices) SYS_WRITE
writev (slow devices) SYS_WRITEV
open (slow devices) SYS_OPEN
ioctl (slow requests) SYS_IOCTL
wait SYS_WAIT
select SYS_SELECT
pause SYS_PAUSE
sigpause SYS_SIGPAUSE
semop SYS_SEMOP
msgsnd SYS_MSGSND
msgrev SYS_MSGRCV

These system calls are not defined if the preprocessor macro _XPG2 is defined when
<signal.h> is included. This is because Issue 2 of the X/Open Portability Guide specifies a
different meaning for the symbol SYS_OPEN (see limits(5)).

After a fork(2) or vfork(2) system call, the child inherits all signals, the signal mask, and the
reserved signal stack space.

Exec(2) resets all caught signals to the default action; ignored signals remain ignored, the signal
mask remains unchanged, and the reserved signal stack space is released.

The mask specified in vec is not allowed to block signals that cannot be ignored, as defined in
signal(5). This is enforced silently by the system.

If sigvector is called to catch SIGCLD in a process that currently has terminated (zombie) chil-
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is
unblocked if it is currently blocked. Thus, in a process that spawns multiple children and
catches SIGCLD, it is sometimes advisable to reinstall the handler for SIGCLD after each invo-
cation in case there are multiple zombies present. This is true even though the handling of the
signal is not reset by the system, as with signal(2), because deaths of multiple processes while
SIGCLD is blocked in the handler result in delivery of only a single signal. Note that the func-
tion must reinstall itself after it has called wait(2) or wait3(2). Otherwise the presence of the
child that caused the original signal always causes another signal to be delivered.

HP-UX Release 7.0: September 1989 -3 - (Section 2) 171

SIGVECTOR(2) SIGVECTOR(2)

RETURN VALUE
A 0 value indicates that the call succeeded. A —1 return value indicates an error occurred and
errno is set to indicate the reason.

ERRORS
Sigvector fails and no new signal handier is instalied if one of the following occurs:

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process ad-
dress space. The reliable detection of this error is implementation dependent.

[EINVAL] Sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for a signal that cannot be

caught or ignored; see signal(5).

WARNINGS
Restarting a select(2) call can sometimes cause unexpected results. If the select call has a
timeout specified, the timeout is restarted with the call, ignoring any portion that had elapsed
prior to interruption by the signal. Normally this simply extends the timeout and is not a prob-
lem. However, if a handler repeatedly catches signals and the timeout specified to select is
longer than the time between those signals, restarting the select call effectively renders the
timeout infinite.

Sigvector should not be used in conjunction with the facilities described under sigset(2V).
AUTHOR

Sigvector was developed by HP and the University of California, Berkeley.
SEE ALSO

kill(1), Kkill(2), ptrace(2), sigblock(2), signal(2), sigpause(2), sigsetmask(2), sigspace(2),
setjmp(3C), signal(5), termio(7).

172 (Section 2) -4 - HP-UX Release 7.0: September 1989

STAT(2)

NAME
stat, Istat, fstat — get file status
SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

STAT(2)

int stat (path, buf)
char *path;
struct stat sbuf;

int Istat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)

int fildes;
struct stat xbuf;

DESCRIPTION

Stat obtains information about the named file.

Path points to a path name naming a file. Read, write, or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be searchable.

Similarly, fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open(2), creat(2), dup(2), fcntl(2), or pipe (2) system call.

Lstat is similar to stat except when the named file is a symbolic link, in which case Istat returns
the information about the link, while stat returns information about the file to which the link

points.

Buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure stat pointed to by buf include the following members. Note that
there is no necessary correlation between the placement in this list and the order in the struc-

ture.

dev_t st_dev;

ino_t st_ino;
ushort st_fstype;

ushort st_mode;

ushort st_basemode
ushort st_nlink;
uid_t st_uid;

gid_t st_gid;

dev_t st_rdev;

off_t st_size;

time_t st_atime;
time_t st_mtime;
time_t st_ctime;

uint st_acl:1;

HP-UX Release 7.0: September 1989

/* ID of device containing a */

/* directory entry for this file */
/* Inode number */

/* Type of filesystem this file */
/* is in; see vfsmount(OS) */

/* File type, attributes, and */

/* access control summary */

/* Permission bits (see chmod(1)) */
/* Number of links */

/* User ID of file owner */

/* Group ID of file group */

/* Device ID; this entry defined */
/* only for char or blk spec files */
/* File size (bytes) */

/* Time of last access */

/* Last modification time */

/* Last file status change time */
/* Measured in secs since */

/* 00:00:00 GMT, Jan 1, 1970 */
/* Set if the file has optional */
/* access control list entries */

(Section 2)

173

STAT(2)

st_atime

st_mtime

st_ctime

st_mode

NETWORKING FEATURES
RFA

STAT(2)

Field indicating when file data was last accessed. Changed by the fol-
lowing system calls: creat(2), mknod(2), pipe(2), read(2), readv (on
read(2)), and utime(2).

Field indicating when data was last modified. Changed by the follow-
ing system calls: creat(2), truncate(2), ftruncate (on truncate(2)),
mknod(2), pipe(2), prealloc(2), utime(2), write(2), and writev (on
write(2)). Also changed by close(2) when the reference count reaches
zero on a named pipe (FIFO special) file that contains data.

Field indicating when file status was last changed. Changed by the fol-
lowing system calls: chmod(2), chown(2), creat(2), fchmod(2), fchown(2),
truncate(2), ftruncate (on truncate(2)), link(2), mknod(2), pipe(2), preal-
loc(2), rename(2), setacl(2), unlink(2), utime(2), write(2), and writev {(on
write(2)).)

The touch(1) command can be used to explicitly control the times of a
file.

The value returned in this field is the bitwise inclusive OR of a value
indicating the file’s type, attribute bits, and a value summarizing its
access permission. See mknod(2).

For ordinary users, the least significant nine bits consist of the file’s
permission bits modified to reflect the access granted or denied to the
caller by optional entries in the file’s access control list.

For superusers, the least significant nine bits are the file’s access per-
mission bits. In addition, the S_IXUSR (execute by owner) mode bit is
set if the following conditions are met:

-- the file is a regular file,

-- no permission execute bits are set, and

-- an execute bit is set in one or more of the file’s optional

access control list entries.

The write bit is not cleared for a file on a read-only file system or a
shared-text program file that is being executed. However, getaccess(2)
clears this bit under these conditions.

The contents of the structure stat pointed to by buf also include the following members:

uint st_remote:1;
dev_t st_netdev;
ino_t st_netino;
st_remote

st_netdev, st_netino

(Section 2)

/* Set if file is remote */

/* ID of device containing */
/* network special file */

/* Inode number of network special file */

Field indicating whether the file is on a remote node. A zero value
indicates that the file is on the local node; non-zero indicates that the
file is on a remote node, and accessed through remote file access (RFA).
Not all HP-UX systems support RFA; st_remote is always zero on non-
RFA supported systems.

All remote file access takes place through a special file in the local file
system known as a network special file. Each network special file
identifies a particular remote node. When st_remote is non-zero,
st_netdev and st_netino identify the appropriate network special file;

HP-UX Release 7.0: September 1989

STAT(2) STAT(2)

otherwise these fields are zero.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to indi-
cate the error.

ERRORS
Stat or Istat fails if any of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component
of path does not exist).

[EACCES] Search permission is denied for a component of the path prefix.

[EFAULT] Buf or path points to an invalid address. The reliable detection of this
error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path
name.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the
length of a component of the path name exceeds NAME_MAX bytes
while _POSIX_NO_TRUNC is in effect.

Fstat fails if any of the following is true:
[EBADF] Fildes is not a valid open file descriptor.

[EFAULT] Buf points to an invalid address. The reliable detection of this error is
implementation dependent.

DEPENDENCIES
HP Clustered Environment
The contents of the stat structure include the following additional members:

cnode_t st_cnode; /* Cnode ID of machine */
/* where the inode lives */

cnode_t st_rcnode /* Cnode ID where this */
/* device file can be used */

dev_t st_realdev; /* Real device number of device */
/* containing the inode for this file */

st_dev The ID number for the volume on which the inode exists. This
number may or may not be the device number for the device con-
taining the volume. Device numbers are not unique throughout a
cluster, but the value of st_dev is guaranteed to be unique among
all volumes currently mounted in the file system. The device
number for the volume can always be found in the field
st_realdev, which together with st_cnode fully specifies the dev-
ice containing the volume.

CD-ROM
The st_uid and st_gid fields are set to —1 if they are not specified on the disk for a given
file.

RFA and NFS
The st_basemode and st_acl fields are zero on files accessed remotely.

HP-UX Release 7.0: September 1989 -3- (Section 2) 175

STAT{(2)

STAT(2)
AUTHOR
Stat and fstat were developed by AT&T. Lstat was developed by the University of California,
Berkeley.
SEE ALSO

touch(1), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2),
time(2), truncate(2), unlink(2), utime(2), write(2), acl(5), stat(5).

STANDARDS CONFORMANCE
stat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

fstat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

176 (Section 2) -4 - HP-UX Release 7.0: September 1989

STATFS(2) STATFS(2)

NAME
statfs, fstatfs — get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <sys/vfs.h>

int statfs(path, buf)
char *path;
struct statfs *buf;

int fstatfs(fildes, buf)
int fildes;
struct statfs *buf;

DESCRIPTION

Statfs returns information about a mounted file system. Path is the path name of any file within
the mounted file system.

Buf is a pointer to a statfs structure into which information is placed concerning the file system.
The contents of the structure pointed to by buf include the following members:

long f_bavail; /* free blocks available to non-superuser */
long f_bfree; /* free blocks */

long f_blocks; /* total blocks in file system */

long f_bsize; /* fundamental file system block size in bytes */

long f_ffree; /* free file nodes in file system */
long f_files; /* total file nodes in file system */
long f_type; /* type of info, zero for now */

fsid_t f_fsid; /* file system ID */

A file node is a structure in the file system hierarchy that describes a file. For mounted HP-UX
volumes, file node is an HP-UX inode. For other types of mounts, file node is defined by the
system embodying the file pointed to by path.

Fields that are undefined for a particular file system are set to —1.
Fstatfs returns the same information about an open file referred to by file descriptor fildes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, —1 is returned and the global
variable errno is set to indicate the error.

ERRORS
Statfs fails if one or more of the following is true:

[EACCES] Search permission is denied for a component of the path prefix.
[EFAULT] Buf or path points to an invalid address.

[EIO] An I/0O error occurred while reading from or writing to the file system.
[ELOOP] Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG] A component of path exceeds NAME_MAX Dbytes while
_POSIX_NO_TRUNC is in effect, or path exceeds PATH_MAX bytes.

[ENOENT] The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
Fstatfs fails if one or more of the following is true:

HP-UX Release 7.0: September 1989 -1- (Section 2) 177

STATFS(2) STATFS(2)

[EBADF]
Fildes is not a valid open file descriptor.

[EFAULT]
Buf points to an invalid address.

[EIO] An I/O error occurs while reading from or writing to the file system.

AUTHOR
Statfs and fstatfs were developed by Sun Microsystems, Inc.

SEE ALSO
df(1M), stat(2), ustat(2).

178 (Section 2) -2- HP-UX Release 7.0: September 1989

STIME(2) STIME(2)

NAME
stime — set time and date
SYNOPSIS
int stime (tp)
long xtp;
DESCRIPTION
Stime sets the system’s idea of the time and date. Tp points to the value of time as measured in
seconds from 00:00:00 GMT January 1, 1970.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.
ERRORS
[EPERM] Stime will fail if the effective user ID of the calling process is not super-user.
DEPENDENCIES
HP Clustered Environment
On systems that are members of a cluster, setting the time sets the time and date on all
systems in the cluster.
SEE ALSO
date(1), gettimeofday(2), time(2).
STANDARDS CONFORMANCE
stime: SVID2, XPG2

HP-UX Release 7.0: September 1989 -1- (Section 2) 179

STTY(2) STTY(2)

NAME
stty, gtty — control device
SYNOPSIS
#include <sgtty.h>
stty(fildes,argp)
int fildes;
struct sgttyb *argp;
gtty(fildes,argp)
int fildes;
struct sgttyb *argp;
REMARKS
These system calls are preserved for backward compatibility with Bell Version 6. They provide
as close an approximation as possible to the old Version 6 functions. All new code should use
the TCSETA/TCGETA ioctl calls described in termio(7).
DESCRIPTION

For certain status setting and status inquiries about terminal devices, the functions stty and gtty
are equivalent to

ioctl(fildes, TIOCSETP, argp)
ioctl(fildes, TIOCGETP, argp)

respectively; see termio(7).

RETURNS
Zero is returned if the call was successful; -1 if the file descriptor does not refer to the kind of
file for which it was intended.

SEE ALSO
stty(1), exec(2), sttyVé(7), tty(7), termio(7).

180 (Section 2) -1- HP-UX Release 7.0: September 1989

SWAPON(2) SWAPON(2)

NAME

swapon — add swap space for interleaved paging/swapping

SYNOPSIS

swapon (special) |(directory, [min, limit, reserve, priority])
char * special, directory;
int min, limit, reserve, priority;

DESCRIPTION

Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. See the appropriate system administrator’s manual for information
on how the size of the swap area is calculated.

Swapon can also make the blocks on the file system specified by directory available for paging
and swapping.

The min limit reserve and priority parameters default to zero and only have meaning if the first
parameter passed to swapon is a directory.

min indicates the number of file system blocks to take from the file system at the time that
swapon() is called.

limit indicates the maximum number of file system blocks the swap system is allowed to take
from the file system.

reserve indicates the number of file system blocks that are saved for file system use only.

priority indicates the order in which space is taken from the file systems used for swap. Space
is taken from the lower priority systems first.

File systems used for swapping do not have to be configured into the system.

Swapon may be invoked only by the super-user.

ERRORS

Swapon will fail if one or more of the following are true:

[ENOTBLK] Special is not the name of a block special file.

[ENXIO) The device associated with special could not be opened.

[EBUSY] The device associated with special is already in use.

[ENODEV] The device associated with special does not exist.

[EPERM] The effective user ID is not super-user.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENOENT] The swap space requested is not a block special file or a directory

[ENOSPC] There is is not enough available space on the file system specified to allocate
the amount requested in the min parameter.

[EINVAL] The system imposed limit on the number of swap file entries has been reached.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

WARNINGS

There is no way to stop swapping on a disk so that the pack may be dismounted.

HP-UX Release 7.0: September 1989 -1~ (Section 2) 181

SWAPON(2) SWAPON(2)

The system will allocate no less than the amount specified in "min", however, to make the
most efficient use of space, more than the amount requested might be taken from the file sys-
tem. The actual amount taken will not exceed the number of file system blocks indicated in
"reserve",
Swapping to the file system can be slower than swapping to a device.

AUTHOR
Swapon was developed by the University of California, Berkeley.

SEE ALSO
swapon(1M).

182 (Section 2) -2- HP-UX Release 7.0: September 1989

SYMLINK(2) SYMLINK(2)

NAME
symlink — make symbolic link to a file
SYNOPSIS
symlink(namel, name?2)
char *namel, *name2;
DESCRIPTION
Symlink creates a file name2, which is a symbolic link to namel. Either name may be an arbi-
trary path name. The files need not be on the same fiie system.
RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored
in errno and a —1 value is returned.
ERRORS
The symbolic link is made unless one or more of the following are true:

[ENOTDIR] A component of the name2 prefix is not a directory.
[ENAMETOOLONG]
A component of either path name exceeds NAME_MAX bytes while

_POSIX_NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

[ENOENT)] The named file does not exist.

[EACCES] A component of the name2 path prefix denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the path name.
[EEXIST] Name? already exists.

[EIO] An I/0 error occurred while making the directory entry for name2, allocating

the inode for name2, or writing out the link contents of name2.
[EROFS] The file name2 resides on a read-only file system.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed can-
not be extended because there is no space left on the file system containing the

directory.

[ENOSPC] The new symbolic link cannot be created because there there is no space left
on the file system that will contain the symbolic link.

[ENOSPC] There are no free inodes on the file system on which the symbolic link is being
created.

[EIO] An I/0 error occurred while making the directory entry or allocating the inode.

[EFAULT] Namel or name2 points outside the process’ allocated address space. The reli-

able detection of this error is implementation dependent.

AUTHOR
Symlink was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
symlink(4), readlink(2), link(2), cp(1), unlink(2).

HP-UX Release 7.0: September 1989 -1- (Section 2) 183

SYNC(2) SYNC(2)

NAME

sync, Isync — update super-block
SYNOPSIS

void sync ()

void 1Isync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified inodes, and delayed block I/O.

It should be used by programs which examine a file system, for example fsck, df, etc. It is man-
datory before a shutdown.

The writing, although scheduled, is not necessarily complete upon return from syrnc.

In some HP-UX systems, sync may be reduced to a no-op. This is permissible on a system
which does not cache buffers, or in a system that in some way ensures that the disks are always
in a consistent state.

In the HP Clustered Environment, sync causes updates of all file systems in the cluster to be
written out, while Isync performs only a local sync; that is, local buffers are flushed to disk and
to remote nodes of the cluster, but remote nodes do not flush their own pages.

AUTHOR

Sync was developed by HP and AT&T Bell Laboratories. Lsync was developed by HP.
SEE ALSO

sync(1M).
STANDARDS CONFORMANCE

sync: SVID2, XPG2

184 (Section 2) -1- HP-UX Release 7.0: September 1989

SYSCONEF(2)

NAME

sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>
long sysconf(name)
int name;

DESCRIPTICN

SYSCONF(2)

The sysconf function enables applications to determine the current value of a configurable limit

or variable.

The name argument represents the system variable being queried.

The following table lists the configuration variables whose values can be determined by calling
sysconf, and for each variable, the associated value of the name argument and function return:

Variable Value of name Value Returned
ARG_MAX _SC_ARG_MAX Maximum length of the argu-
ments for exec(2) in bytes,
including environment data
CHILD_MAX _SC_CHILD_MAX Maximum number of simul-
taneous processes per user ID
CLK_TCK _SC_CLK_TCK Number of clock intervals per

NGROUPS_MAX

OPEN_MAX

PASS_MAX

_SC_NGROUPS_MAX

_SC_OPEN_MAX

_SC_PASS_MAX

_POSIX_JOB_CONTROL _SC_JOB_CONTROL

_POSIX_SAVED_IDS

HP-UX Release 7.0: September 1989

_SC_SAVED_IDS

second

Maximum number of simul-
taneous supplementary group
IDs per process

Maximum number of files that
one process can have open at
one time

Maximum number of significant
characters in a password

Non-zero if the system sup-
ports POSIX job control; —1
otherwise

Non-zero if each process has a
saved set-user-ID and a saved
set-group-ID; —1 otherwise

(Section 2)

185

SYSCONEF(2) SYSCONF(2)

_POSIX_VERSION _SC_VERSION Version of the POSIX Standard
(such as 198808L) to which the.
system conforms. This value
will change with each pub-
lished revision of the standard,
to indicate the year (first four
digits) and month (next two
digits) that the standard was
approved by the IEEE Stan-
dards Board. If the system does
not conform to any version, —1
is returned.

The variables in the table are defined as constants in <limits.h> (see limits(5)). The associated
values of the name argument are defined in <unistd.h>.

RETURN VALUE
If the value of name is not valid, sysconf returns —1 and sets errno to indicate the error. If the

variable corresponding to name is not defined, sysconf returns —1; however, errno will not be
changed.

Upon any successful completion, sysconf returns the value of the named variable, as described
above. These values do not change during the lifetime of the calling process.
ERRORS .
Sysconf fails if the following condition is true:
[EINVAL] The value of name is not valid.

EXAMPLES
The following example determines the number of times the system clock ticks each second:

#include <unistd.h>
long hz;

hz = sysconf(_SC_CLK_TCK);

AUTHOR
Sysconf was developed by HP and POSIX.

SEE ALSO
pathconf(2), unistd(5), limits(5).

STANDARDS CONFORMANCE
sysconf: XPG3, POSIX.1, FIPS 151-1

186 (Section 2) -2- HP-UX Release 7.0: September 1989

TIME(2) TIME(2)

NAME

time — get time
SYNOPSIS

#include <time.h>

time_t time (tloc)
time_t +tloc;

Time returns the value of time in seconds since the Epoch.
If tloc is not a null pointer, the return value is also assigned to the object to which it points.

ERRORS
[EFAULT] Time will fail if tloc points to an illegal address. The reliable detection of this
error will be implementation dependent.
RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value of (time_t)—1 is
returned and errno is set to indicate the error.
SEE ALSO
date(1), gettimeofday(2), stime(2), ctime(3C), strftime(3C).
STANDARDS CONFORMANCE
time: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 2) 187

TIMES(2) TIMES(2)

NAME

times — get process and child process times

SYNOPSIS

#include <sys/times.h>

clock_t times (buffer)
struct tms xbuffer;

DESCRIPTION

Times fills the structure pointed to by buffer with time-accounting information. The structure
defined in sys/times.h is as follows:

struct tms {
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */
clock_t tms_cutime; /* user time, children */
clock_t tms_cstime; /* system time, children */
b
This information comes from the calling process and each of its terminated child processes for
which it has executed a wait, wait3, or waitpid. The times are in units of 1 /CLK_TCK seconds,

where CLK_TCK is processor dependent The value of CLK_TCK can be queried using the sys-
conf(2) call.

Tms_utime is the CPU time used while executing instructions in the user space of the calling
process.

Tms_stime is the CPU time used by the system on behalf of the calling process.
Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

ERRORS

[EFAULT] Times will fail if buffer points to an illegal address. The reliable detection of
this error will be implementation dependent.

RETURN VALUE

Upon successful completion, times returns the elapsed real time, in units of 1/CLK_TCK of a
second, since an arbitrary point in the past (e.g., system start-up time). This point does not
change from one invocation of times to another. If times fails, a —1 is returned and errno is set
to indicate the error.

SEE ALSO

BUGS

time(1), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2).

Not all CPU time expended by system processes on behalf of 4 user process is counted in the
system CPU time for that process.

STANDARDS CONFORMANCE

188

times: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

(Section 2) -1- HP-UX Release 7.0: September 1989

TRUNCATE(2) TRUNCATE(2)

NAME
truncate, ftruncate — truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
unsigned long length;
ftruncate(fd, length)
int fd;
unsigned long length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun-
cate, the file must be open for writing; for truncate the user must have write permission for the
file.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a —1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[ENOTDIR] A component of the path prefix of path is not a directory.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the file.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EFAULT] Path points outside the process’s allocated address space. The reliable detec-
tion of this error will be implementation dependent.

{ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

Ftruncate succeeds unless:

[EBADF] The fd is not a valid descriptor.
[EINVAL] The fd references a file that was opened without write permission.
AUTHOR

Truncate was developed by the University of California, Berkeley California, Computer Science
Division, Department of Electrical Engineering and Computer Science.

SEE ALSO
open(2).

HP-UX Release 7.0: September 1989 -1- (Section 2) 189

ULIMIT(2) ULIMIT(2)

NAME
ulimit — get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit (cmd, ..)

int cmd;
DESCRIPTION .
This function provides for control over process limits. The cmd values available are:
UL_GETFSIZE Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read.
UL_SETFSIZE Set the file size limit of the process to the value of the optional second

argument. Any process may decrease this limit, but only a process with
an effective user ID of super-user may increase the limit. Note that the
limit must be specified in units of 512-byte blocks.

UL_GETMAXBRK Get the maximum possible break value. See brk(2). Depending on sys-
tem resources such as swap space, this maximum may not be attainable
at a given time.

ERRORS
Ulimit will fail if one or more of the following conditions is true.
[EINVAL} cmd is not in the correct range.
[EPERM] Ulimit will fail and the limit will be unchanged if a process with an effective

user ID other than super-user attempts to increase its file size limit.
RETURN VALUE .
Upon successful completion, a non-negative value is returned. Errors return a -1, with errno
set appropriately.
SEE ALSO
brk(2), write(2).

STANDARDS CONFORMANCE
ulimit: SVID2, XPG2, XPG3

190 (Section 2) -1- HP-UX Release 7.0: September 1989

UMASK(2) UMASK(2)

NAME

umask — set and get file creation mask
SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask (cmask)
mode_t cmask;
DESCRIPTION
Umask sets the process’s file mode creation mask to cmask and returns the previous value of the
mask. Only the file access permission bits of the masks are used.

The bits set in cmask specify which permission bits to turn off in the mode of the created file,
and should be specified using the symbolic values defined in stat(5).

EXAMPLES
The following creates a file named path in the current directory with permissions
S_IRWXU IS_IRGRP|S_IXGRP, so that the file can be written only by its owner, and can be
read or executed only by the owner or processes with group permission, even though group
write permission and all permissions for others are passed in to creat.

#include <sys/types.h>
#include <sys/stat.h>

int fildes;

(void) umask(S_IWGRP |S_IRWXO);
fildes = creat("path", S_LIRWXU|S_IRWXG|S_IRWXO);

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), mknod(iM), chmod(2), creat(2), mknod(2), open(2).

STANDARDS CONFORMANCE
umask: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 191

UMOUNT(2) UMOUNT(2)

NAME

umount — unmount a file system
SYNOPSIS

int umount (name)

char x*name;
DESCRIPTION

Umount requests that a previously mounted file system contained on the block special device
identified by name be unmounted. Name is a pointer to a path name. After unmounting the
file system, the directory upon which the file system was mounted reverts to its ordinary
interpretation.

Umount can also request that a file system mounted previously on the directory identified by
name be unmounted. After unmounting the file system, name reverts to its ordinary interpreta-
tion.

Umount can be invoked only by the superuser.

NETWORKING FEATURES
NFS

Path must indicate a directory name when unmounting an NFS file system.

RETURN VALUE
If successful, umount returns a value of 0. Otherwise, it returns a value of —1 and sets errno to
indicate the error.

ERRORS
Umount fails if one or more of the following are true:

[EPERM] The effective user ID of the process is not that of the superuser.

[ENOENT)] Name does not exist.

[ENOTBLK] Name is not a block special device.

[EINVAL] Name is not mounted.

[EBUSY] A file on name is busy.

[EFAULT] Name points outside the allocated address space of the process. Reliable detec-
tion of this error is implementation dependent.

[ENXIO] The device associated with name does not exist.

[ENOTDIR] A component of name is not a directory.

[ENOENT] Name is null.

[ENAMETOOLONG]

Name exceeds PATH_MAX bytes, or a component of name exceeds NAME_MAX
bytes while _POSIX_NO_TRUNC is in effect.

[EACCES] A component of the path prefix of name denies search permission.
[ELOOF} Too many symbolic links were encountered in translating the path name.
WARNINGS

If umount is called from the program level (that is, not from the mount(1M) level), the table of
mounted devices contained in /etc/mnttab is not updated automatically.
DEPENDENCIES
HP Clustered Environment:
When umount is called from a diskless node and path refers to a block-special file, path is
interpreted from the root server. This behavior is subject to change in future releases, and

192 (Section 2) -1- HP-UX Release 7.0: September 1989

UMOUNT(2) UMOUNT(2)

its use in applications is not recommended.

When umount is called from a diskless node and path refers to a directory on which is
mounted a UFS file system (as opposed to an NFS file system; see vfsmount(2)), an EINVAL
error is returned. This behavior is subject to change in future releases, and its use in
applications is not recommended.

SEE ALSO
mount(1M), mount(2), vfsmount(2).

STANDARDS CONFORMANCE
umount: SVID2, XPG2

HP-UX Release 7.0: September 1989 -2 - (Section 2) 193

UNAME(2) UNAME(2)

NAME

uname, setuname — get/set name of current HP-UX system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

int setuname(name, namelen)
char *name;
int namelen;

DESCRIPTION

Uname stores information identifying the current HP-UX system in the structure pointed to by
name. ‘

Uname uses the structure defined in <sys/utsname.h> whose members are:

#define UTSLEN 9
#define SNLEN 15

char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLENY];
char idnumber[SNLEN];

Uname returns a null-terminated string in each field. The sysname field contains "HP-UX".
Similarly, the nodename field contains the name by which the system is known on a communi-
cations network. The release field contains the release number of the operating system, such as
"1.0" or "3.0.1". The version field contains additional information about the operating system.
The first character of the version field is set to:

Character | Series 800 | Series 300

A ; single user system : two-user system

B | 16-user system | unlimited-users system
C | 32-user system |

D | 64-user system |

U | unlimited-users system |

(Note that the contents of the version field might change on future releases, as AT&T license
agreement restrictions change.) The machine field contains a standard name that identifies the
hardware on which the UNIX system is running. The idnumber is a unique identification
number within that class of hardware, possibly a hardware or software serial number. This
field returns the null string to indicate the lack of an identification number.

Setuname sets the nodename field in the utsname structure to name, which has a length of
namelen characters. This is usually executed by /etc/rc when the system is bootstrapped.
Names are limited to UTSLEN - 1 characters; UTSLEN is defined in <sys/utsname.h>.

ERRORS

[EPERM] Setuname is not executed by the superuser.

[EFAULT] Name points to an illegal address. The reliable detection of this error is imple-
mentation dependent.

RETURN VALUE

194

Upon successful completion, a non-negative value is returned. Otherwise, —1 is returned and

(Section 2) -1~ HP-UX Release 7.0: September 1989

UNAME(2) UNAME(2)

errno is set to indicate the error.
AUTHOR

Uname was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.
SEE ALSO

hostname(1), uname(1), gethostname(2), sethostname(2).
STANDARDS CONFORMANCE

uname: SVIDZ, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2 - (Section 2) 195

UNLINK(2) UNLINK(2)

NAME
unlink — remove directory entry; delete file

SYNOPSIS
int unlink (path)
char xpath;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to by path.
When all links to a file have been removed and no process has the file open, the space occupied
by the file is freed and the file ceases to exist. If one or more processes have the file open when
the last link is removed, the removal is postponed until all references to the file have been
closed.

RETURN VALUE ‘
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EPERM] The named file is a directory and the effective user ID of the process is not
super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file system.

[EFAULT] Path points outside the process’s allocated address space. The reliable detec-
tion of this error will be implementation dependent.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.
[ELOOP} Too many symbolic links were encountered in translating the path name.
SEE ALSO
rm(1), close(2), link(2), open(2).

STANDARDS CONFORMANCE
unlink: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

196 (Section 2) -1~ HP-UX Release 7.0: September 1989

USTAT(2) USTAT(2)

NAME
ustat — get file system statistics

SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
dev_i dev;
struct ustat xbuf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device number identifying a
device containing a mounted file system. Buf is a pointer to a ustat structure (defined in
ustat.h) that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6); /+ Filsys name */
char f_fpack[6]; /* Filsys pack name */
int f_blksize; /* Block size x/
The values of the f_tfree and f_blksize fields are reported in fragment size units.

ERRORS
Ustat will fail if one or more of the following are true:

[EINVAL] Dev is not the device number of a device containing a mounted file system.

[EFAULT] Buf points outside the process’s allocated address space. The reliable detection
of this error will be implementation dependent.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

AUTHOR
Ustat was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
touch(1), stat(2), fs(4).

STANDARDS CONFORMANCE
ustat: SVID2, XPG2

HP-UX Release 7.0: September 1989 -1- (Section 2) 197

UTIME(2) UTIME(2)

NAME
utime — set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <utime.h>

int utime (path, times)
char xpath;
struct utimbuf *times;

DESCRIPTION
Utime sets the access and modification times of the file to which the path argument refers.

If times is a null pointer, the access and modification times of the file are set to the current time.
A process must be the owner of the file or have write permission on the file to use utime in this
manner.

If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the
access and modification times are set to the values contained in the designated structure. Only
the owner of the file or the superuser can use utime this way.

The following times in the <utimbuf> structure, defined in <unistd.h>, are measured in
seconds since 00:00:00 GMT, Jan. 1, 1970.
time_t actime; /* access time * /
time_t modtime; /#* modification time */
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Utime fails if one or more of the following is true:
[ENOENT] The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] Search permission is denied by a component of the path prefix.
[EPERM] The effective user ID is not superuser and not the owner of the file, and fimes is
not a null pointer.
[EACCES} The effective user ID is not superuser and not the owner of the file, and times is
a null pointer and write access is denied.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] Times is not a null pointer, and points outside the process’s allocated address
space. The reliable detection of this error is implementation dependent.
{EFAULT] Path points outside the process’s allocated address space. The reliable detec-
tion of this error is implementation dependent.
[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.
SEE ALSO

touch(1), stat(2), unistd(5).

STANDARDS CONFORMANCE
utime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

198 (Section 2) -1- HP-UX Release 7.0: September 1989

VFORK(2) VFORK(2)

NAME

vfork — spawn new process in a virtual memory efficient way
SYNOPSIS

int vfork()
REMARKS

Vfork is provided as a higher performance version of fork on those systems which choose to pro-
vide it and for which there is a performance advantage.

Vfork differs from fork only in that the child process may share code and data with the calling
process (parent process). This speeds the cloning activity significantly at a risk to the integrity
of the parent process if vfork is misused.

The use of vfork for any purpose except as a prelude to an immediate exec or exit is not sup-
ported. Any program which relies upon the differences between fork and vfork is not portable
across HP-UX systems.

All implementations of HP-UX must provide the entry vfork, but it is permissible for them to
treat it identically to fork. Some implementations may not choose to distinguish the two
because their implementation of fork is as efficient as possible, and others may not wish to
carry the added overhead of two similar calls.

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process. If a forked process is simply going to do an exec(2), the data space copied from the
parent to the child by fork(2) is not used. This is particularly inefficient in a paged environ-
ment. Vfork is useful in this case. Depending upon the size of the parent’s data space, it can
give a significant performance improvement over fork.

Vfork differs from fork in that the child borrows the parent’s memory and thread of control until
a call to exec or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the child’s context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather than
exit if you cannot exec, since exit will flush and close standard I/O channels, and thereby mess
up the parent process’s standard I/O data structures. (Even with fork it is wrong to call exit
since buffered data would then be flushed twice.)

The [vfork,exec] window begins at the vfork call and ends when the child completes its exec call.

RETURN VALUE
Upon successful completion, vfork returns a value of 0 to the child process and returns the pro-
cess ID of the child process to the parent process. Otherwise, a value of —1 is returned to the
parent, no child process is created, and errno is set to indicate the error.

ERRORS
Vfork fails and no child process are created if one or more of the following is true:

[EAGAIN] The system-wide limit on the total number of processes under execution would
be exceeded.
[EAGAIN] The system-imposed limit on the total number of processes under execution by
a single user would be exceeded.
DEPENDENCIES
Series 800

Process times for the parent and child processes within the [vfork,exec] window may be

HP-UX Release 7.0: September 1989 -1- (Section 2) 199

VFORK(2) VFORK(2)

inaccurate.

The parent and child processes share the same stack space within the [vfork,exec] window.
If the size of the stack has been changed within this window by the child process (return
from or call to a function, for example), it is likely that the parent and child processes will
be killed with signal SIGSEGV or SIGBUS.

In the [vfork,exec] window, a call to signal(2) that installs a catching function can affect

handling of the signal by the parent. The parent is not affected if the handling is being
set to SIG_DFL or SIG_IGN, or if either sigaction(2) or sigvector(2) is used.

AUTHOR

Vfork was developed by the University of California, Berkeley.
SEE ALSO

exec(2), exit(2), fork(2), wait(2).

200 (Section 2) -2- HP-UX Release 7.0: September 1989

VFSMOUNT (2) VFSMOUNT(2)

NAME

vfsmount — mount a file system

SYNOPSIS

#include <sys/types.h>
#include <sys/mount.h>

int vfsmount(type, dir, flags, data)
int type;

char *dir;

int flags;

caddr_t data;

DESCRIPTION

Vfsmount attaches a file system to a directory. After a successful return, references to directory
dir will refer to the root directory of the newly mounted file system. Dir is a pointer to a null-
terminated string containing a path name. Dir must exist already, and must be a directory. Its
old contents are inaccessible while the file system is mounted. Vfsmount differs from mount(2)
in its ability to mount other than just a local file system.

Type indicates the type of the file system. It must be one of the types described below.

The flags argument determines whether the file system can be written on (functionally identical
to the rwflag argument in mount(2) in this regard). It also controls whether programs from the
mounted file system are allowed to have set-uid execution. Physically write-protected and mag-
netic tape file systems must be mounted read-only. Failure to do so will result in a return of —1
by vfsmount and a value of EIO in errno. The following values for the flags argument are
defined in <sys/mount.h>:

M_RDONLY Mount done as read-only.

M_NOSUID Execution of set-uid programs not permitted.

Data is a pointer to a structure that contains arguments specific to the value contained in type.
The following values for types are defined in <sys/mount.h>:

MOUNT_UFS Mount a local HFS file system. Data points to a structure of the
following format:

struct ufs_args {
char *fspec;
¥

Fspec points to the name of the block special file that is to be mounted. This is identical in use
and function to the first argument for mount(2).

MOUNT_CDFS Mount a local CD-ROM file system. Data points to a structure of
) the following format:

struct cdfs_args {
char *fspec;
7

Fspec points to the name of the block special file that is to be mounted.

NETWORKING FEATURES

NFsS

HP-UX

An additional value for the type argument is supported.

MOUNT_NFS Mount an NFS file system. Data points to a structure of the following
format:

Release 7.0: September 1989 -1~ (Section 2) 201

VFSMOUNT(2) VFSMOUNT(2)

#include <nfs/nfs.h>
#include <netinet/in.h>

struct nfs_args {
JEPYSPIPESRPRPE TN I SO SUR SR I BN
DL ULl DULAaUUL 111 auul,

fhandle_t *fth;

int flags;
int wsize;
int 1size;
int timeo;
int retrans;

char *hostname;
I
Addr points to a local socket address structure (see inet(7)), which is
used by the system to communicate with the remote file server.

Fh points to a structure containing a file handle, an abstract data type
that is used by the remote file server in serving an NFS request.

Flags is a bit map that sets options and indicates which of the follow-
ing fields contain valid information. The following values of the bits
are defined in <nfs/nfs.h>:

NFSMNT_SOFT Specify whether the mount is a soft mount or a hard mount. If set, the
mount is soft and will cause requests to be retried retrans number of
times. Otherwise, the mount is hard and requests will be tried forever.

NFSMNT_WSIZE
Set the write size.

NFSMNT_RSIZE
Set the read size.

NESMNT_TIMEO
Set the initial timeout value.

NFSMNT_RETRANS
Set the number of request retries.

NFSMNT_HOSTNAME
Set a hostname.

NFSMNT_INT Set the option to have interruptible I/O to the mounted file system.

NFSMNT_NODEVS
Set the option to deny access to local devices via NFS device files. By
default, access to local devices via NFS device files is allowed.

Wsize can be used to advise the system on the maximum number of data bytes to use for a sin-
gle outgoing protocol (such as UDP) message. This value must be greater than 0. Default
wsize is 8192.

Rsize can be used to advise the system on the maximum number of data bytes to use for a sin-

gle incoming protocol (such as UDP) message. This value must be greater than 0. Default
rsize is 8192.

Timeo can be used to advise the system on the time to wait between NFS request retries. This
is in units of 0.1 seconds. This value must be greater than 0. Default timeo is 7.

Retrans can be used to advise the system on the number of times the system will resend a
request. This value must be 0 or greater. Default retrans is 4.

202 (Section 2) -2 - HP-UX Release 7.0: September 1989

VFSMOUNT(2)

VFSMOUNT(2)

Hostname is a name for the file server that can be used when any messages are given concern-
ing the server. The string can be of length from 0 to 32 characters.

RETURN VALUE

Upon successful completion, vfsmount returns a value of 0. Otherwise, no file system is
mounted, a value of —1 is returned and errno is set to indicate the error.

ERRORS

Vfsmount will fail

! when one of the following occurs:

[EBUSY] Dir is not a directory, or another process currently holds a reference to it.
[EBUSY] No space remains in the mount table.
[EBUSY] The super block for the file system had a bad magic number or an out-of-range
block size.
[EBUSY] Not enough memory was available to read the cylinder group information for
the file system.
[EFAULT) Data or dir points outside the allocated address space of the process.
[EIO] An I/O error occurred while reading from or writing to the file system.
[ELOOP] Too many symbolic links were encountered in translating the path name of file
system referred to by data or dir.
[ENAMETOOLONG]
The path name of the file system referred to by data or dir PATH_MAX bytes, or
the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.
[ENOENT] The file system referred to by data or dir does not exist.
[ENOENT] The file system referred to by data does not exist.
[ENOTBLK] The file system referred to by data is not a block device. This is for a local
mount.
[ENOTDIR] A component of the path prefix in dir is not a directory.
[ENOTDIR] A component of the path prefix of the file system referred to by data or dir is
not a directory.
[ENXIO] The major device number of the file system referred to by data is out of range
(this indicates no device driver exists for the associated hardware).
[EPERM] The caller is not the super-user.
DEPENDENCIES
NFS: Vfsmount fails when one of the following occurs, and returns the error indicated:
[EFAULT] A pointer in the data structure points outside the process’s allocated
address space.
[EINVAL] A value in a field of data is out of proper range.
[EREMOTE] An attempt was made to remotely mount a file system that was already

mounted from another remote node.

See getfh(2), inet(7), and mountd(1M) for more information. -

HP Clustered Environment:
Vfsmount of a local file system (MOUNT_UFS) is not supported from a cluster client. Such
a call returns an EINVAL error.

HP-UX Release 7.0: September 1989 -3- (Section 2) 203

VFSMOUNT(2) VFSMOUNT(2)

WARNINGS
Use of mount(1M) is preferred over vfsmount because mount(1M) supports all mounting options
that are available from vfsmount directly, plus mount(1M) also maintains the /etc/mnttab file
which lists what file systems are mounted.

AUTHOR
Vfsmount was developed by HP and Sun Microsystems, Inc.

SEE ALSO
mount(2), umount(2), mount(1M).

204 (Section 2) -4 - HP-UX Release 7.0: September 1989

WAIT(2)

NAME

WAIT(2)

wait, waitpid, wait3 — wait for child or traced process to stop or terminate

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait (stat_loc)
int xstat_loc;

pid_t wait ((int +)0)

pid_t waitpid (pid, stat_loc, options)

pid_t pid;
int *stat_loc;
int options;

pid_t wait3 (stat_loc, options, (int *)0)

int xstat_loc;
int options;

DESCRIPTION

Wait suspends the calling process until one of the immediate children terminates or until a pro-
cess being traced stops, because that traced process has hit a break point. A process being
traced can be either a child or a process attached by the ptrace(2) request PT_ATTACH (see
ptrace(2)). The wait system call returns prematurely if a signal is received. If a child or traced
process stops or terminates prior to the call on wait, return is immediate.

If stat_loc is not a null pointer, status information is stored in the location pointed to by stat_loc.
The status can be used to differentiate between stopped and terminated processes. If the pro-
cess terminates, the status identifies the cause of termination and passes useful information to
the calling process. This is accomplished using the following macros defined in <wait.h>, with
the status value stored at %stat_loc as an argument:

WIFEXITED (stat_val)

WEXITSTATUS (stat_val)

WIFSIGNALED (stat_val)

WTERMSIG (stat_val)

WCOREDUMP (stat_val)

WIFSTOPPED (stat_val)

WSTOPSIG (stat_val)

If the process terminated because of an exit(2) or _exit sys-
tem call, this macro evaluates to a non-zero value.

If the value of WIFEXITED(stat_val) is non-zero, this macro
evaluates to-the low-order 8 bits of the argument that the
process passed to exit or _exit (see exit(2)).

If the process terminated due to the default action of a sig-
nal (see signal(5)), this macro evaluates to a non-zero value.

If the value of WIFSIGNALED(stat_val) is non-zero, this

macro evaluates to the number of the signal that caused the
termination.

If the value of WIFSIGNALED(stat_val) is non-zero, this
macro evaluates to a non-zero value if a "core image" was
produced (see signal(5)).

If the process is stopped, this macro evaluates to a non-zero
value.

If the value of WIFSTOPPED(stat_val) is non-zero, this macro
evaluates to the number of the signal that caused the pro-
cess to stop.

As a single special case, the value stored in xstat_loc is zero if and only if status is being
returned from a terminated process that called exit or _exit with a value of zero.

HP-UX Release 7.0: September 1989

-1- (Section 2) 205

WAIT(2) WAIT(2)

If the information stored at the location pointed to by stat_loc was stored there by a call to one
of the wait functions, exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(#stat_loc),
and WIFSTOPPED(xstat_loc) evaluates to a non-zero value.

The waitpid function behaves identically to wait if pid has a value of —1 and options has a value
of zero. Otherwise its behavior is modified by the values of the pid and options arguments.

The pid argument specifies the set of processes for which status is requested. The waitpid func-
tion returns only the status of a child process from this set.

» If pid is equal to —1, status is requested for any child process or attached process. In
this respect, waitpid is then equivalent to wait. -

+ If pid is greater than zero, it specifies the process ID of a single child or attached pro-
cess for which status is requested.

+ If pid is equal to zero, status is requested for any child or attached process whose
process group ID is equal to that of the calling process.

« If pid is less than —1, status is requested for any child or attached process whose
process group ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise inclusive OR of zero or more of the fol-
lowing flags:

WNOHANG If this flag is set, waitpid or wait3 is prevented from suspending the cal-
ling process. A value of zero is returned indicating that no child or
traced processes have stopped or died.

WUNTRACED If and only if this flag is set, waitpid or wait3 returns information on
child or attached processes that are stopped but not traced (with
ptrace(2)) because they received a SIGTTIN, SIGTTOU, SIGTSTP, or SIG-
STOP signal, and whose status has not yet been reported. Regardless
of this flag, status is returned for child or attached processes that have
terminated or are stopped and traced and whose status has not yet
been reported.

Calling wait3 is equivalent to calling waitpid with the value of pid equal to zero. The third
parameter to wait3 is currently unused and must always be a null pointer.

If a parent process terminates without waiting for its child processes to terminate, the parent
process ID of each child process is set to 1. This means the initialization process inherits the
child processes.

Notes
Earlier HP-UX versions documented the bit encodings of the status returned by wait rather than
the macros WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED,
and WSTOPSIG. Applications using those bit encodings will continue to work correctly. How-
ever, new applications should use the macros for maximum portability.

In earlier HP-UX versions, the macros WIFSTOPPED, WIFSIGNALED and WIFEXITED have the
same definitions as the corrspondingly named macros in the BSD 4.3 and earlier systems. Exist-
ing applications that depend on these definitions will continue to work correctly. However, if
the application is recompiled, the feature test macro _BSD must be turned on for the compila-
tion so that the old definitions of these macros are obtained. New definitions of these macros
are in effect by default. The only difference between the old and new definitions is the type of
the argument. Type union wait is used in the BSD definitions while type int is used in the
default definitions.

ERRORS

206 (Section 2) -2 - HP-UX Release 7.0: September 1989

WAIT(2)

WAIT(2)

Wait fails if one or more of the following is true:

[ECHILD]

[ECHILD]

[EFAULT]

[EINVAL]
[EINVAL]
[EINTR]

RETURN VALUE

The calling process to wait or wait3 has no existing child or traced
processes, or the calling process to waitpid has no existing unwaited-for
child or traced processes that match the pid argument.

For waitpid, the process or process group specified by pid does not exist
or is not a child of the calling process.

Stat_loc points to an illegal address. The reliable detection of this error
is implementation dependent.

The options argument to waitpid or wait3 is invalid.
Wait3 was passed a non-null pointer value for its third argument.

The function was interrupted by a signal. The value of the location
pointed to by stat_loc is undefined.

If wait returns due to the receipt of a signal, a value of —1 is returned to the calling process and
errno is set to EINTR. If wait returns due to a stopped or terminated child or traced process, the
process ID of that process is returned to the calling process. If waitpid or wait3 is called, the
WNOHANG option is used, and there are no stopped or terminated child or traced processes (as
specified by pid in the case of waitpid), a value of zero is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

WARNINGS

The behavior of wait, waitpid, and wait3 is affected by setting the SIGCLD signal to SIG_IGN.
See WARNINGS section of signal(5). Signal handlers that cause system calls to be restarted can
affect the EINTR condition described above (see sigaction(2), sigvector(2), and bsdproc(2)).

AUTHOR

Wait, waitpid, and wait3 were developed by HP, AT&T, and the University of California, Berke-

ley.
SEE ALSO

Exit conditions ($?) in sh(1), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5).

STANDARDS CONFORMANCE

wait: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
waitpid: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -3 - (Section 2) 207

WRITE(2) WRITE(2)

NAME

write, writev — write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fiides;

char +buf;

unsigned nbyte;

#include <sys/types.h>
#include <sys/uio.h>

int writev (fildes, iov, iovcnt)
int fildes;

struct iovec *iov;

int iovent;

DESCRIPTION

208

Write attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with
the file descriptor fildes. Writev performs the same action, but gathers the output data from the
iovlen buffers specified by the elements of the iovec array: iov{0], iov[1], ..., Rl iov| iovent —1}.

The iovec structure for writev is defined as follows:

struct iovec {
caddr_t iov_base;
int iov_len;
b
Each iovec entry specifies the base address and length of an area in memory from which data
should be copied. The iovec array may be at most MAXIOV long.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file offset. Upon return from write, the file offset is incremented by the
number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the device’s current posi-
tion. The value of a file offset associated with such a device is undefined.

If the O_APPEND file status flag is set, the file offset is set to the end of the file prior to each
write.

For ordinary files, if the O_SYNC flag of the file status flags is set, the write does not return until
both the file data and the file status are physically updated. For block special files, if O_SYNC is
set, the write does not return until the data is physically updated. How the data reaches the
physical media is implementation and hardware dependent.

If the number of bytes requested by write exceeds the allotted capacity (see ulimit(2)) or the
physical end of a medium, only the allotted number of bytes are actually written. For example,
suppose there is space for 20 bytes more in a file before reaching a limit. A write of 512 bytes
will return 20. The next write of a non-zero number of bytes fails (except as noted below).

A write to an ordinary file is prevented if enforcement-mode file and record locking is set, and
another process owns a lock on the segment of the file being written:

If O_NDELAY or O_NONBLOCK is set, the write returns —1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the write does not complete until the block-
ing record lock is removed.

If the file being written is a pipe (or FIFO), the system-dependent maximum number of bytes
that it can store is given by PIPSIZ (defined in <sys/inode.h>). The minimum value of PIPSIZ

(Section 2) -1- HP-UX Release 7.0: September 1989

WRITE(2)

WRITE(2)

on any HP-UX system is 8192. When writing a pipe, the following conditions apply:
If the O_NDELAY or O_NONBLOCK file status flag is set:

If nbyte is less than or equal to PIPSIZ and sufficient room exists in the pipe or
FIFO, the write succeeds and returns the number of bytes written;

If nbyte is less than or equal to PIPSIZ but insufficient room exists in the pipe or
FIFO, the write returns having written nothing. If O_NONBLOCK is set, —1 is
returned and ermno is set to EAGAIN. If O_NDELAY is set, 0 is returned.

If nbyte is greater than PIPSIZ and the pipe or FIFO is full, the write returns hav-

ing written nothing. If O_NONBLOCK is set, —1 is returned and errno is set to
EAGAIN. If O_NDELAY is set, 0 is returned.

If nbyte is greater than PIPSIZ, and some room exists in the pipe or FIFO, as
much data as fits in the pipe or FIFO is written, and write returns the number of
bytes actually written, an amount less than the number of bytes requested.

If the O_NDELAY and O_NONBLOCK file status flags are clear:

RETURN VALUE

The write always executes correctly (blocking as necessary), and returns the
number of bytes written.

Upon successful completion, the number of bytes actually written is returned. Otherwise, —1 is
returned and errno is set to indicate the error.

ERRORS

Write fails and the file offset remains unchanged if any of the following conditions is true:

[EBADF]

Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]

[EINTR]
[EDEADIK]

[EAGAIN]

[ENOLCK]

[EIO]

[ENOSPC]

An attempt is made to write to a pipe that is not open for reading by any pro-
cess.

A signal was caught during the write system call.

A resource deadlock would occur as a result of this operation (see lockf(2) and
fentl(2)).

Enforcement-mode file and record locking was set, O_NDELAY was set, and
there was a blocking record lock.

The system record lock table is full, preventing the write from sleeping until
the blocking record lock is removed.

The process is in a background process group and is attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring or blocking
the SIGTTOU signal, and the process group of the process is orphaned.

Not enough space on the file system.

In addition, writev might return one of the following errors:

[EFAULT]

[EINVAL]
[EINVAL]
[EINVAL]

Iov_base or iov points outside of the allocated address space. The reliable
detection of this error is implementation dependent.

Iovcnt is less than or equal to 0, or greater than MAXIOV.
One of the iov_len values in the iov array was negative.

The sum of iov_len values in the iov array overflowed a 32-bit integer.

HP-UX Release 7.0: September 1989 -2 - (Section 2) 209

WRITE(2) WRITE(2)

Write or writev fails, the file offset is updated to reflect the amount of data transferred, and
errno is set accordingly if one of the following conditions is true:

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or
the maximum file size. See ulimit(2).

[EFAULT] Buf points outside the process’s allocated address space. The reliable detection
of this error is implementation dependent.
EXAMPLES
Assuming a process opened a file for writing, the following call to write(2) attempts to write
mybufsize bytes to the file from the buffer to which mybuf points.

#include <string.h>

int mybufsize, nbytes, fildes;
char smybuf = "aeiou and sometimes y";
mybufsize = strlen (mybuf);
nbytes = write (fildes, mybuf, mybufsize);
WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2).
Sigvector(2) can affect the behavior described on this page.
Character special devices, and raw disks in particular, apply constraints on how write can be
used. See specific Section (7) manual entries for details on particular devices.
AUTHOR
Write was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), lockf(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2).

STANDARDS CONFORMANCE
write: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

210 (Section 2) -3 - HP-UX Release 7.0: September 1989

Section 3:
Subroutine Libraries

INTRO(3) INTRO(3)

NAME

intro — introduction to subroutines and libraries

SYNOPSIS

#include <stdio.h>

#include <math.h>

DESCRIPTION

This section describes functions found in various libraries, other than those functions that
directly invoke HP-UX system primitives, which are described in Section (2) of this volume.
Certain major collections are identified by a letter after the section identifier (3):

3C) These functions, together with the Operating System Calls and those marked
(3S), constitute the Standard C Library, which is automatically loaded by the C
compiler, cc(1). The link editor ld(1) searches this library under the —Ic
option. Declarations for some of these functions may be obtained from
#include files indicated on the appropriate pages.

(3G) These functions constitute the graphics library, and are documented in separate
manuals.

30 These functions constitute the instrument support library.

(3M) These functions constitute the Math Library. They are automatically loaded as

needed by the FORTRAN compiler f77(1). They are not automatically loaded
by the C compiler, cc(1); however, the link editor searches this library under
the —Im option. Declarations for these functions may be obtained from the
#include file <math.h>. Several generally useful mathematical constants are
also defined there (see math(5)).

(3N) These functions are applicable to the Internet network, and are part of the
standard C library, libc.a. Section 3N manual entries are contained in the Net-
working Reference.

(39) These functions constitute the “standard I/O package” (see stdio(3S)). These
functions are in the library libc, already mentioned. Declarations for these
functions may be obtained from the #include file <stdio.h>.

3X) Various specialized libraries. The files in which these libraries are found are
given on the appropriate pages.

Definitions

A character is any bit pattern able to fit into a byte on the machine. The null character is a
character with value 0, represented in the C language as \0. A character array is a sequence of
characters. A null-terminated character array is a sequence of characters, the last of which is the
null character. A string is a designation for a null-terminated character array. The null string is a
character array containing only the null character. A NULL pointer is the value that is obtained
by casting 0 into a pointer. The C language guarantees that this value will not match that of
any legitimate pointer, so many functions that return pointers return it to indicate an error.
NULL is defined as 0 in <stdio.h>; the user can include an appropriate definition if not using
<stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that do not require
explicit or implicit type declaration. The type of the function will be determined by the type of
its argument(s). For example, the generic function max will return an integer value if given
integer arguments (max0), a real value if given real arguments (amaxI), or a double-precision
value if given double-precision arguments (dmax1).

HP-UX Release 7.0: September 1989 -1- (Section 3) 211

INTRO(3) INTRO(3)

DIAGNOSTICS

Functions in the C and Math Libraries, (3C) and (3M), may return the conventional values 0 or
+HUGE (the largest-magnitude single-precision floating-point numbers; HUGE is defined in the
<math.h> header file) when the function is undefined for the given arguments or when the
value is not representable. In these cases, the external variable errno (see errno(2)) is set to the
value EDOM or ERANGE. As many of the FORTRAN intrinsic functions use the routines found
in the Math Library, the same conventions apply.

WARNINGS

FILES

Library routines in libc.a and libm.a often call other routines in these libraries. Prior to HP-UX
release 7.0, a user could define a function having the same name as one of these library rou-
tines, and this function would be linked in instead of the library version. In this way, a user
could effectively replace a library routine with his own (see matherr(3M) for a supported exam-
ple of this). More often, this type of linkage would occur unintentionally, causing unexpected
behavior which was difficult to debug.

Starting at Release 7.0, object names in libraries have been modified such that they are much
less likely to collide with user names. Therefore, calls to library routines from within other
library routines are much more likely to call the actual library routine. (Matherr(3M) is the only
exception to this.)

In spite of these changes, it is still remotely possible for name conflicts to occur. The lint(1)
program checker reports name conflicts of this kind as “multiple declarations” of the names in
question. Definitions for the Sections (2), (3C), and (35S) are checked automatically. Other
definitions can be included by using the —1 option (for example, —Im includes definitions for
the Math Library, (3M)). . Use of lint(1) is highly recommended.

/lib/libc.a
/lib/libm.a
/usr/lib/1ibF77.a

SEE ALSO

212

intro(2), stdio(3S), math(5), hier(5), ar(1), cc(1), £77(1), 1d(1), lint(1), nm(1).

The introduction to this manual.
Device I/0 Library, manual in HP-UX Concepts and Tutorials: Device I/0 and User Interfacing.

(Section 3) -2 - HP-UX Release 7.0: September 1989

A64L(3C) A64L(3C)

NAME

a64l, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

long a64l (s)
char xs;

char xl6d4a (1)
long 1;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a
notation by which long integers can be represented by up to six characters; each character
represents a "digit" in a radix-64 notation. .

The characters used to represent "digits" are . for 0, / for 1, 0 through 9 for 2—11, A through Z
for 12—37, and a through z for 38—63.

The leftmost character is the least significant digit. For example,
a0 = (38 x 64%) + (2 x 64!) = 166

A64l takes a pointer to a null-terminated base-64 representation and returns a corresponding
long value. If the string pointed to by s contains more than six characters, 464 will use the
first six.

Lé4a takes a long argument and returns a pointer to the corresponding base-64 representation.
If the argument is 0, [64a returns a pointer to a null string.

The value returned by 1644 is a pointer into a static buffer, the contents of which are overwrit-
ten by each call.

STANDARDS CONFORMANCE

a64l: SVID2
164a: SVID2

HP-UX Release 7.0: September 1989 -1- (Section 3) 213

ABORT(3C) ABORT(3C)

NAME
abort — generate a software abort fault

SYNOPSIS
#include <stdlib.h>

void abort();

DESCRIPTION
The abort function first closes all open files, streams, directory streams, and message catalogue
descriptors, if possible, then causes the signal SIGABRT to be sent to the calling process. This
may cause a core dump to be generated (see signal(2)).

If the signal SIGABRT is caught, the handling function is executed. If the handling function
returns, the action for SIGABRT is then reset to SIG_DFL, and the signal SIGABRT is sent again to
the process to ensure that it terminates.

RETURN VALUE
The abort function does not return.

ERRORS
No errors are defined.

APPLICATION USAGE
SIGABRT is not intended to be caught.

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump is
produced and the message “abort — core dumped” is written by the shell.
SEE ALSO
adb(1), exit(2), kill(2), raise(2), signal(2). signal(5).
STANDARDS CONFORMANCE
abort: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

214 (Section 3) -1- HP-UX Release 7.0: September 1989

ABS(3C) ABS(3C)

NAME
abs, labs — return integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs (i)
int i;
iong int iabs (i)
long int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.

The labs function is similar to the abs function, except that the argument and the returned value
each have type long int.

The largest negative integer returns itself.

WARNINGS
In two’s-complement representation, the absolute value of the negative integer with largest
magnitude is undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

STANDARDS CONFORMANCE
abs: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

labs: XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 215

ACLTOSTR(3C) ACLTOSTR(3C)

NAME

acltostr — convert access control list (ACL) structure to string form

SYNOPSIS

#include <acllib.h>

char * acltostr (nentries, acl, form)

int nentries;

struct acl_entry acl[];

int form;
Remarks:

To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION

Acltostr converts an access control list from structure form to string representation. Acltostr
takes a pointer to the first element of an array of ACL entries (acl), containing the indicated
number (nentries) of valid entries (zero or more), and the output form desired (FORM_SHORT or
FORM_LONG). It returns a pointer to a static string (overwritten by the next call), which is a
symbolic representation of the ACL, ending in a null character. The output forms are described
in acl(5). In long form, the string returned contains newline characters.

A user ID of ACL_NSUSER and a group ID of ACL_NSGROUP are both represented by %. Like
Is(1), if an entry contains any other user ID or group ID value not listed in /etc/passwd or
/etc/group, acltostr returns a string equivalent of the ID number instead.

Like routines that manage the /etc/passwd file, acltostr truncates user and group names to
eight characters.

Note: acltostr is complementary in function to strtoacl.

RETURN VALUE

If acltostr succeeds, it returns a pointer to a null-terminated string. If nentries is zero or less, the
string is of zero length. If nentries is greater than NACLENTRIES (defined in <sys/acLh>), or if
form is an invalid value, the call returns (char %) NULL.

EXAMPLES

The following code fragment reads the ACL on file ““/users/ggd/test” and prints its short form
representation.

#include <stdio.h>
#include <acllib.h>

int nentries;
struct acl_entry acl [NACLENTRIES}];

if ((nentries = getacl (" /users/ggd/test", NACLENTRIES, ac})) < 0)
error (...);

fputs (acltostr (nentries, acl, FORM_SHORT), stdout);

AUTHOR
Acltostr was developed by HP.
FILES
/etc/passwd
/etc/group
SEE ALSO
getacl(2), setacl(2), cpacl(3C), chownacl(3C), setaclentry(3C), strtoacl(3C), acl(5).
216 (Section 3) -1- HP-UX Release 7.0: September 1989

ALMANAC(3X) ALMANAC((3X)

NAME
almanac — return numeric date information in MPE format

SYNOPSIS
void almanac (date, err, pyear, pmonth, pday, pweekday)
unsigned short date, err{2];
short *pyear, *pmonth, *pday, *pweekday;
DESCRIPTION
Almanac returns numeric date information for a date in the packed date format returned by the
calendar(3X) routine. The returned information is:

year of the century
month of the year
day of the month
day of the week

The arguments to almanac are used as follows:

date An unsigned short containing the date about which information is to be
returned. The year of the century is packed into bits 0 through 6, and the day
of the year is packed into bits 7 through 15. The packed date format is:

Bits 0 6 7 15
| | |
| Year of Century | Day of Year |
err The first element of this array contains the error number. The second element

is always zero. If the call is successful, both elements contain zero.
Error # Meaning

1 No parameters are present in which to return values: pday,
pmonth, pyear, and pweek all point to zero.

2 Day of the year is out of range.

3 Year of the century is out of range.

pyear A pointer to a short in which the year of the century is returned.

pmonth A pointer to a short in which the month of the year is returned (for example,
January is represented by 1 and December is represented by 12).

pday A pointer to a short in which the day of the month is returned.

pweekday A pointer to a short in which the weekday is returned. Note that 1 will be
returned for Sunday and 7 for Saturday.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
porinls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Almanac was developed by HP.

SEE ALSO
calendar(3X), nlfmtdate(3X), ctime(3C), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 217

ASSERT(3X) ASSERT (3X)

NAME
assert — verify program assertion
SYNOPSIS
#include <assert.h>
assert (expression)
int expression;
DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if expression is
false (zero), assert prints
“Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error message, xyz is the name of the source
file and nnn the source line number of the assert statement.

Compiling with the preprocessor option —DNDEBUG (see cpp(1)), or with the preprocessor con-
trol statement “#define NDEBUG” ahead of the “#include <assert.h>"" statement, stops asser-
tions from being compiled into the program.

WARNINGS

The expression argument used by assert in compatibility mode cannot contain string literals or
double quotes without escapes.

SEE ALSO
cpp(1), abort(3C).

STANDARDS CONFORMANCE
assert: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

218 (Section 3) -1- HP-UX Release 7.0: September 1989

BESSEL(3M) BESSEL(3M)

NAME

j0, j1, jn, y0, y1, yn — Bessel functions
SYNOPSIS

#include <math.h>

double jO (x)
double x;
doubie ji (x)
double x;
double jn (n, x)
int n;

double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;
DESCRIPTION
JO and j1 return Bessel functions of x of the first kind of orders 0 and 1 respectively. Jn returns
the Bessel function of x of the first kind of order n.

Y0 and y1 return the Bessel functions of x of the second kind of orders 0 and 1 respectively. Yn
returns the Bessel function of x of the second kind of order n. The value of x must be positive.

ERRORS
Series 300
Non-positive arguments cause y0, yI and yn to return the value —HUGE_VAL and to set
errno to EDOM. They also cause a message indicating DOMAIN error to be printed on the
standard error output.

Arguments too large in magnitude cause j0, j1, jn, y0, y1 , and yn to return 0.0 and set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the stan-
dard error output.

Series 800 (/lib/libm.a)
Non-positive arguments cause y0, y1 , and yn to return the value ~HUGE_VAL and to set
errno to EDOM. They also cause a message indicating DOMAIN error to be printed on the
standard error output.

Arguments too large in magnitude cause j0, j1, jn, 0, y1 , and yn to return 0.0 and set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the stan-
dard error output.

jO, j1, jn, y0, y1 , and yn return NaN and set errno to EDOM when x is NaN or +INFIN-
ITY . In addition, a message indicating DOMAIN error is printed on the standard error out-
put.

Series 800 (ANSI C /lib/libM.a)
No error messages are printed on the standard error output.

Non-positive arguments cause y0, y1 , and yn to return the value NaN and to set errno to
EDOM. IP Arguments too large in magnitude cause j0, j1, jn, y0, y1, and yn to return 0.0
and set errno to ERANGE.

HP-UX Release 7.0: September 1989 -1- (Section 3) 219

BESSEL (3M) BESSEL(3M)

jO, j1, jn, y0, y1, and yn return NaN and set errno to EDOM when x is NaN or +INFIN-
ITY .

These error-handling procedures can be changed with the function matherr(3M).

isinf(3M), isnan(3M), matherr(3M).
STANDARDS CONFORMANCE
j0: SVID2, XPG2, XPG3

j1: SVID2, XPG2, XPG3
jn: SVID2, XPG2, XPG3
y0: SVID2, XPG2, XPG3
y1: SVID2, XPG2, XPG3
yn: SVID2, XPG2, XPG3

220 (Section 3) HP-UX Release 7.0: September 1989

BLMODE(3C) Series 800 Only BLMODE(3C)

NAME
blmode — terminal block mode library interface

SYNOPSIS
#include <sys/blmodeio.h>

int bfdes;

bfdes = blopen(fildes)
int fildes;

int biclose (bfdes)
int bfdes;

int blread (bfdes, buf, nbyte)
int bfdes;

char *buf;

unsigned nbyte;

int blget (bfdes, arg)
int bfdes;
struct blmodeio *arg;

int blset (bfdes, arg)
int bfdes;
struct blmodeio *arg;

DESCRIPTION
This terminal library interface allows support of block mode transfers with HP terminals. Block
mode only affects input processing. Therefore, data is written with the standard write(2) inter-
face.

In character mode the terminal sends each character to the system as it is typed. However, in
block mode data is buffered and possibly edited locally in the terminal memory as it is typed,
then sent as a block of data when the <ENTER>> key is pressed on the terminal. During block
mode data transmissions, the incoming data is not echoed by the interface and no special char-
acter processing is performed, other than recognizing a data block terminator character. For
subsequent character mode transmissions, the existing termio state (see termio(7)) will continue
to determine echo and character processing.

There are two parts of the block mode protocol, the block mode handshake and the block mode
transmission.

Block mode handshake
At the beginning of a read, a trigger character is sent to the terminal to notify it that the system
wants a block of data. (The trigger character, if defined, is sent at the beginning of all reads,
character or block mode. It is necessary for block mode reads to work correctly.)

After receiving the trigger character, and when the user has typed all the data into the
terminal’s memory and pressed the <ENTER> key, the terminal will send an alert character to
the system to notify it that the terminal has a block of data to send.

The system may then send user-definable cursor positioning or other data sequences, such as
for home cursor or lock keyboard, to the terminal.

The system will then send a second trigger character to the terminal. The terminal will then
transmit the data block as described in the Block mode transmission section.

Block mode transmission
The second part of the block mode protocol is the block mode transmission. After the block

HP-UX Release 7.0: September 1989 -1- (Section 3) 221

BLMODE(3C) Series 800 Only BLMODE(3C)

mode handshake has successfully completed, the terminal will transmit the data block to the
system. During this transmission of data, the incoming data is not echoed by the system and
no special character processing is performed, other than recognizing the data block termination
character. It is possible to bypass the block mode handshake and have the block mode
transinission occur after only the first irigger character is sent, see CB_BMTRANS below.

It is possible to intermix both character mode and block mode data transmissions. If
CB_BMTRANS (see below) is set, all transfers will be block mode transfers. When CB_BMTRANS
is not set, character mode transmissions will be processed as described in termio(7). In this
case, if an alert character is received anywhere in the input data, the transmission mode will be
switched to block mode automatically for a single transmission. Any data received before the
alert will be discarded. The alert character may be escaped with a backslash ("\") character.

XON/XOFF flow control

To prevent data loss, XON/XOFF flow control should be used between the system and the ter-
minal. The IXOFF bit (see termio(7)) should be set and the terminal strapped appropriately. If
flow control is not used, it is possible for incoming data to overflow and be lost. (Note: some
older terminals do not support this flow control.)

Read requests

Read requests that receive data from block mode transmissions will not return until the
transmission is complete (the terminal has transmitted all characters). If the read is satisfied by
byte count or if a data transmission error occurs, all subsequent data will be discarded until the
transmission is complete. The read will wait until a terminator character is seen, or a time
interval specified by the system has passed that is longer than necessary for the number of
characters specified.

The data block terminator character will be included in the data returned to the user, and is
included in the byte count. If the number of bytes transferred by the terminal in a block mode
transfer exceeds the number of bytes requested by the user, the read will return the requested
number of bytes and the remaining bytes will be discarded. The user can determine if data was
discarded by checking the last character of the returned data. If the last character is not the ter-
minator character, then more data was received than was requested and data was discarded.

The EIO error can be caused by several events, including errors in transmission, framing, parity,
break, and overrun, or if the internal timer expires. The internal timer starts when the second
trigger character is sent by the computer, and ends when the terminating character is received
by the computer. The length of this timer is determined by the number of bytes requested in
the read and the current baud rate, plus an additional ten seconds.

User control of handshaking

If desired, the application program can provide its own handshake mechanism in response to
the alert character by selecting the OWNTERM mode, see CB_LOWNTERM below. With this mode
selected, the driver will complete a read request when the alert character is received. No data
will be discarded before the alert, and the alert will be returned in the data read. The alert
character may be escaped with a backslash ("\") character. The second trigger will be sent
when the application issues the next read.

Blmode control calls

222

First, the standard open(2) call to a tty device must be made to obtain a file descriptor for the
subsequent block mode control calls (an open(2) will be done automatically by the system for
stdin on the terminal).)

int bfdes;

bfdes = blopen (fildes)
int fildes;

(Section 3) -2 - HP-UX Release 7.0: September 1989

BLMODE(3C)

Series 800 Only BLMODE(3C)

A call to blopen must be made before any block mode access is allowed on the
specified file descriptor. Blopen will initialize the block mode parameters as
described below. The return value from blopen is a block mode file descriptor
that must be passed to all subsequent block mode control calls.

int blclose (bfdes)
int bfdes;

A call to blclose must be issued before the standard close(2) to ensure proper
closure of the device. Otherwise unpredictable results may occur. The argu-
ment bfdes is the file descriptor returned from a previous blopen system call.

int blread (bfdes, buf, nbyte)
int bfdes;

char *buf;

unsigned nbyte;

The blread routine has the same parameters as the read(2) sytem call. At the
beginning of a read, the cb_triglc character (if defined) is sent to the device. If
CB_BMTRANS is not set, and no cb_alertc character is received, the read data
will be processed according to termio(7). If CB_BMTRANS is set, or if a non-
escaped cb_alertc character is received, echo will be turned off for the duration
of the transfer, and no further special character processing will be done other
than that required for the termination character. The argument bfdes is the file
descriptor returned from a previous blopen system call.

int blget (bfdes, arg)
int bfdes;
struct blmodeio *arg;

A call to blget will return the current values of the blmodeio structure (see
below). The argument bfdes is the file descriptor returned from a previous blo-
pen system call.

int blset (bfdes, arg)
int bfdes;
struct blmodeio *arg;

A call to blset will set the block mode values from the structure whose address
is arg. The argument bfdes is the file descriptor returned from a previous blopen
system call.

Blmode structure
The two block mode control calls, biget and blset, use the following structure, defined in

<sys/blmodeio.h>:

#define NBREPLY 64

struct blmodeio {
unsigned long cb_flags; /* Modes */
unsigned char cb_triglc; /* First trigger */
unsigned char cb_trig2c; /* Second trigger %/
unsigned char cb_alertc; /* Alert character */
unsigned char cb_termc; /* Terminating char /
unsigned char cb_replen; /* cb_reply length +/
char cb_reply[NBREPLY]; /# optional reply */

b

The cb_flags field controls the basic block mode protocol:

HP-UX Release 7.0: September 1989 -3 - (Section 3) 223

BLMODE(3C) Series 800 Only BLMODE(3C)

CB_BMTRANS 0000001 Enable mandatory block mode transmission.
CB_OWNTERM 0000002 Enable user control of handshake.

If CB_LBMTRANS is set, all transmissions are processed as block mode transmissions.
The block mode handshake is not required and data read is processed as block mode
transfer data. The block mode handshake may still be invoked by receipt of an alert
character as the first character seen. A blread issued with the CB_BMTRANS bit set will
cause any existing input buffer data to be flushed.

If CB_BMTRANS is not set, and if the alert character is defined and is detected anywhere
in the input stream, the input buffer will be flushed and the block mode handshake will
be invoked. The system will then send the cb_trig2c character to the terminal, and a
block mode transfer will follow. The alert character can be escaped by preceding it
with a backslash ("\").

If CB_LOWNTERM is set, reads will be terminated upon receipt of a non-escaped alert
character. No input buffer flushing is performed, and the alert character is returned in
the data read. This allows application code to perform its own block mode handshak-
ing. If the bit is clear, a non-escaped alert character will cause normal block mode
handshaking to be used.

The initial cb_flags value is all-bits-cleared.

There are several special characters (both input and output) that are used with block mode.
These characters and the initial values for these characters are described below. Any of these
characters may be undefined by setting its value to 0377.

cb_triglc is the initial trigger character sent to the terminal at the beginning of a read
request.
cb_trig2c is the secondary trigger character sent to the terminal after the alert character

has been seen.

cb_alertc is the alert character sent by the terminal in response to the first trigger charac-
ter. It signifies that the terminal is ready to send the data block. The alert
character can be escaped by preceding it with a backslash ("\").

cb_termc is sent by the terminal after the block mode transfer has completed. It signifies
the end of the data block to the computer.

The cb_replen field specifies the length in bytes of the cb_reply field. If set to zero, the cb_reply
string will not be used. The cb_replen field is initially set to zero.

The cb_reply array contains a string to be sent out after receipt of the alert character, but before
the second trigger character is sent by the computer. Any character may be included in the
reply string. The number of characters sent is specified by cb_replen. The initial value of all
characters in the cb_reply array is NULL.

RETURNS

If an error occurs, all calls will return a value of -1 and errno will be set to indicate the error. If
no error is detected, blread will return the number of characters read. All other calls will return
0 upon successful completion.

During a read, it is possible for the user’s buffer to be altered even if an error value is returned.
The data in the user’s buffer should be ignored as it will not be complete. The following errors
may be returned by various library calls described in this document.
blopen
[ENOTTY] The file descriptor specified is not related to a terminal device.
biclose

224 (Section 3) -4 — HP-UX Release 7.0: September 1989

BLMODE(3C)

[ENOTTY]

blread
[EDEADLK]

[EFAULT]

[EINTR]
[E10]
[ENOTTY]

blget
[ENOTTY]

blset
[EINVAL]

[ENOTTY]
WARNINGS

Series 800 Only BLMODE(3C)

No previous blopen has been issued for the specified file descriptor.

A resource deadlock would occur as a result of this operation (see
lockf(2)).

Buf points outside the allocated address space. The reliable detection of
this error will be implementation dependent.

A signal was caught during the read system call.
An I/0 error occured during block mode data transmissions.

No previous blopen has been issued for the specified file descriptor.
No previous blopen has been issued for the specified file descriptor.

An illegal value was specified in the structure passed to the system.

No previous blopen has been issued for the specified file descriptor.

Once blopen has been called with a file descriptor and returned successfully, that file descriptor
should not subsequently be used as a parameter to the following system calls: close(2), dup(2),
dup2(2), fentl(2), ioctl(2), read(2), or select(2) until a blclose is called with the same file descrip-
tor as its parameter. Additionally, scanf(libc), fscanf(libc), getc(libc), getchar(libc), fgetc(libc) and
fgetw(libc) should not be called for a stream associated with a file descriptor that has been used
in a blopen call but has not been used in a blclose call. These functions call read(2) and calling
these routines will result in unpredictable behavior.

AUTHOR

Blmode was developed by HP.

SEE ALSO
termio(7).

HP-UX Release 7.0: September 1989 -5-— (Section 3) 225

BSEARCH(3C) BSEARCH(3C)

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch (key, base, nel, size, compar)
const void xkey;

const void xbase;

size_t nel;

size_t size;

int (xcompar)();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously
sorted in increasing order according to a provided comparison function. Key points to a datum
instance to be sought in the table. Base points to the element at the base of the table. Nel is
the number of elements in the table. Size is the size of each element in the table. Compar is
the name of the comparison function, which is called with two arguments that point to the ele-
ments being compared. The function must return an integer less than, equal to, or greater than
zero as accordingly the first argument is to be considered less than, equal to, or greater than the
second.)

EXAMPLE

The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>
#define TABSIZE 1000

struct node { /* these are stored in the table %/
char sstring;
int length;

}:

struct node table[TABSIZE); /#* table to be searched */

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into %/

node.string = str_space;
while (scanf("%s", node.string) != EOF) {
node_ptr = (struct node *)bsearch((void *)(&node),
(void #)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr != NULL) {

226 (Section 3) -1- HP-UX Release 7.0: September 1989

BSEARCH(3C) BSEARCH(3C)

(void)printf("string = %20s, length = %d\n",
node_ptr—>>string, node_ptr—>length);
} else {
(void)printf("not found: %s\n", node.string);

}
}
/* This routine compares two nodes based on an
alphabetical ordering of the string field. */
int
node_compare(nodel, node2)
struct node *nodel, xnode2;

{
}

return stremp(nodel—>string, node2—>string);

NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-
element, and cast to type pointer-to-void.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
Although declared as type pointer-to-void, the value returned should be cast into type pointer-
to-element.

SEE ALSO
hsearch(3C), Isearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

WARNINGS
If the table being searched contains two or more entries that match the selection criteria, a ran-
dom entry is returned by bsearch as determined by the search algorithm.

STANDARDS CONFORMANCE
bsearch: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2 - (Section 3) 227

CALENDAR(3X) CALENDAR(3X)

NAME

calendar — return the MPE calendar date
SYNOPSIS

unsigned short calendar()
DESCRIPTION

This routine returns the calendar date in the format:

Bits O 6 7 15

f I
| Year of Century i Day of Year |

RETURN VALUE
An unsigned short integer containing the calendar format.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnis(5) for HP-UX NLS support.

AUTHOR
Calendar was developed by HP.

SEE ALSO
portnls(5).

228 (Section 3) -1- HP-UX Release 7.0: September 1989

CATGETMSG(3C) CATGETMSG(3C)

NAME
catgetmsg — get message from a message catalog

SYNOPSIS
#include <nl_types.h>

char *catgetmsg (catd, set_num, msg_num, buf, buflen)
nl_catd catd;

int set_num, msg_num, buflen;

char *buf;

DESCRIPTION
Catgetmsg reads message msg_num in set set_num from the message catalog indentified by catd,
a catalog descriptor returned from a previous call to catopen(3C). The return message is stored
in buf, a buffer of length buflen bytes.

A message longer than buflen-1 bytes is silently truncated. The return message is always ter-
minated with a null byte.

RETURN VALUE
If successful, catgetmsg returns a pointer to the message in buf. Otherwise, catgetmsg returns a

pointer to an empty (null) string and sets errno to indicate the error. If buflen is greater than
zero, the pointer returned is buf.

ERRORS
Catgetmsg fails and errno is set if one of the following conditions is true:
[EBADF] Catd is not a valid catalog descriptor.
[EINVAL] Buflen is less than 1.
[EINVAL] Set_num and/or msg_num are not in the message catalog.
[EINVAL} The message catalog identified by catd is corrupted.
[EINTR] A signal was caught during the read(2) system call.
[EFAULT] Buf points outside the allocated address space. The reliable detection of this
error is implementation dependent.
[ERANGE] A message longer than buflen-1 bytes was truncated.
AUTHOR
Catgetmsg was developed by HP.
SEE ALSO

catopen(3C), catgets(3C), read(2).
EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.
STANDARDS CONFORMANCE
catgetmsg: XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 229

CATGETS(3C) CATGETS(3C)

NAME
catgets — get a program message
SYNOPSIS
#include <nl_types.h>
char *catgets (catd, set_num, msg_num, def_str)
nl_catd catd;
int set_num, msg_num;
char *def_str;
DESCRIPTION
Catgets reads message msg_num in set sef_num from the message catalog identified by catd, a

catalog descriptor returned from a previous call to catopen(3C). Def_str points to a default mes-
sage string returned by catgets if the call fails.

A message longer than NL_TEXTMAX bytes is silently truncated. The returned message string is
always terminated with a null byte. NL_TEXTMAX is defined in <limits.h>.
RETURN VALUE
If the call is successful, catgets returns a pointer to an internal buffer area containing the null-
terminated message string. If the call is unsuccessful catgets returns a pointer to def_str.
WARNINGS
Catgets returns a pointer to a static area that is overwritten on each call.
AUTHOR
Catgets was developed by HP.
SEE ALSO
catopen(3C), catgetmsg(3C).
EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.
STANDARDS CONFORMANCE
catgets: XPG2, XPG3

230 (Section 3) -1- HP-UX Release 7.0: September 1989

CATOPEN(3C) CATOPEN(3C)

NAME
catopen, catclose — open and close a message catalog for reading

SYNOPSIS
#include <nl_types.h>

nl_catd catopen (name, oflag)
char *name;
int oflag;

int catclose (catd)
nl_catd catd;

DESCRIPTION

Catopen opens a message catalog and returns a catalog descriptor. Name specifies the name of
the message catalog being opened. A name containing a / (slash) specifies a path name for the
message catalog. Otherwise, the environment variable NLSPATH is used, see environ(5). If
NLSPATH specifies more than one path, catopen returns the catalog descriptor for the first path
on which it is able to successfully open the specified message catalog. If NLSPATH does not
exist in the environment or if a message catalog cannot be opened for any NLSPATH-specified
path, catopen uses a systemwide default path. Name must not contain "%N".

Oflag is reserved for future use and should be set to 0 (zero). The results of setting this field to
any other value are undefined.

Catclose closes the message catalog catd, a message catalog descriptor returned from an earlier
successful call of catopen.

RETURN VALUE
Catopen returns a message catalog descriptor if successful. Otherwise, a value of (nl_catd) -1 is
returned and errno is set to indicate the error.

Catclose returns 0 if successful. Otherwise, a value of —1 is returned and errno is set to indicate
the error.

ERRORS
Catopen fails, no message catalog is opened, and errno is set for the last path attempted if any
of the following conditions is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named catalog does not exist.

[ENOENT] The path is null.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Read permission is denied for the named file.

[EMFILE] The maximum number of file descriptors allowed are currently open.

[ENAMETOOLONG] The length of the specified path name- exceeds PATH_MAX bytes, or the
length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[EINVAL] The name argument contains "%N".

Catclose fails if the following is true:

[EBADF] Catd is not a valid open message-catalog descriptor.
WARNINGS

When using NLSPATH, catopen does not provide a default value for LANG.

HP-UX Release 7.0: September 1989 -1- (Section 3) 231

CATOPEN(3C) CATOPEN(3C)

NOTES
Catgets(3C) can be used to provide default messages when called following a failed catopen.
Catgets will return its def_str parameter if it is passed an invalid catalog descriptor.

AUTHOR
Catopen was developed by HP.

FILES
/usr/lib/nls Message catalog default path.

SEE ALSO
catgetmsg(3C), catgets(3C), environ(5).

STANDARDS CONFORMANCE
catopen: XPG2, XPG3

catclose: XPG2, XPG3

232 (Section 3) -2 - HP-UX Release 7.0: September 1989

CATREAD(3C) CATREAD(3C)

NAME
catread — MPE/RTE-style message catalog support

SYNOPSIS
int catread (fd, set_num, msg_num, msg_buf, buflen [arg}..)
int fd, set_num, msg_num, buflen;
char *msg_buf, *arg;

DESCRIPTION
Catread reads message number msg_num of set set_num in the message catalog identified by fd,
a file descriptor returned from a previous call to open(2). The return message is stored in buf, a
buffer of length buflen bytes.

The message read from the catalog can have embedded formatting information in the form
![digit]. Exclamation marks must be all numbered or all unnumbered. If exclamation marks are
numbered, an exclamation mark followed by digit # is replaced by the nth arg. If exclamation
marks are unnumbered, they are replaced by the args in serial order. If there are fewer args
than exclamation marks, the results are undefined. If there are more args than exclamation
marks, the excess args are ignored.

A character in a message may be quoted (that is, made to stand for itself) by preceding it with a
tilde (7). To use the special characters ! or ~ in a message, preceed the special character with ~.

A message longer than buflen-1 bytes is silently truncated. The return message is always ter-
minated with a null byte.

Catread is provided to support message catalog applications from MPE/RTE. (MPE and RTE
are HP operating systems.)
RETURN VALUE
If successful, catread returns the length, in bytes, of the formatted message in msg_buf. Other-
wise, if set_num or msg_num is not found in the catalog, catread returns a negative integer.
ERRORS
Catread succeeds, but sets errno if the following condition is true:

[ERANGE] Formatted message exceeds buflen-1 bytes.
AUTHOR

Catread was developed by HP.
SEE ALSO

gencat(1l), getmsg(3C), hpnls(5).

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 233

CFSPEED(3C) CFSPEED(3C)

NAME)

cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed — tty baud rate functions
SYNOPSIS

#include <termios.h>

speed_t cfgetospeed (termios_p)
struct termios *termios_p;

int cfsetospeed (termios_p, speed)
struct termios *termios_p;
speed_t speed;
speed_t cfgetispeed (termios_p)
struct termios *termios_p;
int cfsetispeed (termios_p, speed)
struct termios *termios_p;
speed_t speed;
DESCRIPTION
These functions set and get the input and output speed codes in the termios structure referenced
by termios_p. The termios structure contains these speed codes representing input and output
baud rates as well as other terminal related parameters. Setting the parameters on a terminal
file do not become effective until tesetattr is successfully called.

Cfgetospeed returns the output speed code from the termios structure referenced by termios_p.

Cfsetospeed sets the output speed code in the termios structure referenced by termios_p to speed.
The speed code for a baud rate of zero, B0, is used to terminate the connection. If BO is

specified, the modem control lines will no longer be asserted. Normally, this will disconnect
the line.

Cfgetispeed returns the input speed code from the termios structure referenced by termios_p.

Cfsetispeed sets the input speed code in the termios structure referenced by termios_p to speed.
RETURN VALUE

Cfgetospeed returns the output speed code from the termios structure referenced by termios_p.

Cfgetispeed returns the input speed code from the termios structure referenced by termios_p.

Upon successful completion, cfsetispeed and cfsetospeed return zero. Otherw1se, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
Cfsetispeed and cfsetospeed will fail when the following is true:

[EINVAL] The value of speed is outside the range of possible speed codes as specified in
termios.h.

WARNINGS

Cfsetispeed and cfsetospeed can be used to set speed codes in the termios structure that are not
supported by the terminal hardware.

SEE ALSO
tcattribute(3C), termio(7).

STANDARDS CONFORMANCE
cfgetispeed: XPG3, POSIX.1, FIPS 151-1

cfgetospeed: XPG3, POSIX.1, FIPS 151-1
cfsetispeed: XPG3, POSIX.1, FIPS 151-1

234 (Section 3) -1- HP-UX Release 7.0: September 1989

CFSPEED(3C) CFSPEED(3C)

cfsetospeed: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 ~-2- (Section 3) 235

CHOWNACL(3C) CHOWNACL(3C)

NAME

chownacl — change owner and/or group represented in a file’s access control list (ACL)

SYNOPSIS

#include <sys/acL.h>

void chownacl (nentries, acl, olduid, oldgid, newuid, newgid)
int nentries;

struct acl_entry acl[};

int olduid, oldgid;

int newuid, newgid;

Remarks:

To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION

This routine alters an access control list (ACL) to reflect the change in a file’s owner or group ID
when an old file is copied to a new file and the ACL is also copied. Chownacl transfers owner-
ship (that is, it modifies base ACL entries) like chown(2). The algorithm is described below and
also in acl(5).

The nentries parameter is the current number of ACL entries in the acl{] array (zero or more; a
negative value is treated as zero). The olduid and oldgid values are the user and group IDs of
the original file’s owner, typicaily the st_uid and st_gid values from stqt(2). The newuid and
newgid values are the user and group IDs of the new file’s owner, typically the return values
from geteuid(2) and getegid(2).

If an ACL entry in acl[] has a uid of olduid and a gid of ACL_NSGROUP (that is, an owner base
ACL entry), chownacl changes uid to newuid (with exceptions, see below). If an entry has a uid
of ACL_NSUSER and a gid of oldgid (that is, a group base ACL entry), chownacl changes gid to
newgid. In either case, only the last matching ACL entry is altered; a valid ACL can have only
one of each type.

Like chown(2), if the new user or group already has an ACL entry (that is, a uid of newuid and
a gid of ACL_NSGROUP, or a uid of ACL_NSUSER and a gid of newgid), chownacl does not
change the old user or group base ACL entry; both the old and new ACL entries are preserved.

As a special case, if olduid (oldgid) is equal to newuid (newgid), chownacl does not search acl[]
for an old user (group) base ACL entry to change. Calling it with both olduid equal to newuid
and oldgid equal to newgid causes chownacl(3C) to do nothing,.

Suggested Use

This routine is useful in a program that creates a new or replacement copy of a file whose origi-
nal was (or possibly was) owned by a different user or group, and that copies the old file’s ACL
to the new file. Copying another user’'s and/or group’s file is equivalent to having the original
file’s owner and/or group copy and then transfer a file to a new owner and/or group using
chown(2). This routine is not needed for merely changing a file’s ownership; chown(2) modifies
the ACL appropriately in that case.

If a program also copies file miscellaneous mode bits from an old file to a new one, it must use
chmod(2). However, since chmod deletes optional ACL entries, it must be called before setacl(2).
Furthermore, to avoid leaving a new file temporarily unprotected, the chmod call should set
only the file miscellanous mode bits, with all access permission mode bits set to zero (that is,
mask the mode with 07000). The cpacl(3C) library call encapsulates this operation, and handles
remote files appropriately too.

EXAMPLES

236

The following code fragment gets stat information and the ACL from oldfile, transfers

(Section 3) -1- HP-UX Release 7.0: September 1989

CHOWNACL(3C) CHOWNACL(3C)

ownership of newfile to the caller, and sets the revised ACL to newfile.
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/acL.h>
int nentries;
struct acl_entry acl [NACLENTRIES];
struct stat statbuf;

if (stat ("oldfile", & statbuf) < 0)
error (...);

if ((nentries = getacl (*oldfile", NACLENTRIES, ac}) < 0)
error (...);

chownacl (nentries, acl, statbuf.st_uid, statbuf.st_gid,
geteuid(), getegid();

if (setacl ("newfile®, nentries, acl))
error (...);

AUTHOR
Chownacl was developed by HP.

SEE ALSO
chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2), acltostr(3C), cpacl(3C),
setaclentry(3C), strtoacl(3C), acl(5).

HP-UX Release 7.0: September 1989 -2~ (Section 3) 237

CLOCK(3C) CLOCK(3C)

NAME
clock — report CPU time used

SYNOPSIS
#include <timeh>

clock_t clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since the first call to clock. The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or system(3S). To determine the time in
seconds, the value returned by the clock function should be divided by the value of the macro
CLOCKS_PER_SEC.

The resolution of the clock varies, depending on the hardware and on the software
configuration.

If the processor time used is not available or its value cannot be represented, the function
returns the value (clock_t)-1.

WARNINGS
The value returned by clock is defined in microseconds for compatibility with systems that have

CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

DEPENDENCIES
Series 300
The clock resolution is 20 milliseconds.

Series 800
The default clock resolution is 10 milliseconds.

SEE ALSO
times(2), wait(2), system(3S).

STANDARDS CONFORMANCE
clock: SVID2, XPG2, XPG3, ANSI C

238 (Section 3) -1- . HP-UX Release 7.0: September 1989

CLOCK(3X) CLOCK(3X)

NAME
clock - return the MPE clock value

SYNOPSIS
unsigned int clock()

DESCRIPTION

This routine returns the clock value in the MPE format.
RETURN VALUE

The function returns an unsigned int in the format:

Bits 0 7 8 15
| | |
| Hour of Day | Minute of Hour |
Bits 16 23 24 31
] | |
| Seconds | Tenths of Seconds |
WARNINGS

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
clock was developed by HP.

SEE ALSO
nlconvclock(3X), nlfmtclock(3X), portnls(5).

HP-UX Release 7.0: September 1989 -1- (Section 3) 239

CONV(3C) CONV(3C)

NAME

toupper, tolower, _toupper, _tolower, toascii — translate characters

SYNOPSIS

#include <ctype.h>

-

int toupper (c)
int ¢
int tolower (c)
int ¢;

int _toupper (¢)
int ¢

int _tolower (c)
int ¢;

int toascii (¢)
int ¢

DESCRIPTION

Toupper and tolower have as domain the range of getc(3S): the integers from —1 through 255.
If the argument of toupper represents a lowercase letter, the result is the corresponding upper-
case letter. If the argument of tolower represents an uppercase letter, the result is the
corresponding lowercase letter. All other arguments in the domain are returned unchanged.
Arguments outside the domain cause undefined results.

The macros _toupper and _tolower perform the same translations as toupper and tolower, but
have restricted domains and are faster. The domains of _toupper and _tolower are the integers
from 0 through 255. Arguments outside of the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a standard 7-bit ASCII
character; it is intended for compatibility with other systems.

WARNING

240

The toascii routine is supplied both as a library function and as a macro defined in the
<ctype.h> header. Normally, the macro version will be used. To obtain the library function
either use a #undef to remove the macro definition or, if compiling in ANSI C mode, enclose
the function name in parenthesis or take its address. The following examples will use the
library function for toascii:

#include <ctype.h>
#undef toascii

main()
¢l = toascii(c);
or
#include <ctype.h>

;:;ain()

int (*conv_func)();

(Section 3) -1- HP-UX Release 7.0: September 1989

CONV(30C) CONV(@3CQ)

cl = (toascii)(c);

conv_func = toascii;

EXTERNAL INFLUENCES
Locale
The LC_CTYPE category determines the translations to be done.

International Code Set Support
Single-byte character code sets are supported.

AUTHOR
Conv(3C) was developed by AT&T and HP.

SEE ALSO
ctype(3C), getc(3S), setlocale(3C), LANG(5).

STANDARDS CONFORMANCE
_tolower: SVID2, XPG2, XPG3

_toupper: SVID2, XPG2, XPG3

toascii: SVID2, XPG2, XPG3

“tolower: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
toupper: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2 - (Section 3) 241

CPACL(3C) CPACL(3QC)

NAME

cpacl, fcpacl — copy the access control list (ACL) and mode bits from one file to another

SYNOPSIS

int cpacl (fromfile, tofile, frommode, fromuid, fromgid, touid, togid)
char xfromfile, xtofile;

int frommode;

int fromuid, touid;

int fromgid, togid;

int fcpacl (fromfd, tofd, frommode, fromuid, fromgid, touid, togid)
int fromfd, tofd;

int frommode;

int fromuid, touid;

int fromgid, togid;

Remarks:

To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION

Both c¢pacl and fepacl copy the access control list and mode bits (that is, file access permission
bits and miscellaneous mode bits; see chmod(2)) from one file to another, and transfer owner-
ship much like chown(2). Cpacl and fcpacl take the following parameters:

. Path names (fromfile and tofile) or open file descriptors (fromfd and tofd).

. A mode value (frommode, typically the st_mode value returned by stat(2)) containing file
miscellaneous mode bits, which are always copied, and file access permission bits, which
are copied instead of the access control list if either file is remote.

. User ID and group ID of the file (fromuid, touid and fromgid, togid) for transferring owner-
ship. (Typically fromuid and fromgid are the st_uid and st_gid values returned by stat, and
touid and togid are the return values from geteuid(2) and getegid(2).)

When both files are local, the cpacl routines copy the access control list and call chownacl(3C) to
transfer ownership from the fromfile to the tofile, if necessary.

Cpacl (fcpacl) handles remote copying (via RFA or NFS) after recognizing failures of getacl(2)
(fgetacl) or setacl(2) (fsetacl). When copying the mode from fromfile (fromfd) to tofile (tofd), cpacl
copies the entire frommode (that is, the file miscellaneous mode bits and the file access permis-
sion bits) to tofile (tofd) using chmod(2) (fchmod(2)). Some of the miscellaneous mode bits may
be turned off; see chmod(2).

Cpacl (fcpacl) can copy an access control list from fromfile (fromfd) to tofile (tofd) without
transferring ownership, but ensuring error checking and handling of remote files. This is done
by passing fromuid equal to touid and fromgid equal to togid (that is, four zeros). For remote
files, fromuid, touid, fromgid, and togid are ignored.

RETURN VALUE

242

If successful, cpacl and fepacl return zero. If an error occurs, they set errno to indicate the cause
of failure and return a negative value, as follows:

-1 Unable to perform getacl (fgetacl) on a local fromfile (fromfd).

-2 Unable to perform chmod (fchmod) on tofile (tofd) to set its file miscellaneous mode bits.
Cpacl (fcpacl) attempts this regardless of whether a file is local or remote, as long as
fromfile (fromfd) is local.

-3 Unable to perform setacl (fsetacl) on a local tofile (tofd). As a consequence, the file’s
optional ACL entries are deleted, its file access permission bits are zeroed, and its

(Section 3) , -1- HP-UX Release 7.0: September 1989

CPACL(3C) CPACL(3C)

miscellaneous mode bits might be altered.

-4 Unable to perform chmod (fchmod) on tofile (tofd) to set its mode. As a consequence, if
fromfile (fromfd) is local, tofile’s (tofd’s) optional ACL entries are deleted, its access per-
mission bits are zeroed, and its file miscellaneous mode bits might be altered, regardless
of whether the file is local or remote.

EXAMPLES
The following code fragment gets stat information on “oldfile” and copies its file miscellaneous
bits and access control list to “newfile” owned by the caller. If either file is remote, only the
st_mode on "oldfile” is copied.

#include <sys/types.h>
#include <sys/stat.h>

struct stat statbuf;

if (stat ("oldfile", & statbuf) < 0)
error (...);

if (cpacl ("oldfile", "newfile", statbuf.st_mode,
statbuf.st_uid, statbuf.st_gid, geteuid(), getegid() < 0)

{
error (...);
}
DEPENDENCIES
RFA and NFS
Fepacl fails if tofile is RFA-remote.
AUTHOR
Cpacl and fcpacl were developed by HP.
SEE ALSO

chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2). acltostr(3C), chownacl(3C),
setentry(3C), strtoacl(3C), acl(5).

HP-UX Release 7.0: September 1989 -2 - (Section 3) 243

CRTO(3) CRTO0(3)

NAME

crt0.0, gert0.0, mert0.0, frt0.0, gfrt0.0, mfrt0.0 — execution startup routines

DESCRIPTION

The C and Pascal compilers link in crt0.0, gcrt0.0, or mcrt0.0 to provide startup capabilities and
environment for program execution. All are identical except that gcrt0.0 and mcriG.o provide
additional functionality for gprof(1) and prof(1) profiling support respectively. Similarly, the
Fortran compiler will link in either frt0.0, gfrt0.0, or mfrt0.0.

The following symbols are defined in these routines:

_ .argc_value A variable of type int containing the number of arguments.
. -argv_value An array of character pointers to the arguments themselves.
_environ An array of character pointers to the environment in which the program
will run. This array is terminated by a null pointer.
DEPENDENCIES
Series 300

The symbols above are shown as they are visible from C. To access them from assembly
language, add an additional underscore to the beginning of the symbol. For example, an assem-
bly language program will refer to _ _argc_value as argc_value.

Series 300 startup files also define the following symbols which are listed as when used from
assembly language. The state of these variables can be determined from C by using other
library routines (see is_hw_present(3C)).

flag_68010 A variable of type short. Non-zero if the processor is a 68010; zero if not.

float_soft A variable of type short. Zero if the HP 98635 floating-point card is
present; non-zero if it is not present.

float_loc A constant defining the location in memory of the HP 98635 floating
point card.

flag_68881 A variable of type short. Non-zero if the HP 68881 floating point copro-
cessor is present; zero if it is not present.

flag_fpa A variable of type short. Non-zero if the HP 98248 floating point card is
present; zero if it is not present.

fpa_loc A constant defining the location in memory of the HP 98248 floating
point card.

Series 800

244

All compilers on the Series 800 use the crt0.0, gcrt0.0, or mcrt0.o file; the files frt0.0, gfrt0.0, and
mfrt0.0 do not exist.

The Series 800 startup files also define the following additional symbols:
$START$ Execution start address.

_start A secondary startup routine for C programs, called from $STARTS$, which
in turn calls main. This routine is contained in the C library rather than
the crt0.0 file. For Pascal and FORTRAN programs, this symbol labels the
beginning of the outer block (main program) and is generated by the
compilers.

$global$ The beginning address of the program’s data area. The startup code
loads this address into general register 27.

$UNWIND_START The beginning of the stack unwind table.

(Section 3) —-1- HP-UX Release 7.0: September 1989

CRTO0(3) CRTO(3)

$UNWIND_END The end of the stack unwind table.
$RECOVER_START The beginning of the try/recover table.
$RECOVER_END The end of the try/recover table,

The crt0.0 file defines a null procedure for _mcount, so programs compiled with profiling can
be linked without profiling.

ORIGIN
AT&T System Iil

SEE ALSO

cc(l), £77(1), 1d(1), pe(l), prof(l), gprof(1), pc(l), profil(2), exec(2), monitor(3C),
is_hw_present(3C).

HP-UX Release 7.0: September 1989 -2 (Section 3) 245

CRYPT(3C) CRYPT(3C)

NAME

crypt, setkey, encrypt — generate hashing encryption

SYNOPSIS

char xcrypt (key, salt)
char xkey, ssalt;

void setkey (key)
char xkey;

void encrypt (block, fake)
char *block;
int fake;

DESCRIPTION

Crypt is the password encryption function. It is based on a one way hashing encryption algo-
rithm with variations intended (among other things) to frustrate use of hardware implementa-
tions of a key search.

Key is a user’s typed password. Salt is a two-character string chosen from the set [a-zA-Z0-9./);
this string is used to perturb the hashing algorithm in one of 4096 different ways, after which
the password is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual hashing algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine. This is the key that will
be used with the hashing algorithm to encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the charac-
ters with numerical value 0 and 1. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the hashing algorithm
using the key set by setkey. Fake is not used and is ignored, but should be present if lint(1) is
used.

SEE ALSO

BUGS

login(1), passwd(1), getpass(3C), passwd(4).

The return value points to static data that are overwritten by each call.

STANDARDS CONFORMANCE

246

crypt: SVID2, XPG2, XPG3
encrypt: SVID2, XPG2, XPG3
setkey: SVID2, XPG2, XPG3

(Section 3) -1- HP-UX Release 7.0: September 1989

CTERMID(3S) CTERMID(3S)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#include <stdio.h>
char *ctermid (s)
char x*s;

DESCRIPTICN
Ctermid generates the path name of the controlling terminal for the current process, and stores
it in a string.
If s is a NULL pointer, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid elements; the path name is placed in
this array and the value of s is returned. The constant L_ctermid is defined in the <stdio.h>
header file.

NOTES
The difference between ctermid and ttyname(3C) is that ttyname must be handed a file descrip-
tor and returns the actual name of the terminal associated with that file descriptor, while cter-
mid returns a string (/dev/tty) that will refer to the terminal if used as a file name. Thus
ttyname is useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

STANDARDS CONFORMANCE
ctermid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 3) 247

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, mktime, difftime, asctime, timezone, daylight, tzname, tzset, nl_ctime,
nl_cxtime, nl_asctime, nl_ascxtime — convert date and time to string

SYNOPSIS
#include <time.h>

char xctime (timer)
const time_t *timer;

char *nl_cxtime (timer, format)
const time_t *timer;
const char *format;

char #nl_ctime (timer, format, langid)
const time_t xtimer; const char *format;
int langid;

struct tm *localtime (timer)

const time_t xtimer;

struct tm +gmtime (timer)
const time_t xtimer;

double difftime (timel, time0)
time_t timel, time0;

time_t mktime (timeptr)
struct tm xtimeptr;

char xasctime (timeptr)
const struct tm +timeptr;

char *nl_ascxtime (timeptr, format)
const struct tm stimeptrs;
const char *format;

char xnl_asctime (timeptr, format, langid)
const struct tm stimeptr;

const char +format;

int langid;

void tzset ()

extern time_t timezone;
extern int daylight;
extern char *tzname[2];

DESCRIPTION
Asctime converts the broken-down time contained in the structure pointed to by timeptr and
returns a pointer to a 26-character string in the form:

Sun Sep 16 01:03:52 1973\n\0
All the fields have constant width.

Ctime converts the calendar time pointed to by timer, representing the time in seconds since the
Epoch, and returns a pointer to the local time in the form of a string. It is equivalent to:

asctime(localtime(timer))

Localtime and gmtime return pointers to tm structures, described below. Localtime corrects for
the time zone and any summer time zone adjustments (such as Daylight Savings Time in the

248 (Section 3) -1- HP-UX Release 7.0: September 1989

CTIME(3C) CTIME(3C)

USA), according to the contents of the TZ environment variable (see Environment Variables
below). Gmtime converts directly to Coordinated Universal Time (UTC), which is the time the
HP-UX system uses.

Difftime returns the difference in seconds between two calendar times: timel - time0.

Mktime converts the broken-down time, expressed as local time, in the structure pointed to by
timeptr into a calendar time value with the same encoding as that of the values returned by
time(2). The original values of the tm_wday and tm_yday components of the structure are
ignored, and the original values of the other components are not restricted to the ranges indi-
cated below. A positive or zero value for tm_isdst causes mktime initially to presume that Day-
light Saving Time, respectively, is or is not in effect for the specified time. A negative value for
tm_isdst causes mktime to attempt to determine whether Daylight Saving Time is in effect for
the specified time. On successful completion, all the components are set to represent the
specified calendar time, but with their values forced to the ranges indicated below; the final
value of tm_mday is not set until tm_mon and tm_year are determined. Mktime returns the
specified calendar time encoded as a value of type time_t. If the calendar time cannot be
represented, the function returns the value (time_t)-1 and sets errno to ERANGE. Note the
value (time_t)-1 also corresponds to the time 23:59:59 on Dec 31, 1969 (plus or minus time
zone and Daylight Saving Time adjustments), thus it is necessary to check both the return value
and errno to reliably detect an error condition.

The <time.h> header file contains declarations of all relevant functions and externals. It also
contains the tm structure, which includes the following members:

int tm_sec; /* seconds after the minute - [0,61] «/
int tm_min; /+ minutes after the hour - [0,59] x/
int tm_hour; /#* hours - [0,23] %/

int tm_mday; /* day of month - {1,31] +/

int tm_mon; /* month of year - [0,11} =/

int tm_year; /* years since 1900 %/

int tm_wday; /* days since Sunday - {0,6] %/

int tm_yday; /* days since January 1 - [0,365] %/
int tm_isdst; /* daylight savings time flag =/

The value of tm_isdst is positive if a summer time zone adjustment such as Daylight Savings
Time is in effect, zero if not in effect, and negative if the information is not available.

Tzset sets the values of the external variables timezone, daylight and tzname according to the
contents of the TZ environment variable (independent of any time value). The functions local-
time, mktime, ctime, nl_ctime, nl_cxtime, asctime, nl_asctime, nl_ascxtime, and strftime(3C) call
tzset and use the values returned in the external variables described below for their operations.
Tzset may also be called directly by the user.

The external variable timezone contains the difference, in seconds, between UTC and local stan-
dard time (in EST, timezone is 5+60+60). The external variable daylight is non-zero only if you
have specified a summer time zone adjustment in your TZ environment variable. The external
variable tzname[2] contains the local standard and local summer time zone abbreviations as
specified by the TZ environment variable.

Ni_cxtime extends the capabilities of ctime. The format specification allows the date and time to
be output in a variety of ways. Format uses the field descriptors and field width and precision
specifications defined in strftime(3C). If the format is the null string, the D_T_FMT stting
defined by langinfo(5) is used. Ni_cxtime is provided for historical reasons only; its use is not
recommended.

Ni_ctime performs in a manner similar to ni_cxtime, but effectively first calls langinit (see
nl_init(3C)) to load the program’s locale according to the language specified by langid. NI_ctime

HP-UX Release 7.0: September 1989 -2- (Section 3) 249

CTIME(3C) CTIME(3C)

also appends a newline to the formatted string. NI_ctime is provided for historical reasons only;
its use is not recommended.

Nl_ascxtime, like nl_cxtime, allows the date string to be formatted. However, like asctime,
nl_asctime takes a pointer to a tm structure as its argument. NI_ascxtime is provided for histori-
cal reasons only; its use is not recommended.

Ni_asctime performs like nl_ascxtime, but first calls langinit (see nl_init(3C)) to load the
program’s locale according to the language specified by langid. Nl_asctime also appends a new-
line to the formatted string. NI_asctime is provided for historical reasons only; its use is not
recommended.
EXTERNAL INFLUENCES
Locale

The LC_TIME category determines for the functions nl_cxtime, nl_ctime, nl_ascxtime and
nl_asctime the characters to be substituted for the directives described in strftime(3C) as being
from the locale. It also determines the default output format used when a null format string is
supplied to these functions.

The LC_CTYPE category determines the interpretation of the bytes within format as single
and/or multi-byte characters.

Environment Variables
The function #zset uses the contents of TZ to set the values of the external variables timezone,
daylight and tzname. TZ also determines the time zone name substituted for the %Z and %z
directives and the time zone adjustments performed by localtime, mktime, ctime, nl_ctime and
nl_cxtime. Two methods for specifying a time zone within TZ are described in environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS

The return values point to static data whose content is overwritten by each call.
The range of tm_sec ([0,61]) extends to 61 to allow for the occasional one or two leap seconds.
However, the “seconds since the Epoch” value returned by time(2) and passed as the timer
argument does not include accumulated leap seconds. The tm structure generated by localtime

and gmtime will never reflect any leap seconds. Upon successful completion, mktime will force
the value of the tm_sec component to the range [0,59].

The use of strftime(3C) is recommended in place of the ctzme, nl_cxtime, nl_ctime, asctime,
nl_ascxtime, and nl_asctime routines defined here.

AUTHOR
Ctime was developed by AT&T and HP.

SEE ALSO

time(2), nl_init(3C), setlocale(3C), strftime(3C), tztab(4), environ(5), hpnls(5), lang(5), lan-
ginfo(5).

STANDARDS CONFORMANCE
ctime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

asctime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
daylight: SVID2, XPG2, XPG3

difftime: ANSI C

gmtime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
localtime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

250 (Section 3) -3- HP-UX Release 7.0: September 1989

CTIME(3C) CTIME(3C)

mktime: XPG3, POSIX.1, FIPS 151-1, ANSI C
nl_ascxtime: XPG2

nl_cxtime: XPG2

timezone: XPG2, XPG3

tzname: XPG2, XPG3, POSIX.1, FIPS 151-1
tzset: XPG2, XPG3, POSIX.1, FIPS 151-1

e, FUSIA i

HP-UX Release 7.0: September 1989 —4 - (Section 3) 251

CTYPE(3C) CTYPE(3C)

NAME

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,
isascii — classify characters

SYNOPSIS

#include <ctype.h>

int isalpha (c)
int ¢

DESCRIPTION

These functions classify character-coded integer values according to the rules of the coded char-
acter set identified by the last successful call to nl_init(3C). Each function is a predicate return-
ing non-zero for true, zero for false.

If nl_init(3C) has not been called successfully, characters are classified according to the rules of
the default ASCII 7-bit coded character set (see nl_init(3C)).

Isascii is defined on all integer values; the other functions are defined for the range —1 (EOF) to
255.

isalpha c is a letter.

isupper ¢ is an uppercase letter.

islower c is a lowercase letter.

isdigit ¢ is a decimal digit (in ASCIL: characters [0-9]).

isxdigit ¢ is a hexadecimal digit (in ASCIL: characters [0-9], [A-F] or [a-f]).

isalnum ¢ is an alphanumeric (letters or digits).

isspace c is a character that creates "white space" in displayed text (in ASCIL: space,
tab, carriage return, new-line, vertical tab, and form-feed).

ispunct ¢ is a punctuation character (in ASCIL: any printing character except the space
character (040), digits, letters).

isprint ¢ is a printing character.

isgraph ¢ is a visible character (in ASCIL: printing characters, excluding the space char-
acter (040)).

iscntrl ¢ is a control character (in ASCIL: character codes less than 040 and the delete
character (0177)).

isascii ¢ is any ASCII character code between 0 and 0177, inclusive.

DIAGNOSTICS

If the argument to any of these functions is outside the domain of the function, the result is
undefined.

WARNING

252

These functions are supplied both as library functions and as macros defined in the <ctype.h>
header. Normally, the macro versions will be used. To obtain the library function either use a
#undef to remove the macro definition or, if compiling in ANSI C mode, enclose the function
name in parenthesis or take its address. The following example will use the library functions
for isalpha, isdigit, and isspace:

#include <ctype.h>
#undef isalpha

(Section 3) -1- HP-UX Release 7.0: September 1989

CTYPE(3C) CTYPE@3C)

main()
int (*ctype_func)();
1f(isalpha(c))
if ((isdigit)))

ctype_func = isspace;

EXTERNAL INFLUENCES
Locale
The LC_CTYPE category determines the classification of character type.

International Code Set Support
Single-byte character code sets are supported.

AUTHOR
Ctype was developed by AT&T and HP.

SEE ALSO
nl_init(3C), ascii(5).

STANDARDS CONFORMANCE
isalnum: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

isalpha: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
isascii: SVID2, XPG2, XPG3

iscntrl: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

isdigit: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

isgraph: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
islower: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
isprint: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

ispunct: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
isspace: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
isupper: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
isxdigit: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2 (Section 3) 253

CURSES(3X) CURSES(3X)

NAME

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
cc | flags § file ... —icurses | libraries]

DESCRIPTION

These routines provide a method for updating screens with reasonable optimization. To initial-
ize curses routines, the initscr() routine must be called before calling any other routine that deals
with windows and screens. The endwin() routine should be called before exiting. To get
character-at-a-time input without echoing, (most interactive, screen oriented-programs need
this) after calling initscr() the program should call “nonl(); cbreak(); noecho();”

The full curses interface permits manipulation of data structures called "windows", which can
be thought of as two-dimensional arrays of characters representing all or part of a CRT screen.
A default window called stdscr is supplied, and others can be created using newwin. Windows
are referred to by variables declared WINDOW «, the type WINDOW is defined in <curses.h> to
be a C structure. These data structures are manipulated by using functions described below,
among which the most basic are move, and addch. (More general versions of these functions
are included. Their names begin with ‘w’, allowing the programmer to specify a window. The
routines not beginning with ‘w’ affect stdscr.) Then refresh() is called, telling the routines to
make the user’s CRT screen resemble stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window.
To invoke this subset, use —DMINICURSES as an option to the cc(1) command. This level is
smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a
local terminal definition before checking in the standard place. For example, if the standard
place is /usr/lib/terminfo, and TERM is set to “vt100”, the compiled file is normally found in
/usr/lib/terminfo/v/vt100. (The “v” is copied from the first letter of “vt100” to avoid crea-
tion of huge directories.) However, if TERMINFO is set to /usr/mark/myterms, curses first
checks /usr/mark/myterms/v/vt100, and if that fails, checks /usr/lib/terminfo/v/vt100.
This is useful for developing experimental definitions, or when write permission in
/usr/lib/terminfo is not available.

Functions

254

All routines listed here can be called when using the full curses. Those marked with an asterisk
can be called when using Mini-Curses.

addch(ch)* add a character to stdscr (Like putchar. Wraps to next
line at end of line)

addstr(str)* calls addch with each character in str

attroff(attrs)* turn off attributes named

attron(attrs)* turn on attributes named

attrset(attrs)* set current attributes to attrs

baudrate()* current terminal speed

beep()* sound beep on terminal

box(win, vert, hor) draw a box around edges of win. vert and hor are chars
to use for vert. and hor. edges of box

clear() clear stdscr

clearok(win, bf) clear screen before next redraw of win

clrtobot() clear to bottom of stdscr

clrtoeol() clear to end of line on stdscr

cbreak()* set cbreak mode

(Section 3) -1- HP-UX Release 7.0: September 1989

CURSES(3X)

delay_output(ms)*
delch()

insert ms millisecond pause in output
delete a character

CURSES(3X)

deleteln() delete a line

delwin(win) delete win

doupdate() update screen from all wnooutrefresh
echo()* set echo mode

endwin()* end window modes

erase() erase stdscr

erasechar() return user’s erase character
fixterm() restore tty to "in curses" state
flash() flash screen or beep

flushinp()* throw away any typeahead

getch() get a char from tty

getstr(str) get a string through stdscr
gettmode() establish current tty modes
getyx(win, y, x) get (y, x) co-ordinates

has_ic() true if terminal can do insert character
has_il() true if terminal can do insert line
idlok(win, bf)* use terminal’s insert/delete line if bf = 0
inch() get char at current (y, x) co-ordinates
initser()* initialize screens

insch(c) insert a char

insertln() insert a line

intrflush(win, bf) interrupts flush output if bf is TRUE

keypad(win, bf) enable keypad input

killchar() return current user’s kill character

leaveok(win, flag) OK to leave cursor anywhere after refresh if flag!=0 for
win; otherwise cursor must be left at current position.

longname() return verbose name of terminal
meta(win, flag)* allow meta characters on input if flag != 0
move(y, x)* move to (y, x) on stdscr

mvaddch(y, x, ch) move(y, x) then addch(ch)
mvaddstr(y, x, str) similar...
mvcur(oldrow, oldcol, newrow, newcol)
low level cursor motion
mvdelch(y, x) like delch, but move(y, x) first
mvgetch(y, x) etc.
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, X, ¢)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, X, fmt, args)

HP-UX Release 7.0: September 1989 -2 - (Section 3) 255

CURSES(3X)

newpad(nlines, ncols)
newterm(type, outfd, infd)

newwin(lines, cols, begin_y, begin_x)
nl)*

nocbreak()*

nodelay(win, bf)

noecho()*

nonl()*

noraw()*

overlay(winl, win2)

overwrite(winl, win2)

CURSES(3X)

create a new pad with given dimensions
set up new terminal of given type to output on outfd,
using input (it needed) from infd

create a new window

set newline mapping

unset cbreak mode

enable nodelay input mode through getch
unset echo mode

unset newline mapping

unset raw mode

overlay winl on win2

overwrite winl on top of win2

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

like prefresh but with no output until doupdate called

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

printw(fmt, argl, arg2, ...)
raw()*

refresh()*

resetterm()*

resetty()*

saveterm()*

savetty()*

scanw(fmt, argl, arg2, ...)
scroll(win)

scrollok(win, flag)
set_term(new)

setscrreg(t, b)
setterm(type)
setupterm(term, filenum, errret)
standend()*

standout()*

refresh from pad starting with given upper left corner of
pad with output to given portion of screen
printf on stdscr

set raw mode

make current screen look like stdscr

set tty modes to "out of curses" state

reset tty flags to stored value

save current modes as "in curses" state
store current tty flags

scanf through stdscr

scroll win one line

allow terminal to scroll if flag = 0

now talk to terminal new

set user scrolling region to lines t through b
establish terminal with given type

clear standout mode attribute
set standout mode attribute

subwin(win, lines, cols, begin_y, begin_x)

touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
welrtoeol(win)
wdelch(win, ¢)
wdeleteln(win)
werase(win)
wgetch(win)

(Section 3)

create a subwindow

change all of win

turn off debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch

add char to win

add string to win

turn off attrs in win

turn on attrs in win

set attrs in win to attrs

clear win

clear to bottom of win

clear to end of line on win
delete char from win

delete line from win

erase win

get a char through win

HP-UX Release 7.0: September 1989

CURSES(3X) CURSES(3X)

wgetstr(win, str) get a string through win
winch(win) get char at current (y, x) in win
winsch(win, c) insert char into win
winsertln(win) insert line into win
wmove(win, y, x) set current (y, x) co-ordinates on win
wnoutrefresh(win) refresh but no screen output
wprintw(win, fmt, argl, arg2, ...) printf on win

wrefresh(win) make screen look like win
wscanw(win, fmt, argl, arg2, ...) scanf through win
wsetscrreg(win, t, b) set scrolling region of win
wstandend(win) clear standout attribute in win
wstandout(win) set standout attribute in win

Terminfo Level Routines

These routines should be called by programs that need to deal directly with the terminfo(4)
database. Due to the low level of this interface, its use is discouraged. Initially, setupterm
should be called to define the set of terminal-dependent variables defined in terminfo(4). The
header files <curses.h> and <term.h> should be included to get the definitions for these
strings, numbers, and flags. Parameterized strings should be passed through tparm to instan-
tiate them. All terminfo(4) strings (including the output of tparm) should be printed with tputs
or putp . Before exiting, resetterm should be called to restore the tty modes. (Programs desiring
shell escapes or suspending with control-Z can call resetterm before the shell is called and
fixterm after returning from the shell.)

fixterm() restore tty modes for terminfo use (called by setupterm)
resetterm() reset tty modes to state before program entry
setupterm(term, fd, rc) read in database. Terminal type is the character string

term, all output is to HP-UX System file descriptor fd. A
status value is returned in the integer pointed to by rc: 1
is normal. The simplest call would be setupterm(o, 1, 0)
which uses all defaults.

tparm(str, pl, p2, ..., p9) instantiate string str with parms P

tputs(str, affent, putc) apply padding info to string str. affcnt is the number of
lines affected, or 1 if not applicable. Putc is a putchar-
like function to which the characters are passed, one at a

time.
putp(str) a handy function that calls tputs (str, 1, putchar)
vidputs(attrs, putc) output the string to put terminal in video attribute mode

attrs, which is any combination of the attributes listed
below. Chars are passed to putchar-like function putc.

vidattr(attrs) Like vidputs but outputs through putchar
set_curterm(term) set the database pointed to by term
del_curterm(term) free the space pointed to by term

Termcap Compatibility Routines
These routines were included as a conversion aid for programs that use termcap. Calling
parameters are the same as for termcap. They are emulated using the terminfo(4) database.
Their use in new software is not recommended because they may be deleted in future HP-UX
releases.

HP-UX Release 7.0: September 1989 -4 - (Section 3) 257

CURSES(3X)

tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)
tgoto(cap, col, row)
tputs(cap, affent, fn)

Attributes

CURSES(3X)

look up termcap entry for name
get boolean entry for id

get numeric entry for id

get string entry for id

apply parms to given cap

apply padding to cap calling fn as putchar

The following video attributes can be passed to the functions attron,attroff attrset.

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK

A_DIM

A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

NLS Attributes

Terminal’s best highlighting mode

Underlining
Reverse video
Blinking

Half bright

Extra bright or bold
Blanking (invisible)

Protected

Alternate character set

The following NLS attributes might be returned by inch:

A_FIRSTOF2
A_SECOF2

Function Keys

First byte of 16-bit character
Second byte of 16-bit character

The following function keys may be returned by getch if keypad has been enabled. Note that
not all of these are currently supported due to lack of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.

Name
KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_F0
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB

258 (Section 3)

Value
0401
0402
0403
0404
0405
0406
0407
0410
(KEY_F0-+(n))
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525

Key name
break key (unreliable)
The four arrow keys ...

Home key (upward-+left arrow)
backspace (unreliable)

Function keys. Space reserved for up to 64 keys.
Formula for fn.

Delete line

Insert line

Delete character

Insert char or enter insert mode
Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backwards (reverse)
Next page

Previous page

Set tab

Clear tab

-5 HP-UX Release 7.0: September 1989

CURSES (3X) CURSES(3X)

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unreliable)

KEY_SRESET 0530 soft (partial) reset (unreliable)

KEY_RESET 0531 reset or hard reset (unreliable)

KEY_PRINT 0532 print or copy

KEY_LL 0533 home down or bottom (lower left)
WARNINGS

L%}

The plotting library pioi(3X) and the curses library curses(3X) both use the names erase() and
move(). The curses versions are macros. If you need both libraries, put the plot(3X) code in a
different source file than the curses(3X) code, and/or #undef move() and erase() in the plot(3X)
code.

HP supports only terminals listed on the current list of supported devices. However, non-
supported and supported terminals can be in the terminfo(4) database. If you use such unsup-
ported terminals, they may not work correctly.

The endwin routine does not release memory allocated by the initscr routine. Repeated calls
to initscr can cause a program to use more memory than was intended.

Some of these routines call malloc(3C) or malloc(3X) to allocate memory, and can therefore fail
for any of the reasons described in the corresponding manual entries.

SEE ALSO
terminfo(4).
Using Curses and Terminfo, tutorial in HP-UX Concepts and Tutorials: Device I1/O and User Inter-
facing.

STANDARDS CONFORMANCE
curses: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -6 - (Section 3) 259

CUSERID(3S) CUSERID(3S)

NAME
cuserid — get character login name of the user

SYNOPSIS
#include <stdio.h>
char +cuserid (s)
char xs;

DESCRIPTION
Cuserid generates a character-string representation of the user name corresponding to the
effective user ID of the process. If s is a NULL pointer, this representation is generated in an
internal static area, the address of which is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the representation is left in this array. The constant
L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a
null character (\0) will be placed at s[0].

SEE ALSO
geteuid(2), getlogin(3C) getpwuid(3C).

STANDARDS CONFORMANCE
cuserid: XPG2, XPG3, POSIX.1, FIPS 151-1

260 (Section 3) -1- HP-UX Release 7.0: September 1989

CVTNUM(3C) CVTNUM(3C)

NAME
cvtnum — convert string to floating point number

SYNOPSIS
#include <cvtnum.h>

int cvtnum(src,dst typ,rnd,ptr,inx)
unsigned char *src,*dst,**ptr;
int typ,rnd,*inx;

DESCRIPTION
The function cvtnum converts an ASCII character string to a number in one of four floating
point formats: single precision, double precision, extended precision, or packed decimal string.

The string pointed to by src is the string representation of a standard number, an infinity, or a
not-a-number. A standard number begins with an optional sign followed by a string of digits
optionally containing a decimal point. It may then have an optional e or E followed by an
optional sign followed by an integer. Infinities are represented by INF preceded by an optional
sign. The string for a not-a-number is an optional sign followed by NaN followed by any
number of hexadecimal digits enclosed in parentheses.

The result is moved to dst and will be of the size and format as defined for the 68881 floating-
point coprocessor.

typ indicates the type of conversion to be done. It may be one of four values: C_SNGL,
C_DBLE, C_EXT, or C_DPACK indicating single precision, double precision, extended preci-
sion and packed decimal string respectively.

rnd specifies the type of rounding mode and may be one of four values: C_NEAR,
C_POS_INF, C_NEG_INF, or C_TOZERO indicating round to nearest, to positive infinity, to
negative infinity and to zero respectively.

If the value of *ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no number can be formed, *ptr is set to str .

If inx is not (int *)NULL, cvtnum will use this to return an indication of the inexactness of the
conversion. A zero indicates exact; a non-zero value, inexact.

SEE ALSO
scanf(3S), strtod(3C), strtol(3C)
MC68881 Floating-Point Coprocessor User’s Manual

DIAGNOSTICS
If no errors occur or no non-standard conversions are done, cvtnum returns 0. Otherwise, it will
return one of the following:

C_BADCHAR - lllegal character or unexpected end of string
C_OVER - Overflow

C_UNDER - Underflow

C_INF - Infinity

C_QNAN - Quiet NaN

C_SNAN - Signalling NaN

HP-UX Release 7.0: September 1989 -1- (Section 3) 261

DATALOCK(3C) DATALOCK(3C)

NAME
datalock — lock process into memory after allocating data and stack space

SYNOPSIS
#include <sys/lock.h>
int datalock (datsiz, stsiz);
int datsiz, stsiz;

DESCRIPTION
Datalock allocates at least datsiz bytes of data space and stsiz bytes of stack space, then locks the
program in memory. The data space is allocated with either malloc(3C) or malloc(3X) (which-
ever is linked with the program). After the program is locked, this space is released with free
(on malloc(3C)) or free (on malloc(3X)), making it available for use. This allows the calling pro-
gram to use that much space dynamically without receiving the SIGSEGV signal.

The effective user ID of the calling process must be super-user or be a member of or have an
effective group ID of a group having PRIV_MLOCK access to use this call (see getprivgrp(2)).
EXAMPLES

The following call to datalock allocates 4096 bytes of data space and 2048 bytes of stack space
and then locks the process in memory:

datalock (4096, 2048);
RETURN VALUE
Returns —1 if malloc cannot allocate enough memory or plock(2) returned an error.
WARNINGS
Multiple datalocks may not be the same as one big one.
Methods for calculating the required size are not yet well developed.

AUTHOR
Datalock was developed by the Hewlett-Packard Company.

SEE ALSO
getprivgrp(2), plock(2).

262 (Section 3) -1- HP-UX Release 7.0: September 1989

DBM(3X) DBM(3X)

NAME

dbminit, fetch, store, delete, firstkey, nextkey, dbmclose — data base subroutines

SYNOPSIS

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(file)

char *file;

datum fetch(key)

datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey(

datum nextkey(key)
datum key;

dbmclose()

DESCRIPTION

These functions maintain key/content pairs in a data base. The functions will handle very
large (a billion blocks (block = 1024 bytes)) databases and will locate a keyed item in one or
two file system accesses. This package is superseded by the newer ndbm(3X) library, which
manages multiple databases. The functions can be accessed by giving the —ldbm option to
1d(1) or cc(1).

Key and content parameters are described by the datum type. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are
allowed. The data base is stored in two files. One file is a directory containing a bit map of
keys and has .dir as its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dir and file.pag must exist. (An empty database is created by creating zero-length .dir
and .pag files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by
store. Storing data on an existing key will replace the existing data. A key (and its associated
contents) is deleted by delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of firstkey and nextkey. Firstkey will return the first key in
the database. With any key nextkey will return the next key in the database. This code will
traverse the data base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))

A database may be closed by calling dbmclose. The user must close a database before opening a
new one.

DIAGNOSTICS

All functions that return an int indicate errors with negative values and success with zero. Rou-
tines that return a datum indicate errors with a null dptr.

WARNINGS

The .pag file will contain holes so that its apparent size is about four times its actual content.

HP-UX Release 7.0: September 1989 -1- (Section 3) 263

DBM(3X) DBM(3X)

Some older UNIX systems create real file blocks for these holes when touched. These files can-
not be copied by normal means (such as cp(1), cat(1), tar(1), or ar(1)) without expansion.
Dptr pointers returned by these subroutines point into static storage that is changed by subse-

quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block. Store
will return an error if a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any-
thing interesting.

AUTHOR
Dbm(3X) was developed by the University of California, Berkeley.

SEE ALSO
ndbm(3X).

264 (Section 3) -2 - HP-UX Release 7.0: September 1989

DIAL(3C) DIAL(3C)

NAME
dial, undial — establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial {{fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for read/write. The argument to dial is a
CALL structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program must invoke undial to release the
semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:
typedef struct {

struct termio *attr; /# pointer to termio attribute struct x/
int baud; /* transmission data rate %/
int speed; /* 212A modem: low=300, high=1200 %/
char xline; /* device name for out-going line */
char «telno; /* pointer to tel-no digits string */
int modem; /* specify modem control for direct lines */
char *device; /*Will hold the name of the device used
to make a connection */
int dev_len; /* The length of the device used to

make connection */
} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-speed set-
ting on the 212A modem. Note that the 113A modem or the low-speed setting of the 212A
modem will transmit at any rate between 0 and 300 bits per second. However, the high-speed
setting of the 212A modem transmits and receivers at 1200 bits per second only. The CALL ele-
ment baud is for the desired transmission baud rate. For example, one might set baud to 110
and speed to 300 (or 1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should be placed
in the line element in the CALL structure. Legal values for such terminal device names are kept
in the Devices file. In this case, the value of the baud element need not be specified as it will
be determined from the Devices file.

The telno element is for a pointer to a character string representing the telephone number to be
dialed. Such numbers may consist only of symbols described below. The termination symbol
will be supplied by the dial function, and should not be included in the telno string passed to
dial in the CALL structure.

Permissible codes

0-9 dial 0-9

*or: dial *

#or; dial #

- 4-second delay for second dial tone
eor < end-of-number

wor = wait for secondary dial tone

HP-UX Release 7.0: September 1989 -1- (Section 3) 265

DIAL(3C)

DIAL(3C)

f flash off hook for 1 second

The CALL element modem is used to specify modem control for direct lines. This element
should be non-zero if modem control is required. The CALL element attr is a pointer to a ter-
mio structure, as defined in the termio.h header file. A NULL value for this pointer element may
be passed to the dial function, but if such a structure is included, the elements specified in it
will be set for the outgoing terminal line before the connection is established. This is often
important for certain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cul..) that establishes the connection.

The CALL element dev_len is the length of the device name that is copied into the array device.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics
for these negative indices as listed here are defined in the <dial.h> header file.

WARNINGS

INTRPT -1 /* interrupt occurred */

D_HUNG -2 /* dialer hung (no return from write) /
NO_ANS -3 /* no answer within 10 seconds */

ILL_BD -4 /#* illegal baud-rate =/

A_PROB -5 /#* automatic call unit (acu) problem (open() failure) %/
L_PROB -6 /* line problem (open() failure) */

NO_Ldv -7 /* can’t open LDEVS file x/

DV_NT_.A -8 /* requested device not available */
DV_.NT.X -9 /* requested device not known %/
NO_BD_A -—10 /% no device available at requested baud */
NO_BDK -11 /* no device known at requested baud */

Including the <dial.h> header file automatically includes the <termio.h> header file.

The above routine uses <stdio.h>, which causes unexpected increases in the size of programs,
not otherwise using standard 1/0.

DEPENDENCIES
HP Clustered Environment

Dial is not supported on client nodes of an HP Cluster.

Series 300

FILES

An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for
the purpose of “touching” the LCK.. file and constitutes the device allocation semaphore
for the terminal device. Otherwise, uucp(1) may simply delete the LCK.. entry on its 90-
minute clean-up rounds. The alarm may go off while the user program is in a read(2) or
write(2) system call, causing an apparent error return. If the user program expects to be
around for an hour or more, error returns from reads should be checked for
(errno==EINTR), and the read possibly reissued.

/usr/lib/uucp /Devices
/usr/spool /uucp/LCK..tty-device

SEE ALSO

uucp(1), alarm(2), read(2), write(2), termio(7).
UUCP, a tutorial in HP-UX Concepts and Tutorials.

266 (Section 3) -2 - HP-UX Release 7.0: September 1989

DIRECTORY (3C) DIRECTORY (3C)

NAME

opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations

SYNOPSIS

#include <sys/types.h>
#include <direnth>

DIR *opendir(dirname)
char xdirname;

struct dirent +readdir(dirp)
DIR xdirp;

long telldir(dirp)

DIR sdirp;

void seekdir(dirp, loc)
DIR *dirp;
long log;

void rewinddir(dirp)
DIR *dirp;

int closedir(dirp)
DIR xdirp;

DESCRIPTION

This library package provides functions that allow programs to read directory entries without
having to know the actual directory format associated with the file system. Because these func-
tions allow programs to be used portably on file systems with different directory formats, this is
the recommended way to read directory entries.

Opendir opens the directory dirname and associates a directory stream with it. Opendir returns a
pointer used to identify the directory stream in subsequent operations. The opendir routine allo-
cates memory using malloc(3C) or malloc(3X), depending on which is linked with the program.

Readdir returns a pointer to the next directory entry. It returns a NULL pointer upon reaching
the end of the directory or detecting an invalid seekdir operation. See dirent(5) for a description
of the fields available in a directory entry.

Telldir returns the current location (encoded) associated with the directory stream to which dirp
refers.

Seekdir sets the position of the next readdir operation on the directory stream to which dirp
refers. The loc argument is a location within the directory stream obtained from telldir. The
position of the directory stream is restored to where it was when telldir returned that loc value.
Values returned by telldir are valid only while the DIR pointer from which they are derived
remains open. If the directory stream is closed and then reopened, the telldir value might be
invalid.

Rewinddir resets the position of the directory stream to which dirp refers to the beginning of the
directory. It also causes the directory stream to refer to the current state of the corresponding
directory, as a call to opendir() would have done.

Closedir closes the named directory stream and then frees the structure associated with the DIR
pointer.

RETURN VALUE

Upon successful completion, opendir returns a pointer to an object of type DIR referring to an
open directory stream. Otherwise, it returns a NULL pointer and sets the global variable errno
to indicate the error.

HP-UX Release 7.0: September 1989 -1- (Section 3) 267

DIRECTORY (3C)

DIRECTORY (3C)

Upon successful completion, readdir returns a pointer to an object of type struct dirent describ-
ing a directory entry. Upon reaching the end of the directory, readdir returns a NULL pointer
and does not change the value of errno. Otherwise, it returns a NULL pointer and sets errno to

indicate the error.

Upon successful completion, telldir returns a long value indicating the current position in the
directory. Otherwise it returns —1 and sets errno to indicate the error.

Upon successful completion, closedir returns a value of 0. Otherwise, it returns a value of —1
and sets errno to indicate the error.

ERRORS

Opendir might fail if any of the following is true:

[EACCES]

[EFAULT]

[ELOOP]
[EMFILE]
[ENAMETOOLONG]

[ENFILE]
[ENOENT]
[ENOMEM)|

[ENOTDIR]
[ENOENT]

Search permission is denied for a component of dirname, or read permis-
sion is denied for dirname.

Dirname points outside the allocated address space of the process. The
reliable detection of this error is implementation dependent.

Too many symbolic links were encountered in translating the path name.
Too many open file descriptors are currently open for the calling process.

A component of dirname exceeds PATH_MAX bytes, or the entire length of
dirname exceeds PATH_MAX -1 bytes while _POSIX_.NO_TRUNC is in
effect.

Too many open file descriptors are currently open on the system.
A component of the dirname does not exist.

The malloc routine failed to provide sufficient memory to process the
directory.

A component of dirname is not a directory.

The dirname argument points to an empty string.

Readdir might fail if any of the following is true:

[EBADF]
[ENOENT]

[EFAULT]

The dirp argument does not refer to an open directory stream.

The directory stream to which dirp refers is not located at a valid direc-
tory entry.

dirp points outside the allocated address space of the process.

Telldir might fail if the following is true:

[EBADF]

The dirp argument does not refer to an open directory stream.

Closedir might fail if the following is true:

[EBADF]|
[EFAULT]

The dirp argument does not refer to an open directory stream.

dirp points outside the allocated address space of the process.

Rewinddir might fail if the following is true:

[EFAULT]
EXAMPLES

dirp points outside the allocated address space of the process.

The following code searches the current directory for an entry name:

DIR *dirp;

struct dirent *dp;

268 (Section 3)

-2 - HP-UX Release 7.0: September 1989

DIRECTORY(3C) DIRECTORY(3C)

dirp = opendir(".");
while ((dp = readdir(dirp)) = NULL) {
if (stremp(dp->d_name, name) == 0) {
(void) closedir(dirp);
return FOUND;
}

(void) closedir(dirp);
return NOT_FOUND;

WARNINGS
Readdir or getdirentries(2) are the only ways to access remote NFS directories. Attempting to
read a remote directory using read(2) with NFS returns —1 and sets errno to EISDIR.

APPLICATION USAGE
The header file required for these functions and the type of the return value from the readdir
function has been changed for compatibility with System V Release 3 and the X/Open Portabil-
ity Guide. See ndir(5) for a description of the header file <ndir.h>, which is provided to allow
existing HP—UX applications to compile unmodified.

New applications should use the <dirent.h> header file for portability to System V and
X/Open systems.

AUTHOR
Directory was developed by AT&T, HP, and the University of California, Berkeley.

SEE ALSO
close(2), getdirentries(2), Iseek(2), open(2), read(2), dir(4), dirent(5), ndir(5).

STANDARDS CONFORMANCE
closedir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

opendir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
readdir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
rewinddir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
seekdir: XPG2, XPG3

telldir: XPG2, XPG3

HP-UX Release 7.0: September 1989 -3~ (Section 3) 269

DIV(3C) DIV(3C)

NAME
div, 1div — integer division and remainder

SYNOPSIS
#include <stdlib.h>

div_t div (numer, denom)
int numer, denom;

ldiv_t ldiv (numer, denom)
long int numer, denom;

DESCRIPTION

The div function computes the quotient and remainder of the division of the numerator numer
by the denominator denom. If the division is inexact, the sign of the resulting quotient is that of
the algebraic quotient, and the magnitude of the resulting quotient is the largest integer less
than the magnitude of the algebraic quotient. If the result can be represented, the result is
returned in a structure of type div_t (defined in stdlib.h) having members quot and rem for the
quotient and remainder respectively. Both members have type int and values such that quot *
denom + rem = numer. If the result cannot be represented, the behavior is undefined.

The Idiv function is similar to the div function, except that the arguments each have type long
int and the result is returned in a structure of type 1div_t (defined in stdlib.h) having long int
members quot and rem for the quotient and remainder respectively.

WARNINGS
The behavior is undefined if denom is 0.

SEE ALSO
floor(3M).

STANDARDS CONFORMANCE
div: ANSI C

Idiv: ANSI C

270 (Section 3) -1- HP-UX Release 7.0: September 1989

DRAND48(3C) DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 — generate
uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short +seed48 (seed16v)
unsigned short seed16v[3};

void lcong48 (param)
unsigned short param|[7};

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-known linear
congruential algorithm and 48-bit integer arithmetic.

In the following discussion, the formal mathematical notation [0.0, 1.0) indicates an interval
including 0.0 but not including 1.0.

Functions drand48 and erand48 return non-negative double-precision floating-point values uni-
formly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly distributed over the
interval [0, 2°7).

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the inter-
val [-231, 2%1).

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be
invoked before either drand48, lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand48, lrand48 or
mrand48 is called without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, according to the
linear congruential formula

X, 41 = (@X, +c) mod m n>0

The parameter m = 2%8; hence 48-bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value a4 and the addend value c are given by

a = 5DEECE66D 14 = 2736731631553

c =By =135
The value returned by any of the functions drand48, erand48, lrand48, nrand48, mrand48 or

jrand48 is computed by first generating the next 48-bit X; in the sequence. Then the appropri-
ate number of bits, according to the type of data item to be returned, are copied from the high-

HP-UX Release 7.0: September 1989 -1- (Section 3) 271

DRAND48(3C) DRAND48(3C)

order (leftmost) bits of X; and transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit X; generated in an internal
buffer; that is why they must be initialized prior to being invoked. The functions erand48,
nrand48 and jrand48 require the calling program to provide storage for the successive X; values
in the array specified as an argument when the functions are invoked. That is why these rou-
tines do not have to be initialized; the calling program merely has to place the desired initial
value of X; into the array and pass it as an argument. By using different arguments, functions
erand48, nrand48 and jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the sequence of numbers in each stream
will not depend upon how many times the routines have been called to generate numbers for
the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits contained in its
argument. The low-order 16 bits of X; are set to the arbitrary value 330E .

The initializer function seed48 sets the value of X; to the 48-bit value specified in the argument
array. In addition, the previous value of X; is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted from a given point at
some future time — use the pointer to get at and store the last X; value, and then use this value
to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X;, the multiplier value
a, and the addend value c¢. Argument array elements param[0-2] specify X;, param[3-5] specify
the multiplier 4, and param[6] specifies the 16-bit addend c. After Icong48 has been called, a
subsequent call to either srand48 or seed48 will restore the “standard” multiplier and addend
values, 4 and ¢, specified on the previous page.

SEE ALSO
rand(3C).

STANDARDS CONFORMANCE
drand48: SVID2, XPG2, XPG3

erand48: SVID2, XPG2, XPG3
jrand48: SVID2, XPG2, XPG3
lcong48: SVID2, XPG2, XPG3
Irand48: SVID2, XPG2, XPG3
mrand48: SVID2, XPG2, XPG3
nrand48: SVID2, XPG2, XPG3
seed48: SVID2, XPG2, XPG3
srand48: SVID2, XPG2, XPG3

272 (Section 3) -2- HP-UX Release 7.0: September 1989

ECVT(3C) ECVT(3C)

NAME
ecvt, fevt, gevt, nl_gevt — convert floating-point number to string

SYNOPSIS
char +ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, «decpt, *sign;
char «fcvt (value, ndigit, decp
double value;
int ndigit, *decpt, *sign;

gign)

=

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char xbuf;
char *nl_gcvt (value, ndigit, buf, langid)
double value;
int ndigit;
char *buf;
int langid;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer to the
string. The high-order digit is non-zero, unless the value is zero. The low-order digit is
rounded. The position of the radix character relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned digits). The radix character
is not included in the returned string. If the sign of the result is negative, the word pointed to
by sign is non-zero, otherwise it is zero.

One of three non-digit characters strings could be returned if the converted value is out of
range. A "--" or "++" is returned if the value is larger than the exponent can contain, and is
negative, or positive, respectively. The third string is returned if the number is illegal, a zero
divide for example. The result value is Not A Number (NAN) and would return a "?" character.

Fcut is identical to ecvt, except that the correct digit has been rounded for printf “%f” (FOR-
TRAN F-format) output of the number of digits specified by ndigit.

Geovt converts the value to a null-terminated string in the array pointed to by buf and returns
buf. It produces ndigit significant digits in FORTRAN F-format if possible, or E-format otherwise.
A minus sign, if required, and a radix character will be included in the returned string. Trailing
zeros are suppressed. The radix character is determined by the currently loaded NLS environ-
ment (see setlocale(3C)). If setlocale has not been called successfully, the default NLS environ-
ment, "C", is used (see lang(5)). The default environment specifies a period (.) as the radix
character.

Nl_gcot differs from gcvt only by first calling langinit (see ni_init(3C)) to load the NLS environ-
ment according to the language specified by langid.

WARNINGS
The values returned by ecvt and fcvt point to a single static data array whose content is
overwritten by each call.
NI_gcut is provided for historical reasons only; its use is not recommended.

EXTERNAL INFLUENCES
Locale
The LC_NUMERIC category determines the value of the radix character within the current NLS

HP-UX Release 7.0: September 1989 -1- (Section 3) 273

ECVT(3C) ECVT(3C)

environment.

AUTHOR

Ecvt and fcvt were developed by AT&T. Gcvt was developed by AT&T and HP. Ni_gcvt was
developed by HP.

SEE ALSO
setlocale(3C), printf(3S), hpnls(5), lang(5).

STANDARDS CONFORMANCE
ecvt: XPG2

fevt: XPG2
gevt: XPG2

274 (Section 3) -2- HP-UX Release 7.0: September 1989

END(3C) END(3C)

end, etext, edata — last locations in program

SYNOPSIS

extern _end;
extern end;
extern _etext;
extern etext;
extern _edata;

extern edata;

DESCRIPTION

These names refer neither to routines nor to locations with interesting contents. The address of
the symbols _etext and etext is the first address above the program text, the address of _edata
and edata is the first address above the initialized data region, and the address of _end and end
is the first address above the uninitialized data region.

The linker defines these symbols with the appropriate values if they are referenced by the pro-
gram but not defined. The linker will issue an error if the user attempts to define _etext,
_edata, or _end.

When execution begins, the program break (the first location beyond the data) coincides with
_end, but the program break may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (—p) option of cc(1), and so on. Thus, the current value of
the program break should be determined by sbrk(0) (see brk(2)).

WARNINGS

In C, these names must look like addresses. Thus, you would write &end instead of end to
access the current value of end.

SEE ALSO

cc(1), 1d(1), brk(2), malloc(3C), stdio(3S).

STANDARDS CONFORMANCE

end: XPG2
edata: XPG2
etext: XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 275

ERF(3M) ERF(3M)

NAME

erf, erfc — error function and complementary error function
SYNOPSIS

#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;
DESCRIPTION
2

X
) 2
Erf returns the error function of x, defined as f et dr
0

™
Erfc, which returns 1.0 — erf(x), is provided because of the extreme loss of relative accuracy if
erf(x) is called for large x and the result subtracted from 1.0 (for example, for x = 5, twelve
places are lost).
DEPENDENCIES
Series 800 (/lib/libm.a and ANSI C /lib/libM.a)
Erf returns 1.0 when x is +INFINITY , or —1.0 when x is —INFINITY .
Erfc returns 0.0 when x is +INFINITY , or 2.0 when x is —INFINITY .
ERRORS
Series 800 (/lib/libm.a and ANSI C /lib/libM.a)
Erf and erfc return NaN and set errno to EDOM when x is NaN.
SEE ALSO
isinf(3M), isnan(3M), exp(3M).
STANDARDS CONFORMANCE
erf: SVID2, XPG2, XPG3

erfc: SVID2, XPG2, XPG3

276 (Section 3) -1~ HP-UX Release 7.0: September 1989

EXP(3M)

NAME

EXP(3M)

exp, log, log10, pow, sqrt — exponential, logarithm, power, square root functions

SYNOPSIS

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double logl0 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns ¢,

Log returns the natural logarithm of x. The value of x must be positive.

Log10 returns the logarithm base ten of x. The value of x must be positive.

Pow returns #¥. If x is 0.0, y must be positive. If x is negative, ¥ must be an integer.

Sqrt returns the non-negative square root of x. The value of x must not be negative.

DEPENDENCIES
Series 300

The algorithms used are those from HP 9000 BASIC.

Series 800 (/lib/libm.a and ANSI C /lib/libM.a)

ERRORS

Exp returns:
¢ +INFINITY when x is +INFINITY ,
¢ 0.0 when x is —INFINITY .
Log and log10 return +INFINITY when x is +INFINITY .
Pow returns +INFINITY when:
e Absolute value of x is greater than 1.0 and y is +INFINITY ,
» Absolute value of x is less than 1.0 and y is —INFINITY ,
e xis +INFINITY and y is greater than 0.0, or
e xis —INFINITY and y is an even integer.
Pow returns —INFINITY when x is ~INFINITY and y is an odd integer.
Pow returns 0.0 when:
* Absolute value of x is greater than 1.0 and y is —INFINITY ,
¢ absolute value of x is less than 1.0 and y is +INFINITY ,
e xis +INFINITY and y is less than 0.0.
Sgrt returns +INFINITY when x is +INFINITY .

HP-UX Release 7.0: September 1989 -1- (Section 3)

277

EXP(3M) EXP(3M)

Series 300
Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct
value would underflow, and sets errno to ERANGE.

Log and log10 return —HUGE_VAL and set errno to EDOM when x is non-positive. A mes-
sage indicating DOMAIN error {or SING crror when x is 0.0} is printed on the standard

error output.

Pow returns 0.0 and sets errno to EDOM when x is 0.0 and y is non-positive, or when x is
negative and y is not an integer. In these cases a message indicating DOMAIN error is
printed on the standard error output. When the correct value for pow would overflow or
underflow, pow returns +HUGE_VAL or 0.0 respectively, and sets errno to ERANGE.

Sgrt returns 0.0 and sets errno to EDOM when x is negative. A message indicating
DOMAIN error is printed on the standard error output.

Series 800 (/lib/libm.a)
Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct
value would underflow, and sets errno to ERANGE. NaN is returned and errno is set to
EDOM when x is NaN.

Log and log10 return —HUGE_VAL and set errno to EDOM when x is non-positive. NaN is
returned and errno is set to EDOM when x is NaN or —INFINITY . A message indicating
DOMAIN error (or SING error when x is 0.0) is printed on the standard error output in
these cases.

Pow returns 0.0 and sets errno to EDOM when x is 0.0 and y is negative, or when x is
negative and y is not an integer. NaN is returned and errno is set to EDOM when x or y
is NaN. In these cases a message indicating DOMAIN error is printed on the standard
error output. When the correct value for pow would overflow or underflow, pow returns
+HUGE_VAL or 0.0 respectively, and sets errno to ERANGE.

Sqrt returns NaN and sets errno to EDOM when x is negative, NaN or —INFINITY . A
message indicating DOMAIN error is printed on the standard error output.

Series 800 (ANSI C /lib/libM.a)
No error messages are printed on the standard error output.
Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct
value would underflow, and sets errno to ERANGE . NaN is returned and errno is set to
EDOM when x is NaN.

Log and log10 return NaN and set errno to EDOM when x is negative, —INFINITY, or NaN.
—HUGE_VAL is returned and errno is set to EDOM when x is 0.0.

Pow returns 1.0 and sets errno to EDOM when x and y are both 0.0. HUGE_VAL is
returned and errno is set to EDOM when x is 0.0 and y is negative. NaN is returned and
errno is set to EDOM when x is negative and y is not an integer or when x or y is NaN.
When the correct value for pow would overflow or underflow, pow returns +HUGE_VAL or
0.0 respectively, and sets errno to ERANGE .

Sqrt returns NaN and sets errno to EDOM when x is negative, NaN or —INFINITY .
These error-handling procedures may be changed with the function matherr(3M).
SEE ALSO .
hypot(3M), isinf(3M), isnan(3M), matherr(3M), sinh(3M).
STANDARDS CONFORMANCE
exp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

278 (Section 3) -2- HP-UX Release 7.0: September 1989

EXP(3M) EXP(3M)

log: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
log10: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
pow: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
sqrt: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -3 - (Section 3) 279

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, fflush — close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;
DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and the stream to be
closed. Buffers allocated by the standard input/output system may be freed.
Fclose is performed automatically for all open files upon calling exit(2).

If stream points to an output stream or an update stream in which the most recent operation
was output, flush causes any buffered data for the stream to be written to that file; otherwise
any buffered data is discarded. The stream remains open.

If stream is a null pointer, the fflush function performs this flushing action on all currently open
streams.

DIAGNOSTICS

These functions return 0 for success, and EOF if any error (such as trying to write to a file that
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

STANDARDS CONFORMANCE
felose: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

flush: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

280 (Section 3) -1- HP-UX Release 7.0: September 1989

FERROR(3S)

NAME
ferror, feof, clearerr — stream status inquiries
SYNOPSIS
#include <stdio.h>
int ferror (stream)
FILE
xstream;
int feof (stream)
FILE
xstream;
void clearerr (stream)

FILE
sstream;

DESCRIPTION

FERROR(3S)

Ferror returns non-zero when an I/O error has previously occurred reading from or writing to
the named stream, otherwise zero. Unless cleared by clearerr, or unless the specific stdio rou-

tine so indicates, the error indication lasts until the stream is closed.

Feof returns non-zero when EOF has previously been detected reading the named input stream,

otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.

WARNINGS

All these routines are implemented as both library functions and macros. The macro versions,
which are used by default, are defined in <stdio.h>>. To obtain the library function either use a
#undef to remove the macro definition or, if compiling in ANSI-C mode, enclose the function
name in parenthesis or use the function address. For following example illustrates each of these

methods :
#include <stdio.h>
#undef ferror
main()
int (*find_error()) ();
return_val=ferror(fd);

;;tum_val:(feoﬂ(fdl);

find_error = feof;
b
SEE ALSO
open(2), fopen(3S).

STANDARDS CONFORMANCE
ferror: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

clearerr: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
feof: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1-

(Section 3)

281

FGETPOS(3S) FGETPOS(3S)

NAME
fgetpos, fsetpos — save and restore a file position indicator for a stream
SYNOPSIS
#include <stdio.h>
int fgetpos (stream, pos)
FILE sstream;
fpos_t *pos;
int fsetpos (stream, pos)
FILE s*stream;
const fpos_t *pos;
DESCRIPTION
Fgetpos stores the current value of the file position indicator for the stream pointed to by stream
in the object pointed to by pos. The value stored contains information usable by fsetpos for
repositioning the stream to its position at the time of the call to fgetpos.
Fsetpos sets the file position indicator for the stream pointed to by stream according to the value
of the object pointed to by pos, which shall be a value set by an earlier call to fgetpos on the
same stream.

A successful call to fsetpos clears the end-of-file indicator for the stream and undoes any effects
of ungetc(3S) on the same stream. After a fsetpos call, the next operation on a update stream
may be either input or output.

RETURN VALUES
If successful, these functions return zero; otherwise non-zero.
WARNINGS

Failure may occur if these functions are used on a file that has not been opened via fopen; in
particular, they may not be used on a terminal, or on a file opened via popen(3S).

SEE ALSO

fseek(3S), fopen(3S), popen(3S), ungetc(3S).
STANDARDS CONFORMANCE

fgetpos: ANSI C

282 (Section 3) -1- HP-UX Release 7.0: September 1989

FILENO(3S) FILENO(3S)

NAME
fileno — map stream pointer to file descriptor
SYNOPSIS
#include <stdio.h>
int fileno (stream)
FILE
xstream;
DESCRIPTION
Fileno returns the integer file descriptor associated with the named stream; see open(2).

The following symbolic values in <unistd.h> define the file descriptors associated with stdin,
stdout, and stderr when a program is started : '

STDIN_FILENO Value of zero for standard input, stdin.
STDOUT_FILENO Value of 1 for standard output, stdout.
STDERR_FILENO Value of 2 for standard error, stderr.

DIAGNOSTICS
Upon error, fileno will return a -1.

SEE ALSO
open(2), fopen(3S).

STANDARDS CONFORMANCE
fileno: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 3) 283

FLOOR(3M) FLOOR(3M)

NAME
floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder (f) of the division of x by y, where f has the same
sign as x, such that x = iy + f for some integer i, and |f| < |y |.

Fabs returns the absolute value of x, | x |.

DEPENDENCIES
Series 300
Fmod returns x if y is 0.0 or if x/y would overflow.

Series 800 (/lib/libm.a)
When x is +INFINITY , floor and ceil return £INFINITY respectively.

Fabs returns +INFINITY when x is +INFINITY .

Fmod returns x if y is 0.0, if x/y would overflow, or if x/y would underflow (including
when y is £INFINITY).

Series 800 (ANSI C /lib/LibM.a)
When x is £INFINITY , floor and ceil return +INFINITY respectively.

Fabs returns +INFINITY when x is £INFINITY .

Fmod returns 0.0 if x /y would overflow, or x if x/y would underflow (including when y is
+INFINITY).

ERRORS
Series 800 (/lib/libm.a)
Floor and ceil return NaN and set errno to EDOM when x is NaN.

Fmod returns NaN and sets errno to EDOM when x or y is NaN, or when x is £INFINITY .
Fabs returns NaN and sets errno to EDOM when x is NaN.

Series 800 (ANSI C /lib/1ibM.a)
Floor and ceil return NaN and set errno to EDOM when x is NaN.

Fmod returns NaN and sets errno to EDOM when y is 0.0, when x or y is NaN, or when x
is £INFINITY .

Fabs returns NaN and sets errno to EDOM when x is NaN.

SEE ALSO
abs(3C), isinf(3M), isnan(3M).

284 (Section 3) -1- HP-UX Release 7.0: September 1989

FLOOR(3M)

STANDARDS CONFORMANCE
floor: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

ceil: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
fabs: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
fmod: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2~

FLOOR(3M)

(Section 3)

285

FOPEN(3S) FOPEN(3S)

NAME

fopen, freopen, fdopen — open or re-open a stream file; convert file to stream
SYNOPSIS

#include <stdio.h>

FILE *fopen (file_name, type)
const char *file_name, *type;

FILE +freopen (file_name, type, stream)
const char xfile_name, xtype;
FILE *stream;

FILE sfdopen (filedes, type)
int filedes;
const char type;
DESCRIPTION
Fopen opens the file named by file_name and associates a stream with it. Fopen returns a
pointer to the FILE structure associated with the stream.
File_name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:

o open for reading
"w truncate to zero length or create for writing
" append; open for writing at end of file, or create for writing
nrbn open binary file for reading
"wb* truncate to zero length or create binary file for writing
"ab" append; open binary file for writing at end-of-file, or create binary file
-t open for update (reading and writing)
"w" truncate to zero length or create for update
a4t append; open or create for update at end-of-file
"r4+b" or "rb4"
open binary file for update (reading and writing)
"w+b" or "wb-+"
truncate to zero length or create binary file for update
"a+b" or "ab+4-"

append; open or create binary file for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc-
ture associated with stream and makes an implicit call to clearerr (see ferror(3S)).

Freopen is typically used to attach the preopened streams associated with stdin, stdout and
stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained from open(2),
dup(2), creat(2), or pipe(2), which open files but do not return pointers to a FILE structure
stream. Streams are necessary input for many of the Section (3S) library routines. The type of
stream must agree with the mode of the open file. The meanings of type used in the fdopen call
are exactly as specified above, except that "w", "w+", "wb", and "wb+" do not cause trunca-
tion of the file.

286 (Section 3) -1~ HP-UX Release 7.0: September 1989

FOPEN(3S) FOPEN(3S)

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening call to the flush
function or to a file positioning function (fseek, fsetpos, or rewind), and input may not be directly
followed by output without an intervening call to a file positioning function, unless the input
operation encounters end-of-file.
When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to overwrite
information already in the file. All output is written at the end of the file, regardless of inter-
vening class to the fseek function. If two separate processes open the same file for append, each
process can write freely to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file in the order in which it is writ-
ten.

DIAGNOSTICS
Fopen and freopen return a NULL pointer if file_name cannot be accessed, if there are too many
open files, or if the arguments are incorrect.
Fdopen returns a NULL upon failure.

NOTES
On HP-UX the binary file types are equivalent to their non-binary counterparts. For example,
the "r" and "rb" types are equivalent.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), popen(3S).

STANDARDS CONFORMANCE
fopen: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

fdopen: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1
freopen: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2- (Section 3) 287

FREAD(3S) FREAD(3S)

NAME

fread, fwrite — buffered binary input/output to a stream file

SYNOPSIS

#include <stdio.h>

size_t fread (ptr, size, nitems, stream)
char sptr;

size_t size, nitems;

FILE *stream;

size_t fwrite (ptr, size, nitems, stream)
const char ptr;

size_t size, nitems;

FILE *stream;

DESCRIPTION

Fread copies, into an array pointed to by ptr, nitems items of data from the named input stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of
length size. Fread stops appending bytes if an end-of-file or error condition is encountered
while reading stream, or if nitems items have been read. Fread leaves the file pointer in stream,
if defined, pointing to the byte following the last byte read if there is one. Fread does not
change the contents of stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr to the named out-
put stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encountered on stream. Fwrite does not change the contents of the array pointed to
by ptr.

The argument size is typically sizeoftxptr) where the pseudo-function sizeof specifies the length
of an item pointed to by ptr. If ptr points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS

Fread and fwrite return the number of items read or written. If size or nitems is non-positive,
no characters are read or written and 0 is returned by both fread and fwrite.

STANDARDS CONFORMANCE

288

fread: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
fwrite: SVID2, XPG2, XPG3

(Section 3) -1- HP-UX Release 7.0: September 1989

FREXP(3C) FREXP(3C)

NAME

frexp, Idexp, modf — split floating-point into mantissa and exponent
SYNOPSIS

double frexp (value, eptr)

double value;

int xeptr;

double ldexp (value, exp)
double value;

int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2", where the “mantissa” (fraction) x is
in the range 0.5 < | x | < 1.0, and the “exponent” n is an integer.

Frexp returns the mantissa of a double value, and stores the exponent indirectly in the location
pointed to by eptr. If value is zero, both results returned by frexp are zero.

Ldexp returns the quantity value « 2°7.

Modf returns the signed fractional part of value and stores the integral part indirectly in the
location pointed to by iptr.

DIAGNOSTICS

If ldexp would cause overflow, +HUGE is returned (according to the sign of value), and errno is
set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to ERANGE.

STANDARDS CONFORMANCE
frexp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

ldexp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C
modf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 3) 289

FSEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>
int fseek (strea