
HP-UX Reference

Vol 2: Sections 2 and 3

HP 9000 Series 300/800 Computers
HP-UX Release 7.0

HP Part Number 09000-90013

FIJD'I HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information contained in this document is subject to change \vithout notice.

Hewlett-Packard Company makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard Company shall not be liable for
errors contained herein or direct, indirect, special, incidental, or consequential
damages in connection with the furnishing, performance, or use of this material.

Warranty: A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company 1985, 1986, 1987, 1988, 1989

This documentation and software contains information which is protected by
copyright. All rights are reserved. Reproduction, adaptation, or translation
without written permission is prohibited except as allowed under the copyright
laws.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government Department of Defense
is subject to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in
Technical Data and Software clause in FAR 52.227-7013.

Copyright (C) AT&T, Inc. 1980, 1984, 1986

Copyright (C) The Regents of the University of California 1979, 1980, 1983,
1985

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

ii

Printing History
The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. However, minor
changes may be made at reprint without changing the printing date. The
manuai part number will change when extensive changes are made.

To ensure that you receive new editions of this manual when changes occur,
you may subscribe to the appropriate product support service, available through
your HP sales representative.

September 1989. First Edition. This manual replaces manual part number
09000-90009, and is valid for HP-UX Release 7.0 on both Series 300 and
Series 800 systems.

iii

Notes

iv

Table of Contents
for

Voiume 2

Section 2: System Calls

Table of Contents
Volume 2

Entry Name(Section) name Description
INTRO(2): intro ... introduction to system calls
ACCESS(2): access .. determine accessibility of a file
ACCT(2): acct ... enable or disable process accounting
ALARM(2): alarm set a process's alarm clock
ATEXIT(2): atexit ... register a function to be called at program termination
AUDCTL(2): audctl .. start or halt auditing system; set or get audit files
AUDSWITCH(2): audswitch .. suspend or resume auditing on current process
AUDWRITE(2): audwrite write audit record for self-auditing process
BRK(2): brk, sbrk ... change data segment space allocation
BSDPROC(2): killpg, getpgrp, setpgrp, sigvec, signal 4.2 BSD-compatible process control facilities
CHDIR(2): chdir change working directory
CHMOD(2): chmod, fchmod .. change access mode of file
CHOWN(2): chown, fchown ... change owner and group of a file
CHROOT(2): chroot change root directory
CLOSE(2): close close a file descriptor
CNODEID(2): cnodeid ... get the cnode ID of the local machine
CNODES(2): cnodes .. get a list of active nodes in cluster
CREAT(2): creat .. create a new file or rewrite an existing one
DUP2(2): dup2 ... duplicate an open file descriptor to a specific slot
DUP(2): dup duplicate an open file descriptor
ERRNO(2): errno ... error indicator for system calls
EXEC(2): execl, execv, execle, execve, execlp, execvp .. execute a file
execle: execute a file ... see EXEC(2)

execl: execute a file " ... see EXEC(2)

execlp: execute a file ... see EXEC(2)

execve: execute a file .. see EXEC(2)

execv: execute a file .. see EXEC(2)

execvp: execute a file .. see EXEC(2)

EXIT(2): exit, _exit ... terminate process
fchmod: change access mode of file .. see CHMOD(2)

fchown: change owner and group of a file ... see CHOWN(2)

FCNTL(2): fcntl .. file control
fgetacl: get access control list (ACL) information ... see GETACL(2)

FORK(2): fork create a new process
fpathconf: get configurable pathname variables ... see PATHCONF(2)

FSCTL(2): fsctl .. file system control
fsetacl: set access control list (ACL) information ... see SETACL(2)

fstatfs: get file system statistics ... see STATFS(2)

fstat: get file status ... see ST A T(2)

FSYNC(2): fsync ... synchronize a file's in-core state with its state on disk
FTIME(2): ftime ... get date and time more precisely
ftruncate: truncate a file to a specified length .. see TRUNCATE(2)

GETACCESS(2): getaccess ... get a user's effective access rights to a file
GETACL(2): getacl, fgetacl .. get access control list (ACL) information
GETAUDID(2): getaudid .. get the audit ID (aid) for the current process
GETAUDPROC(2): getaudproc .. get audit process flag for calling process
GETCONTEXT(2): getcontext return the process context for context dependent file search
GETDIRENTRIES(2): getdirentries get entries from a directory in a filesystem-independent format
getegid: get effective group ID ... see GETUID(2)

geteuid: get effective user group ID ... see GETUID(2)

HP-UX Release 7.0: September 1989 -1- (Table of Contents) v

Table of Contents
Volume 2

Entry Name(Section) name Description
GETEVENT(2): getevent .. get events and system calls currently being audited
getgid: get real group ID ... see GETUID(2)

GETGROUPS(2): getgroups ... get group access list
GETHOSTNAME(2): gethostname .. get name of current host
GETITIMER(2): getitimer, setitimer .. get/set value of interval timer
getpgrp2: get process group ID of specified process .. see GETPID(2)

getpgrp: 4.2 BSD-compatible process control facilities ... see BSDPROC(2)

getpgrp: get process group ID ... see GETPID(2)

GETPID(2): getpid, getpgrp, getppid, getpgrp2 get process, process group, and parent process ID
getppid: get parent process ID .. see GETPID(2)

GETPRIVGRP(2): getprivgrp, setprivgrp ... get and set special attributes for group
GETTIMEOFDAY(2): gettimeofday, settimeofday ... get/set date and time
GETUID(2): getuid, geteuid,

getgid, getegid get real user, effective user, real group, and effective group IDs
gtty: control device ... see STTY(2)

IOCTL(2): ioctl ... control device
KILL(2): kill .. send a signal to a process or a group of processes
killpg: 4.2 BSD-compatible process control facilities .. see BSDPROC(2)

LINK(2): link ... link to a file
LOCKF(2): lockf .. provide semaphores and record locking on files
LSEEK(2): lseek ... move read/write file pointer; seek
lstat: get file status ... see STAT(2)

lsync: update super-block .. see SYNC(2)

MKDIR(2): mkdir make a directory file
MKNOD(2): mknod ... make a directory, or a special or ordinary file
MOUNT(2): mount .. mount a file system
MSGCTL(2): msgctl ... message control operations
MSGGET(2): msgget .. get message queue
MSGOP(2): msgsnd, msgrcv .. message operations
msgrcv: message operations ... see MSGOP(2)

NICE(2): nice .. change priority of a process
OPEN(2): open ... open file for reading or writing
PATHCONF(2): pathconf, fpathconf ... get configurable pathname variables
PAUSE(2): pause ... suspend process until signal
PIPE(2): pipe ... create an interprocess channel
PLOCK(2): plock lock process, text, or data in memory
PREALLOC(2): prealloc .. preallocate fast disk storage
PROFIL(2): profil ... execution time profile
PTRACE(2): ptrace .. process trace
READ(2): read, readv ... read input
READLINK(2): readlink .. : ... read value of a symbolic link
readv: read input .. see READ(2)

REBOOT(2): reboot boot the system
RENAME(2): rename .. change the name of a file
RMDIR(2): rmdir .. remove a directory file
RTPRIO(2): rtprio .. change or read realtime priority
sbrk: change data segment space allocation ... see BRK(2)

SELECT(2): select ... synchronous I/O multiplexing
SEMCTL(2): semctl ... semaphore control operations
SEMGET(2): semget ... get set of semaphores

vi (Table of Contents) -2- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
SEMOP(2): semop ... semaphore operations
SETACL(2): setad, fsetad .. set access control list (ACL) information
SETAUDID(2): setaudid .. set audit ID (aid) for current process
SET AUDPROC(2): setaudproc set or clear auditing on calling process
SETEVENT(2): setevent ... set current events and system calls to be audited
setgid: set group ID ... see SETUID(2)

SETGROUPS(2): setgroups set group access list
SETHOSTNAME(2): sethostname ... set name of host cpu
setitimer: set value of interval timer ... see GETITIMER(2)

SETPGID(2): setpgid, setpgrp2 .. set process group ID for job control
setpgrp2: set process group ID ... see SETPGID(2)

setpgrp: 4.2 BSD-compatible process control facilities ... see BSDPROC(2)

setpgrp - create session and set process group ID ... see SETSID(2)

setprivgrp: set special attributes for group ... see GETPRIVGRP(2)

setresgid: set real, effective, and saved group IDs .. see SETRESUID(2)

SETRESUID(2): setresuid, setresgid set real, effective, and saved user and group IDs
SETSID(2): setsid, setpgrp .. create session and set process group ID
settimeofday: set date and time .. see GETTIMEOFDA Y(2)

SETUID(2): setuid, setgid ... set user and group IDs
SHMCTL(2): shmctl .. shared memory control operations
shmdt: shared memory operations ... see SHMOP(2)

SHMGET(2): shmget ... get shared memory segment
SHMOP(2): shmat, shmdt .. shared memory operations
SIGACTION(2): sigaction ... examine and change signal action
SIGBLOCK(2): sigblock ... block signals
sighold: signal management .. see SIGSET(2V)

sigignore: signal management ... see SIGSET(2V)

SIGNAL(2): signal specify what to do upon receipt of a Signal
signal: 4.2 BSD-compatible process control facilities ... see BSDPROC(2)

SIGPAUSE(2): sigpause ... atomically release blocked signals and wait for interrupt
sigpause: signal management .. see SIGSET(2V)

SIGPENDING(2): sigpending examine pending signals
SIGPROCMASK(2): sigprocmask ... examine and change blocked signals
sigrelse: signal management ... see SIGSET(2V)

SIGSET(2V): sigset, sighold, sigrelse, sigignore, sigpause .. Signal management
SIGSETMASK(2): sigsetmask .. set current signal mask
SIGSP ACE(2): sigspace assure sufficient signal stack space
SIGSTACK(2): sigstack .. set and/or get signal stack context
SIGSUSPEND(2): sigsuspend ... wait for a signal
sigvec: 4.2 BSD-compatible process control facilities ... see BSDPROC(2)

SIGVECTOR(2): sigvector ... software signal facilities
STAT(2): stat, lstat, istat ... get file status
STATFS(2): statfs, fstatfs ... get file system statistics
STIME(2): stime .. set time and date
STTY(2): stty, gtty .. control device
SWAPON(2): swapon .. add a swap device for interleaved paging/swapping
SYMLINK(2): symlink make symbolic link to a file
SYNC(2): sync, lsync ... update super-block
SYSCONF(2): sysconf .. get configurable system variables
TIME(2): time .. get time

HP-UX Release 7.0: September 1989 -3- (Table of Contents) vii

Table of Contents
Volume 2

Entry Name(Section) name Description
TIMES(2): times .. get process and child process times
TRUNCATE(2): truncate, ftruncate ... truncate a file to a specified length
ULIMIT(2): uiimit get and set user limits
UMASK(2): umask ... set and get file creation mask
UMOUNT(2): umount ... unmount a file system
UNAME(2): uname ... get name of current HP-UX system
UNLINK(2): unlink .. remove directory entry; delete file
USTAT(2): ustat .. get file system statistics
UTIME(2): utime .. set file access and modification times
VFORK(2): vfork ... spawn new process in a virtual memory efficient way
VFSMOUNT(2): vfsmount .. mount a file system
WAIT(2): wait, wait3 ... wait for child or traced process to stop or terminate
wait3: wait for child or traced process to stop or terminate .. see WAIT(2)
waitpid: wait for child or traced process to stop or terminate .. see WAIT(2)
WRITE(2): write, writev ... write on a file
writev: write on a file ... see WRITE(2)

Section 3: System Calls

Entry Name(Section) name Description
A64L(3C): a64l, l64a ... convert between long integer and base-64 ASCII string
INTRO(3): intro , ... introduction to subroutines and libraries
ABORT(3C): abort ... generate a software abort fault
ABS(3C): abs ... return integer absolute value
ACLTOSTR(3C): adtostr .. convert access control list (ACL) structure to string form
acos: trigonometric functions .. see TRIG(3M)
addmntent: get file system descriptor file entry .. see GETMNTENT(3X)
ADVANCE: process 16-bit characters .. see NL_TOOLS_16(3C)
advance: regular expression compile and match routines ' see REGEXP(3X)
ALMANAC(3X): almanac ... return numeric date information in MPE format
asctime: convert date and time to string ... see CTIME(3C)
asin: trigonometric functions ... see TRIG(3M)
ASSERT(3X): assert verify program assertion
atan2: trigonometric functions .. see TRIG(3M)
atan: trigonometric functions ...•.......................... see TRIG(3M)
atof: convert string to double-precision number ... see STRTOD(3C)
BESSEL(3M): jO, jl, jn, yO, yl, yn ... Bessel functions
BLMODE(3C): blmode .. terminal block mode library interface
BSEARCH(3C): bsearch .. binary search a sorted table
byte_status, BYTLSTATUS: process 16-bit characters ... see NL300LS_16(3C)
CALENDAR(3X): calendar .. return the MPE calendar date
calloc: fast main memory allocator .. see MALLOC(3X)
calloc: main memory allocator ... see MALLOC{3C)
CATGETMSG(3C): catgetmsg ... get message from a message catalog
CATGETS(3C): catgets ,, , get a program message
CATREAD(3C): catread .. MPE/RTE-style message catalog support
ceil: ceiling function ...•.. '" see FLOOR(3M}
cfgetispeed: get tty intput baud rate ... see CFSPEED(3C)
cfgetospeed: get tty output baud rate .. see CFSPEED(3C)
cfsetispeed: set tty intput baud rate .. see CFSPEED(3C)

viii (Table of Contents) -4- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
cfsetospeed: set tty output baud rate .. see CFSPEED(3C)

CFSPEED(3C): cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed tty baud rate functions
CHARADV: process 16-bit characters .. see NL_TOOLS_16(3C)

CHARAT: process 16-bit characters ... see NL_TOOLS_16(3C)

CHOWNACL(3C): chownacl change owner and/or group in access control list (ACL)

chpibegin, chpiclose, chpicvnirol, chpideleie, clipiend, clipien-or, chpifind, chpifindset,
chpiget, chpiinfo, chpilock, chpimemo, chpiopen, chpiput, chpiundo,
chpiupdate: ALLBASEjHP-UX HPIMAGE programmatic calls see HPIMAGE(3X)

cjistosj, cjistouj: JIS, Shift JIS and UJIS code conversion .. see JCODE(3X)

clearerr: stream status inquiries ... see FERROR(3S)

CLOCK(3C): clock .. report CPU time used
CLOCK(3X): clock ... return the MPE clock value
closedir: directory operations ... see DIRECTORY(3C)

close_kana_kan - initialize KANA to KANJI conversion .. see OPEN_KANA_KAN(3X)

close log: control system log ... see SYSLOG(3C)

compile: regular expression compile and match routines .. see REGEXP(3X)

CONV(3C): toupper, tolower, _toupper, _tolower, toascii ... translate characters
cosh: hyperbolic cosine function ... see SINH(3M)

cos: trigonometric functions .. see TRIG(3M)

CP ACL(3C): cpacl, fcpacl ... copy access control list (ACL) to another file
CRTO(3): crtO.o, mcrtO.o, frtO.o, mfrtO.o ... execution startup routines
crtO.o: execution startup routines ... see CRTO(3)

CRYPT(3C): crypt, setkey, encrypt ... generate hashing encryption
csjtojis, csjtouj: JIS, Shift JIS and UJIS code conversion ... see JCODE(3X)

CTERMID(3S): ctermid ... generate file name for terminal
CTIME(3C): ctime, nCcxtime, localtime, gmtime, asctime, nl_ascxtime, timezone,

daylight, tzname, tzset, nCctime, nCasctime convert date and time to string
ctime: convert date and time to string .. see CTIME(3C)

CTYPE(3C): isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii ... classify characters

cujtojis, cujtosj: JIS, Shift JIS and UJIS code conversion .. see JCODE(3X)

currlangid: NLS information about native languages .. see LANGINFO(3C)

CURSES(3X): curses ... CRT screen handling and optimization package
CUSERID(3S): cuserid .. get character login name of the user
CVTNUM(3C): cvtnum .. convert string to floating point number
DATALOCK(3C): datalock lock process into memory after allocating data and stack space
daylight: convert date and time to string .. ; see CTIME(3C)

DBM(3X): dbminit, fetch, store, delete, firstkey, nextkey, dbmclose data base subroutines
dbm_clearerr: data base subroutines .. see NDBM(3X)

dbmclose: data base subroutines ... see DBM(3X)

dbm_close: data base subroutines .. see NDBM(3X)

dbm_delete: data base subroutines ... see NDBM(3X)

dbm_error: data base subroutines .. see NDBM(3X)

dbm_fetch: data base subroutines ... , see NDBM(3X)

dbm_firstkey: data base subroutines ... see NDBM(3X)

dbminit: data base subroutines ... see DBM(3X)

dbm_nextkey: data base subroutines .. see NDBM(3X)

dbm_open: data base subroutines ... see NDBM(3X)

dbm_store: data base subroutines .. see NDBM(3X)

delete: data base subroutines ... '~""""""""""""""""" see DBM(3X)

HP-UX Release 7.0: September 1989 -5~ (Table of Contents) ix

Table of Contents
Volume 2

Entry Name(Section) name Description
DIAL(3C): dial, undial .. establish an out-going terminal line connection
DIRECTORY(3C): opendir, readdir, telldir, seekdir, rewinddir, dosedir directory operations
UIV\,jL): div, idiv .. integer division and remainder
DRAND4S(3C): drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,

seed48, Icong48 ... generate uniformly distributed pseudo-random numbers
ECVT(3C): ecvt, fcvt, gcvt, negcvt .. convert floating-point number to string
edata: last locations in program ... see END(3C)

encrypt: generate hashing encryption ... see CRYPT(3C)

END(3C): end, etext, edata .. last locations in program
endccent: get cluster configuration entry .. see GETCCENT(3C)

endfsent: get file system descriptor file entry .. see GETFSENT(3X)

endgrent: get group file entry ... see GETGRENT(3C)

endmntent: get file system descriptor file entry .. see GETMNTENT(3X)

endpwent: get password file entry ... see GETPWENT(3C)

endpwent: get secure password file entry .. see GETSPWENT(3C)

endutent: access utmp file entry ... see GETUT(3C)

erand48: generate pseudo-random numbers .. see DRAND4S(3C)

ERF(3M): erf, erfc ... error function and complementary error function
erfc: error function and complementary error function .. see ERF(3M)

errno: system error messages .. see PERROR(3C)

etext: last locations in program .. see END(3C)

EXP(3M): exp, log, loglO, pow, sqrt exponential, logarithm, power, square root functions
fabs: absolute value function .. see FLOOR(3M)

FCLOSE(3S): fdose, !flush .. close or flush a stream
fcpad: copy access control list (ACL) to another file .. see CPACL(3C)

fcvt: convert floating-point number to string ... see ECVT(3C)

fdopen: associate a stream with a file descriptor .. see FOPEN(3S)

feof: stream status inquiries ... see FERROR(3S)

FERROR(3S): ferror, feof, dearerr, fileno .. stream status inquiries
fetch: data base subroutines ... see DBM(3X)

!flush: flush a stream ... see FCLOSE(3S)

fgetccent: get cluster configuration entry ... see GETCCENT(3C)

fgetc: get character from a stream file ... see GETC(3S)

fgetgrent: get group file entry ... see GETGRENT(3C)

FGETPOS(3S): fgetpos, fsetpos ... save or restore file position indicator for a stream
fgetpwent: get password file entry ... see GETPWENT(3C)

fgetpwent: get secure password file entry .. see GETSPWENT(3C)

fgets: get a string from a stream .. see GETS(3S)

FILENO(3S): fileno .. map stream pointer to file descriptor
firstkey: data base subroutines .. see DBM(3X)

firstof2, FIRSTof2: process 16-bit characters .. see NL_TOOLS_16(3C)

FLOOR(3M): floor, ceil, fmod, fabs floor, ceiling, remainder, absolute value functions
fmod: remainder function ... see FLOOR(3M)

FOPEN(3S): fopen, freopen, fdopen open or re-open a stream file; convert file to stream
fprintf: print formatted output .. see PRINTF(3S)

fprintmsg: print formatted output with numbered arguments .. see PRINTMSG(3C)

[putc: put character on a stream ... see PUTC(3S)

fputs: put a string on a stream ... see PUTS(3S)

FREAD(3S): fread, fwrite ... buffered binary input/output to a stream file
free: fast main memory allocator ... see MALLOC(3X)

x (Table of Contents) -6- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
free: main memory allocator .. see MALLOC(3C)

freopen: re-open a stream file; convert file to stream ... see FOPEN(3S)

FREXP(3C): frexp, ldexp, modf ... split floating-point into mantissa and exponent
frtO.o: execution startup routines ... see CRTO(3)

fscanf, sscanf, nCscanf, nl_fscanf,
nCsscanf: formatted input conversion, read fwm stream file see SCANF(3S)

FSEEK(3S): fseek, rewind, ftell .. reposition a file pointer in a stream
fsetaclentry: add, modify, or delete access control list entry .. see SETACLENTRY(3C)

fsetpos - restore file position indicator for a stream ... see FGETPOS(3S)

fstatfsdev: get file system statistics ... see STATFSDEV(3C)

ftell: reposition a file pointer in a stream .. see FSEEK(3S)

ftok - standard interprocess communication package .. see STDIPC(3C)

FTW(3C): ftw, ftwh .. walk a file tree
ftwh: walk a file tree ... see FTW(3C)

fwrite: buffered binary output to a stream file ... see FREAD(3S)

GAMMA(3M): gamma, signgam ... log gamma function
gcrtO.o: execution startup routines ... see CRTO(3)

gcvt: convert floating-point number to string .. see ECVT(3C)

GETC(3S): getc, getchar, fgetc, getw ... get character or word from a stream file
getcccid: get cluster configuration entry ... see GETCCENT(3C)

GETCCENT(3C): getccent, getcccid, getccnam, setccent, endccent, fgetccent ... get cluster configuration entry
getccnam: get cluster configuration entry ... see GETCCENT(3C)

GETCDF(3C): getcdf .. return the expanded path that matches a path name
getchar: get character from a stream file ... see GETC(3S)

GETCWD(3C): getcwd, gethcwd .. get path-name of current working directory
GETENV(3C): getenv .. return value for environment name
GETFSENT(3X): getfsent, getfsspec, getfsfile, getfstype,

setfsent, endfsent .. get file system descriptor file entry
getfsent: get file system descriptor file entry ... see GETFSENT(3X)

getfsfile: get file system descriptor file entry ... see GETFSENT(3X)

getfsspec: get file system descriptor file entry ... see GETFSENT(3X)

getfstype: get file system descriptor file entry ... see GETFSENT(3X)

GETGRENT(3C): getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent get group file entry
getgrgid, getgrnam: get group file entry .. see GETGRENT(3C)

gethcwd: get path-name of current working directory ... see GETCWD(3C)

getlocale: get the locale of a program .. see SETLOCALE(3C)

GETLOGIN(3C): getlogin ... get login name
GETMNTENT(3X): getmntent, setmntent, addmntent, endmntent, hasmntoget file system descriptor file entry
GETMSG(3C): getmsg ... get message from a catalog
GETOPT(3C): getopt, optarg, optind, opterr get option letter from argument vector
GETPASS(3C): getpass .. read a password
GETPW(3C): getpw get name from UID

GETPWENT(3C): getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent get password file entry
getpwent: get password file entry .. see GETPWENT(3C)

getpwent: get secure password file entry ... see GETSPWENT(3C)

GETS(3S): gets, fgets .. get a string from a stream
getspwaid: get secure password file entry .. see GETSPWENT(3C)

GETSPWENT(3C): getpwent, getpwuid, getpwnam, setpwent,
endpwent, !getpwent .. get secure password file entry

GETUT(3C): getutent, getutid, getutline, pututline, setutent, endutent, utmpname access utmp file entry

HP-UX Release 7.0: September 1989 -7- (Table of Contents) xi

Table of Contents
Volume 2

Entry Name(Section) name Description
getutent: access utmp file entry .. see GETUT(3C)

getw: get word from a stream file ... see GETC(3S)

gmtime: convert date and time to string ...•... see CTIME(3C)

GPIO_GELSTATUS(31): gpio_get_status .. return status lines of GPIO card
GPIO_SELCTL(31): gpio_set_ctl ... set control lines on GPIO card
gsignal: software signals .. see SSIGNAL(3C)

HANKAKUZENKAKU(3X): HankakuZenkaku, ZenkakuHankaku ... translate characters
hasmntopt: get file system descriptor file entry ... see GETMNTENT(3X)

hcreate: manage hash search tables ... see HSEARCH(3C)

hdestroy: manage hash search tables ... see HSEARCH(3C)

HENKAN(3X): Henkan, JiKouho, Kakutei, HenkanOwari, SetUserDict KANA to KANJI conversion routines
Henkan: KANA to KANJI conversion routines .. see HENKAN(3X)

HenkanOwari: KANA to KANJI conversion routines ... see HENKAN(3X)

HIRAGANAKATAKANA(3X): HiraganaKatakana, KatakanaHiragana translate characters
HPIB_ABORT(31): hpib_abort ... stop activity on specified HP-1B bus
HPIB_ADDRESS_CTL(31): hpib_address_ctl ... set HP-IB bus address for an interface
HPIB_ATN_CTL(31): hpib_atn_ctl ... control Attention line on HP-IB

HPIB_BUS_STATUS(31): hpib_bus_status ... return status of HP-IB interface
HPIB_CARD_PPOLL_RESP(31): hpib_card_ppoICresp control response to parallel poll on HP-IB

hpibegin, hpiclose, hpicontrol, hpidelete, hpiend, hpierror, hpifind, hpifindset,
hpiget, hpiinfo, hpilock, hpimemo, hpiopen, hpiput, hpiundo,
hpiupdate: ALLBASE/HP-UX HPIMAGE programmatic calls see HPIMAGE(3X)

HPIB_EOLCTL(31): hpibjoi_ctl ... control EO! mode for HP-IB file
HPIB_IO(31): hpib_io ... perform I/O with an HP-IB channel from buffers
HPIB]ARITLCTL(31): hpib_parity_ctl enable/disable odd parity on ATN commands
HPIB_PASS_CTL(31): hpib_pass_ctl .. change active controllers on HP-IB

HPIB]POLL(31): hpib_ppoll ... conduct paralleJ poll on HP-IB bus
HPIB]POLL_RESP _CTL(31): hpib_ppoICresp_ctl define interface parallel poll response
HPIB_REN_CTL(31): hpib_ren_ctl .. control the Remote Enable line on HP-IB

HPIB_RQSLSRVCE(31): hpibJqst_srvce allow interface to enable SRQ line on HP-IB

HPIB_SEND_CMND(31): hpib_send_cmnd ... send command bytes over HP-IB

HPIB_SPOLL(31): hpib_spoll ... conduct a serial poll on HP-IB bus
HPIB_STATUS_WAIT(31): hpib_status_wait wait until the requested status condition becomes true
HPIB_WAILON]POLL(31): hpib_wait_on_ppoll wait until a particular parallel poll value occurs
HPIMAGE(3X): hpL, chpi... .. ALLBASE/HP-UX HPIMAGE programmatic calls
HPPAC(3X) ... Series 800 HP 3000-mode packed decimal library
HSEARCH(3C): hsearch, hcreate, hdestroy .. manage hash search tables
HYPOT(3M): hypot .. Euclidean distance function
ICONV(3C): iconvclose, iconvopen, iconvsize, iconvlock,

ICONV, ICONV1, ICONV2 ... code set conversion routines
idtolang: NLS information about native languages .. see LANGINFO(3C)

INITGROUPS(3C): initgroups ... initialize group access list
IO_BURST(31): io_burst .. perform low-overhead I/O on an HP-IB/GPIO channel
IO_DMA_CTL(31): io_dma_ctl - control DMA allocation for an interface
IO_EOL_CTL(31): io_eoCctl ... set up read termination character on special file
IO_GELTERM_REASON(31): io_get_termJeason determine how last read terminated
IO_INTERRUPLCTL(31): io_interrupt_ctl enable/disable interrupts for the associated eid
IO_LOCK(31): io_lock, io_unlock .. lock and unlock an interface
IO_ON_INTERRUPT(31): io_on_interrupt .. device interrupt (fault) control
IO_RESET(31): io_reset .. reset an I/O interface

xii (Table of Contents) -8- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
10_SPEED_CTL(31): io_speed_ctl ... inform system of required transfer speed
10_ TIMEOULCTL(31): io_timeout_ctl .. establish a time limit for I/O operations
io_unlock: lock and unlock an interface ... see 10_LOCK(31)

10_WIDTH_CTL(31): io_width_ctl .. set width of data path
is_6801O_present: check for presence of hardware capabilities see IS_HW_PRESENT(3C)
is_68881_present: check for presence of hardware capabilities see IS_HW_PRESENT(3C)

is_98248A_present: check for presence of hardware capabilities see IS_HW_PRESENT(3C)

is_98635A_present: check for presence of hardware capabilities see IS_HW_PRESENT(3C)

isalnum: classify characters .. see CTYPE(3C)

isalpha: classify characters ... see CTYPE(3C)

isascii: classify characters .. see CTYPE(3C)

isatty: find name of a terminal ... see TTYNAME(3C)

iscntrl: classify characters .. see CTYPE(3C)

isdigit: classify characters .. see CTYPE(3C)

isgraph: classify characters ... see CTYPE(3C)

IS_HW _PRESENT(3C): is_6801O_present, is_6888Lpresent,
is_98635A_present, is_98248A_present check for presence of hardware capabilities

ISINF(3M): isinf .. ;, test for INFINITY function
islower: classify characters ... see CTYPE(3C)

ISNAN(3M): isnan ... test for NaN function
isprint: classify characters .. see CTYPE(3C)

ispunct: classify characters ... see CTYPE(3C)

isspace: classify characters ... see CTYPE(3C)

isupper: classify characters .. see CTYPE(3C)

isxdigit: classify characters ... see CTYPE(3C)

jO: Bessel function .. see BESSEL(3M)

jl: Bessel function .. see BESSEL(3M)

JCODE(3X): jistosj, jistouj, sjtojis, sjtouj, ujtojis, ujtosj,
cjistosj, cjistouj, csjtojis, csjtouj, cujtojis,
cujtosj ... code set conversion routines for JIS, Shift JIS and UJIS

JiKouho: KANA to KANJI conversion routines .. see HENKAN(3X)

jistosj, jistouj: JIS, Shift JIS and UJIS code conversion ... see JCODE(3X)

jn: Bessel function .. see BESSEL(3M)

jrand48: generate pseudo-random numbers .. see DRAND48(3C)

l_UD_close: manage user dictionaries ... see LUD_SEARCH(3X)

f-UD_delete: manage user dictionaries ... see LUD_SEARCH(3X)

LUD_free: manage user dictionaries ... see LUD_SEARCH(3X)

l_UD_open: manage user dictionaries ... see LUD_SEARCH(3X)

LUD_SEARCH(3X): f-UD_open, LUD_close, f-UD_search,
f-UD_free, f-UD_store, f-UD_delete .. manage user dictionaries

I_UD_search: manage user dictionaries .. see LUD_SEARCH(3X)

f-UD _store: manage user dictionaries .. see LUD_SEARCH(3X)

Kakutei: KANA to KANJI conversion routines ... see HENKAN(3X)

KatakanaHiragana: translate characters ... see HIRAGANAKATAKANA(3X)

KUTENZENKAKU(3X): KutenZenkaku.. translate characters
L3TOL(3C): 13to1, lto13 convert between 3-byte integers and long integers
164a: convert between long integer and base-64 ASCII string see A64L(3C)

LANGINFO(3C): 1anginfo, 1angtoid, idto1ang, curr1angid NLS information about native languages
1anginit: initialize the NIB environment of a program : see NL_INIT(3C)

1angtoid: NLS information about native languages ... see LANGINFO(3C)

HP-UX Release 7.0: September 1989 -9- (Table of Contents) xiii

Table of Contents
Volume 2

Entry Name(Section) name Description
lcong48: generate pseudo-random numbers ... see DRAND48(3C)
LDCVT(3C): _ldecvt, _ldfcvt, _ldgcvt convert long double floating-point number to string
_ldecvt convert long double floating-point number to string see LDCVT(3C)
ldecvt (_ldecvt) - convert long double ,floating-point number to string see LDCVT(3C)
ldexp: split floating-point into mantissa and exponent .. see FREXP(3C)
_ldfcvt - convert long double floating-point number to string see LDCVT(3C)
ldfcvt (_ldfcvt) - convert long double floating-point number to string see LDCVT(3C)
_ldgcvt - convert long double floating-point number to string see LDCVT(3C)
ldgcvt (_ldgcvt) - convert long double floating-point number to string see LDCVT(3C)
ldiv: long integer division and remainder .. see DIV(3C)
lfind: linear search and update see LSEARCH(3C)
localtime: convert date and time to string .. see CTIME(3C)
log1O: common logarithm function .. see EXP(3M)
LOGNAME(3C): logname.. return login name of user
log: natural logarithm function .. see EXP(3M)
longjmp: restore stack environment for non-local goto see SETJMP(3C)
lrand48: generate pseudo-random numbers ... see DRAND48(3C)
LSEARCH(3C): lsearch, lfind linear search and update
ltoa: long to ASCII decimal .. see LTOSTR(3C)
lto13: convert between 3-byte integers and long integers see L3TOL(3C)
LTOSTR(3C): ltostr, ultostr, ltoa, ultoa .. convert long integers to strings
mallinfo: fast main memory allocator ... see MALLOC(3X)
MALLOC(3C): malloc, free, realloc, calloc ... main memory allocator
MALLOC(3X): malloc, free, realloc, calloc, mallopt, mallinfo fast main memory allocator
mallopt: fast main memory allocator see MALLOC(3X)
manage Japanese language user dictionaries .. see LUD_SEARCH(3X)
MATHERR(3M): matherr .. error-handling function
mblen: multibyte characters and strings conversions see MULTIBYTE(3C)
mbtowc, mbstowcs: multibyte characters and strings conversions see MULTIBYTE(3C)
mcrtO.o: execution startup routines ... see CRTO(3)
memccpy: memory operations .. see MEMORY(3C)
memchr: memory operations see MEMORY(3C)
memcmp: memory operations see MEMORY(3C)
memcpy: memory operations .. see MEMORY(3C)
memmove: memory operations see MEMORY(3C)
MEMORY(3C): memccpy, memchr, memcmp; memcpy, memset memory operations
memset: memory operations ... see MEMORY(3C)
mfrtO.o: execution startup routines ... see CRTO(3)
MKFIFO(3C): mkfifo... make a FIFO special file
MKTEMP(3C): mktemp.. make a unique file name
modf: split floating-point into mantissa and exponent .. see FREXP(3C)
MONITOR(3C): monitor.. prepare execution profile
mrand48: generate pseudo-random numbers ... see DRAND48(3C)
MULTIBYTE(3C): mblen, mbtowc, mbstowcs,

wctomb, wcstombs , multibyte characters and strings conversions
NDBM(3X): dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,

dbm_nextkey, dbmjrror, dbm_clearerr .. data base subroutines
nextkey: data base subroutines see DBM(3X)
NLAPPEND(3X): nlappend .. append appropriate language identification to valid MPE file name
nCasctime: convert date and time to string ... see CTIME(3C)

xiv (Table of Contents) -10- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
nCascxtime: convert date and time to string ... see CTIME(3C)
nCatof: convert string to double-precision number .. see STRTOD(3C)
NLCOLLATE(3X): nlcollate. compare strings using MPE language-dependent collating sequence
NL_CONV(3C): nCtoupper, nl_tolower translate characters for use with NLS
NLCONVCLOCK(3X): nlconvclock check and convert time string to MPE internal format
NLCONVCUSTDA(3X): nlconvcustda convert date string to MPE packed date format
NLCONVNUM(3X): nlconvnumconvert MPE native language formatted number to ASCII number
nCctime: convert date and time to string .. see CTIME(3C)
NL_CTYPE(3C): nCisalpha, nCisupper, nCislower, nl_isdigit, nCisxdigit,

nCisalnum, nCisspace, nCispunct, nCisprint, nCisgraph,
nl_iscntrl ... classify characters for use with NLS

nCcxtime: convert date and time to string ... see CTIME(3C)
NLFINDSTR(3X): nlfindstr search for string in another string using MPE character set definition
NLFMTCAL(3X): nlfmtcalendar format MPE packed date using localized format
NLFMTCLOCK(3X): nlfmtclock format MPE time of day using localized format
NLFMTCUSTDATE(3X): nlfmtcustdate format MPE packed date using custom date
NLFMTDATE(3X): nlfmtdate format MPE date and time in localized format
NLFMTLONGCAL(3X): nlfmtlongcal format MPE packed date using long calendar format
NLFMTNUM(3X): nlfmtnum convert ASCII number to MPE language-specific formatted number
nl_fprintf: print formatted output .. see PRINTF(3S)
nl_fscanf: formatted input conversion, read from stream file see SCANF(3S)
nCgcvt: convert floating-point number to string .. see ECVT(3C)
NLGETLANG(3X): . nlgetlang return current user, data, or system default language
NLINFO(3X): nlinfo .. return MPE language-dependent information
NL_INIT(3C): nCinit, langinit initialize the NLS environment of a program
nCisalnum: classify characters for use with NLS ... see NL_CTYPE(3C)
nCisalpha: classify characters for use with NLS .. see NL_CTYPE(3C)
nCiscntrl: classify characters for use with NLS ... see NL_CTYPE(3C)
nCisdigit: classify characters for use with NLS .. see NL_CTYPE(3C)
nCisgraph: classify characters for use with NLS .. see NL_CTYPE(3C)
nl_islower: classify characters for use with NLS .. see NL_CTYPE(3C)
nCisprint: classify characters for use with NLS ... see NL_CTYPE(3C)
nl_ispunct: classify characters for use with NLS .. see NL_CTYPE(3C)
nCisspace: classify characters for use with NLS .. see NL_CTYPE(3C)
NLIST(3C): nlist.. get entries from name list
nl_isupper: classify characters for use with NLS .. see NL_CTYPE(3C)
nl_isxdigit: classify characters for use with NLS .. see NL_CTYPE(3C)
NLJUDGE(3X):

nljudge judge whether character is one- or multi-byte Asian using MPE character table
NLKEYCOMP ARE(3X):

nlkeycompare compare character arrays (keyl, key2) using MPE collation table
NL_NLLANGINFO(3C): nClanginfo NLS information about native languages
NLNUMSPEC(3X): nlnumspec return number convert/format information for MPE routines
nCprintf: print formatted output ... see PRINTF(3S)
NLREPCHAR(3X): nlrepchar replace non-displayable characters MPE character set table
nl_scanf: formatted input conversion, read from stream file see SCANF(3S)
NLSCANMOVE(3X):

nlscanmove move, scan and case shift character strings using MPE character set table
nCsprintf: print formatted output .. see PRINTF(3S)
nCsscanf: formatted input conversion, read from stream file see SCANF(3S)

HP-UX Release 7.0: September 1989 -11- (Table of Contents) xv

Table of Contents
Volume 2

Entry N ame(Section) name Description
nCstrcmp, nCstrncmp: character string operations .. see STRING(3C)
NL_STRING(3C): strcmpB, strncmpB, strcmp16, strncmp16 non-ASCII string collation
nl_strtod: convert string to double-precision number ... see STRTOD(3C)
NLSUBSTR(3X): nlsubstr....................................... extract substring using MPE character set table
NLSWITCHBUF(3X): nlswitchbuf convert string screen order using MPE character set table
nCtolower: translate characters for use with NLS ~ see NL_CONV(3C)
NL_TOOLS_16(3C): firstof2, secof2, byte_status, FIRSTof2, SECof2,

BYTLSTATUS, CHARAT, ADVANCE, CHARADV, WCHAR, WCHARADV,
PCHAR, PCHARADV ... tools to process 16-bit characters

nl_toupper: translate characters for use with NLS .. see NL_CONV(3C)
NLTRANSLATE(3X): nItranslate translate ASCII EBCDIC using MPE conversion table
nrand4B: generate pseudo-random numbers .. see DRAND48(3C)
opendir: directory operations .. see DIRECTORY(3C)
OPEN_JLIB(3X): open_jlib, close_jlib enable to use Japanese specific facilities
open_jlib, close_jlib - enable to use Japanese specific facilities see OPEN_JLIB(3X)
OPEN_KANA_KAN(3X): open_kana_kan, close_kana_kan ., initialize KANA to KANJI conversion
open log: control system log see SYSLOG(3C)
optarg: get option letter from argument vector ... see GETOPT(3C)
opterr: get option letter from argument vector see GETOPT(3C)
optind: get option letter from argument vector ... see GETOPT(3C)
PCHARADV: process 16-bit characters ... see NL_TOOLS_16(3C)
PCHAR: process 16-bit characters .. see NL_TOOLS_16(3C)
pclose: initiate pipe I/O to/from a process .. see POPEN(3S)
PERROR(3C): perror, errno, sys_errlist, sys_nerr ... system error messages
POPEN(3S): popen, pclose .. initiate pipe I/O to/from a process
pow: power function .. see EXP(3M)
PRINTF(3S): printf, nCprintf, fprintf, nCfprintf, sprintf, nCsprintf print formatted output
PRINTMSG(3C): printmsg, fprintmsg, sprintmsgprint formatted output with numbered arguments
PUTC(3S): putc, putchar, fputc, putw put character or word on a stream
putchar: put character on a stream ... see PUTC(3S)
PUTENV(3C): putenv change or add value to environment
PUTPWENT(3C): putpwent.. write password file entry
PUTS(3S): puts, fputs put a string on a stream
PUTSPWENT(3C): putspwent... write secure password file entry
pututline: access utmp file entry .. see GETUT(3C)
putw: put word on a stream see PUTC(3S)
QSORT(3C): qsort... quicker sort
RAND(3C): rand, srand simple random-number generator
readdir: directory operations see DIRECTORY(3C)
realloc: fast main memory allocator .. see MALLOC(3X)
realloc: main memory allocator see MALLOC(3C)
REGCMP(3X): regcmp, regex .. compile and execute regular expression
regex: compile and execute regular expression ... see REGCMP(3X)
REGEXP(3X): compile, step, advance regular expression compile and match routines
REMOVE(3C): remove............................. remove a file
rewinddir: directory operations ... see DIRECTORY(3C)
rewind: reposition a file pointer in a stream ... see FSEEK(3S)
RomajiHankakuKatakana: translate characters .. see ROMAJIHIRAGANA(3X)
ROMAJIHIRAGANA(3X): RomajiHiragana,

RomajiKatakana, RomajiHankakuKatakana .. translate characters

xvi (Table of Contents) - 12- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description
RomajiKatakana: translate characters .. see ROMAJIHIRAGANA(3X)
SCANF(3S): scanf, fscanf, sscanf, nl_scanf,

nl_fscanf, nl_sscanf formatted input conversion, read from stream file
secof2, SECof2: process 16-bit characters .. see NL_TOOLS_16(3C)
seed48: generate pseudo-random numbers '" .. see DRAND48(3C)
seekdir: directory operations sec DIRECTORY(3C)
SETACLENTRY(3C): setaclentry, fsetaclentry add, modify, or delete access control list entry
SETBUF(3S): setbuf, setvbuf .. assign buffering to a stream file
setccent: get cluster configuration entry .. see GETCCENT(3C)
setfsent: get file system descriptor file entry , see GETFSENT(3X)
setgrent: get group file entry , ... see GETGRENT(3C)
SETJMP(3S): setjmp, longjmp save/restore stack environment for non-local goto
_setjmp: save stack environment for non-local goto .. see SETJMP(3C)
setkey: generate hashing encryption .. see CRYPT(3C)
SETLOCALE(3C): setlocale, getlocale set and get the locale of a program
setlogmask: control system log ... see SYSLOG(3C)
setmntent: get file system descriptor file entry ... see GETMNTENT(3X)
setpwent: get password file entry.......... see GETPWENT(3C)
setpwent: get secure password file entry ... see GETSPWENT(3C)
SetUserDict: KANA to KANJI conversion routines ... see HENKAN(3X)
setutent: access utmp file entry.......... see GETUT(3C)
setvbuf: assign buffering to a stream file see SETBUF(3S)
sgetl: access long integer data in a machine-independent fashion see SPUTL(3X)
sigaddset: initialize, manipulate, and test signal sets .. see SIGSETOPS(3C)
sigdelset: initialize, manipulate, and test signal sets ... see SIGSETOPS(3C)
sigemptyset: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
sigfillset: initialize, manipulate, and test signal sets '" see SIGSETOPS(3C)
sigismember: initialize, manipulate, and test signal sets see SIGSETOPS(3C)
signgam: log gamma function '" see GAMMA(3M)
SIGSETOPS(3C): sigemptyset, sigfillset, sigaddset,

sigdelset, sigismember .. initialize, manipulate, and test signal sets
SINH(3M): sinh, cosh, tanh hyperbolic functions
sin: trigonometric functions see TRIG(3M)
sjtojis, sjtouj: JIS, Shift JIS and VJIS code conversion .. see JCODE(3X)
SLEEP(3C): sleep .. suspend execution for interval
sprintf: print formatted output ... see PRINTF(3S)
sprintmsg: print formatted output with numbered arguments see PRINTMSG(3C)
SPUTL(3X): sputl, sgetl , access long integer data in a machine-independent fashion
sqrt: square root function see EXP(3M)
srand48: generate pseudo-random numbers ... see DRAND48(3C)
srand: simple random-number generator ... see RAND(3C)
sscanf: formatted input conversion, read from stream file see SCANF(3S)
SSIGNAL(3C): ssignal, gsignal software signals
STATFSDEV(3C): statfsdev, fstatfsdev .. get file system statistics
STDIO(3S): stdio .. standard buffered input/output stream file package
STDIPC(3C): ftok .. standard interprocess communication package
step: regular expression compile and match routines .. see REGEXP(3X)
store: data base subroutines see DBM(3X)
strcat, strncat: character string operations .. see STRING(3C)
strchr, strrchr: character string operations .. see STRING(3C)

HP-VX Release 7.0: September 1989 - 13- (Table of Contents) xvii

Table of Contents
Volume 2

Entry Name(Section) name Description
strcmpB, strcmp16: non-ASCII string collation ... see NL_STRING(3C)
strcmp, strncmp: character string operations .. see STRING(3C)
strcoll: character string operations .. see STRING(3C)
strcpy, strncpy: character string operations .. see STRING(3C)
STRFTIME(3C): strftime... convert date and time to string
STRING(3C): strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,

strrchr, strpbrk, strspn, strcspn, strtok,
nLstrcmp, nl_strncmp ... character string operations

strlen: character string operations see STRING(3C)
strncmpB, strncmp16: non-ASCII string collation ... see NL_STRING(3C)
STRORD(3C): strord.. convert string data order
strpbrk: character string operations .. see STRING(3C)
strspn, strcspn: character string operations see STRING(3C)
strstr: character string operations ... see STRING(3C)
STRTOACL(3C): strtoacl,

strtoaclpatt convert exact or pattern string form to access control list (ACL) structure
strtoaclpatt: convert pattern string form to access control list (ACL) structure . see STRTOACL(3C)
STRTOD(3C): strtod, atof, nl_strtod, nl_atof convert string to double-precision number
strtok: character string operations see STRING(3C)
STRTOLD(3C): strtold.............................. convert string to long double-precision number
strxfrm: character string operations .. see STRING(3C)
SWAB(3C): swab... swap bytes
sys_errlist: system error messages ... see PERROR(3C)
SYSLOG(3C): syslog, open log, closelog, setlogmask .. control system log
sys_nerr: system error messages .. see PERROR(3C)
SYSTEM(3S): system... issue a shell command
tanh: hyperbolic tangent function see SINH(3M)
tan: trigonometric functions see TRIG(3M)
TCATTRIBUTE(3C): tcgetattr, tcsetattr ... control tty device
TCCONTROL(3C): tcsendbreak, tcdrain, tcflush, tcflow tty line control functions
tcdrain: tty line control functions see TCCONTROL(3C)
tcflow: tty line control functions .. see TCCONTROL(3C)
tcflush: tty line control functions ... ,. see TCCONTROL(3C)
tcgetattr: get tty device attributes .. see TCATTRIBUTE(3C)
TCGETPGRP(3C): tcgetpgrp... get foreground process group ID
tcsendbreak: tty line control functions ... see TCCONTROL(3C)
tcsetattr: set tty device attributes ... see TCATTRIBUTE(3C)
TCSETPGRP(3C): tcsetpgrp.. get foreground process group ID
tdelete: manage binary search trees see TSEARCH(3C)
telldir: directory operations see DIRECTORY(3C)
tempnam: create a name for a temporary file .. see TMPNAM(3S)
TERMCAP(3X): tgetent, tgetnum, tgetflag,

tgetstr, tgoto, tputs .. emulate /etc/termcap access routines
tfind: manage binary search trees .. see TSEARCH(3C)
tgetent, tgetnum, tgetflag, tgetstr,

tgoto, tputs: emulate /etc/termcap access routines see TERMCAP(3X)
tgetflag: emulate /etc/termcap access routines .. see TERMCAP(3X)
tgetnum: emulate /etc/termcap access routines .. see TERMCAP(3X)
tgetstr: emulate / etc / term cap access routines ... see TERMCAP(3X)
tgoto: emulate /etc/termcap access routines ... see TERMCAP(3X)

xviii (Table of Contents) - 14- HP-UX Release 7.0: September 1989

Table of Contents
Volume 2

Entry Name(Section) name Description

timezone: convert date and time to string .. see CTIME(3C)
TMPFILE(3S): tmpfile.. create a temporary file
TMPNAM(3S): tmpnam, tempnam .. create a name for a temporary file
toascii: translate characters .. see CONV(3C)
tolower, _tolower: translate characters .. see CONV(3C)
toupper, _toupper: translate characters .. see CONV(3C)
tputs: emulate /etc/termcap access routines ... see TERMCAP(3X)
TRIG(3M): sin, cos, tan, asin, acos, atan, atan2 ... trigonometric functions
TSEARCH(3C): tsearch, tfind, tdelete, twalk .. manage binary search trees
TTYNAME(3C): ttyname, isatty find name of a terminal
TTYSLOT(3C): ttyslot ... find the slot in the utmp file of the current user
twalk: manage binary search trees see TSEARCH(3C)
tzname: convert date and time to string ... see CTIME(3C)
tzset: convert date and time to string see CTIME(3C)
ujtojis, ujtosj: JIS, Shift JIS and VJIS code conversion ... see JCODE(3X)
ultoa: unsigned long to ASCII decimal .. see LTOSTR(3C)
ultostr: unsigned long to ASCII.. see LTOSTR(3C)
undial: establish an out-going terminal line connection ... see DIAL(3C)
UNGETC(3S): ungetc ... push character back into input stream
utmp file entry .. see GETUT(3C)
utmpname: access utmp file entry .. see GETUT(3C)
vfprintf: print formatted output of a varargs argument list see VPRINTF(3S)
vfscanf: formatted input conversion to a varargs argument see VSCANF(3S)
VPRINTF(3S): vprintf, vfprintf, vsprintf print formatted output of a varargs argument list
VSCANF(3S): vscanf, vfscanf, vsscanf formatted input conversion to a varargs argument
vsprintf: print formatted output of a varargs argument list see VPRINTF(3S)
vsscanf: formatted input conversion to a varargs argument see VSCANF(3S)
WCHARADV: process 16-bit characters .. see NL_TOOLS_16(3C)
WCHAR: process 16-bit characters ... see NL_TOOLS_16(3C)
wctomb, wctombs: multibyte characters and strings conversions see MULTIBYTE(3C)
yO: Bessel function ... see BESSEL(3M)
yl: Bessel function ... see BESSEL(3M)
yn: Bessel function .. see BESSEL(3M)
ZenkakuHankaku: translate characters .. see HANKAKUZENKAKU(3X)

HP-VX Release 7.0: September 1989 - 15- (Table of Contents) xix

Section 2:
System Calls

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This
result indicates the status of the call. Typically, a zero or positive result indicates that the call
completed successfully, and -1 indicates an error. The individual descriptions specify the
details. An error number is also made available in the external variable errno (see errno(2».
Note: Errno is not cleared on successful calls, so it should be tested only after an error has
been indicated.

SEE ALSO
intro(3), errno(2), hier(5).

The introduction to this manual.

HP-UX Release 7.0: September 1989 -1- (Section 2) 1

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility accord­
ing to the bit pattern contained in amode, using the real user ID instead of the effective user ID
and the real group ID instead of the effective group ID. The value of amode is either the bitwise
inclusive OR of the access permissions to be checked or the existence test. The following sym­
bolic constants, defined in <unistd.h>, test for permissions:

R_OK
W_OK
X_OK
F_OK

read
write
execute (search)
check existence of file

Access Control Lists (ACLs)
Read, write and execute/search permissions are checked against the file's access control list.
Each mode is checked separately since different ACL entries might grant different permissions.
The real user ID is combined with the process's real group ID and each group in its supplemen­
tary groups list, and the access control list is searched for a match. Search proceeds in order of
specificity and ends when one or more matching entries are found at a specific level. More
than one u.g or %.g entry can match a user if that user has a non-null supplementary groups
list. If any matching entry has the appropriate permission bit set, access is permitted.

Access reports that a shared text file currently open for execution is not writable, regardless of
its access control list. It also reports that a file on a read-only file system is not writable. How­
ever, access does not report that a shared text file open for writing is not executable, since the
check is not easily done.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
Access to the file is denied if one or more of the following is true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULTI

2 (Section 2)

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for a null path name.

The named file does not exist.

Search permission is denied on a component of the path prefix.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

The access control list does not permit the requested access and the real user ID
is not the superuser.

Path points outside the allocated address space for the process. The reliable
detection of this error will be implementation dependent.

-1- HP-UX Release 7.0: September 1989

ACCESS(2) ACCESS(2)

[ELOOP) Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG)
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_ TRUNC is in effect.

The owner of a file has permission checked with respect to the "owner" read, write, and exe­
cute mode bits. Members of the file's group other than the owner have permissions checked
with respect to the "group" mode bits, and all others have permissions checked with respect to
the "other" mode bits.

Access reports that a file currently open for execution is not writable, regardless of the setting of
its mode.

WARNINGS
If the path is valid and the real user ID is super-user, access always returns O.

SEE ALSO
chmod(2), setad(2), stat(2), ad(5), unistd(5).

STANDARDS CONFORMANCE
access: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2- (Section 2) 3

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *pathi

DESCRIPTION
Acct is used to enable or disable the system's process accounting routine. If the routine is
enabled, an accounting record will be written on an accounting file for each process that ter­
minates. Termination can be caused by one of two things: an exit call or a signal; see exit(2)
and signal (5). The effective user ID of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file format is given in
acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the system
call. It is disabled if path is zero and no errors occur during the system call.

When the amount of free space on the file system containing the accounting file falls below a
configurable threshold, the system prints a message on the console and disables process
accounting. Another message is printed and the process accounting is re-enabled when the
space reaches a second configurable threshold.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Acct will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[ETXTBSY]

The effective user ID of the calling process is not super-user.

An attempt is being made to enable accounting when it is already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path name do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

Path points to an illegal address. The reliable detection of this error will be
implementation dependent.

Path points to a text file which is currently open.

[ENAMETOOLONG]

[ELOOP]

DEPENDENCIES
Series 300

The accounting file path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

The system's process accounting routine will ignore any locks placed on the process
accounting file.

If the size of the process accounting file reaches 5000 blocks, records for processes ter­
minating after that point will be silently lost. However, in that case the turnacct command
would still sense that process accounting is still enabled. This loss of records can be
prevented by the use of ckpacct (see acctsh(lM».

4 (Section 2) -1- HP-UX Release 7.0: September 1989

ACCT(2)

SEE ALSO
acct(lM), acctsh(lM), exit(2), acct(4), signal(5).

STANDARDS CONFORMANCE
acct: SVID2, XPG2

HP-UX Release 7.0: September 1989 -2-

ACCT(2)

(Section 2) 5

ALARM(2) ALARM(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned long alarm (sec)
unsigned long sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real-time seconds specified by sec have elapsed; see signal (5).
Specific implementations might place limitations of the maximum alarm time supported. The
constant MAX_ALARM defined in <sysjparam.h> specifies the implementation-specific max­
imum. Whenever sec is greater that this maximum, it is silently rounded down to it. On all
implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

Alarms are not inherited by a child process across a fork, but are inherited across an exec.

On systems that support the getitimer(2) and setitimer system calls, the timer mechanism used
by alarm is the same as that used by ITIMER_REAL. Thus successive calls to alarm, getitimer,
and setitimer set and return the state of a single timer. In addition, alarm sets the timer interval
to zero.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock of the calling pro­
cess.

WARNINGS
In some implementations, error bounds for alarm are -1, +0 seconds (for the posting of the
alarm, not the restart of the process). Thus a delay of 1 second can return immediately. The
setitimer routine can be used to create a more precise delay.

SEE ALSO
sleep(I), exec(2), getitimer(2), pause(2), signal(5), sleep(3C).

ST ANDARDS CONFORMANCE
alarm: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1

6 (Section 2) -1- HP-UX Release 7.0: September 1989

ATEXIT(2) ATEXIT(2)

NAME
atexit - register a function to be called at program termination

SYNOPSIS
#include <stdlib.h>

int atexit(func);
void (*func)(void);

DESCRIPTIO~!

Atexit registers the function tunc to be called, without arguments, at normal program termina­
tion. Functions registered by atexit are called in reverse order of registration.

An atexit call during exit processing is always unsuccessful.

The number of registered functions should not exceed ATEXILMAX as specified in <limits.h>.

RETURN VALUE
Atexit returns zero if the registration is successful; non-zero if unsuccessful.

SEE ALSO
exit(2).

STANDARDS CONFORMANCE
atexit: ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 2) 7

AUDCTL(2) AUDCTL(2)

NAME
audctl - start or halt the auditing system and set or get audit files

SYNOPSIS
#include <sysjaudit.h>

audct1(cmd, cpath, npath, mode)
char *cpath, *npath;
int cmd, mode;

DESCRIPTION

8

Audetl sets or gets the auditing system "current" and "next" audit files, and starts or halts the
auditing system. This call is restricted to superusers. epath and npath hold the absolute path
names of the "current" and "next" files. Mode specifies the audit file's permission bits. emd is
one of the following specifications:

(Section 2)

The caller issues the AUD_ON command with the required "current"
and "next" files to turn on the auditing system. If the auditing system
is currently off, it is turned on; the file specified by the epath parame­
ter is used as the "current" audit file, and the file specified by the
npath parameter is used as the "next" audit file. If the audit files do
not already exist, they are created with the mode specified. The audit­
ing system then begins writing to the specified "current" file. An
empty string or NULL npath can be specified, if the caller wants to
designate that no "next" file be available to the auditing system. If
the auditing system is already on, no action is performed; -1 is
returned and errno is set to EBUSY.

The caller issues the AUD_GET command to retrieve the names of the
"current" and "next" audit files. If the auditing system is on, the
names of the "current" and "next" audit files are returned via the
epath and npath parameters (which must point to character buffers of
sufficient size to hold the file names). Mode is ignored. If the auditing
system is on and there is no available "next" file, the "current" audit
file name is returned via the epath parameter, npath is set to an empty
string; -1 is returned, and erma is set to ENOENT. If the auditing sys­
tem is off, no action is performed; -1 is returned and errno is set to
EALREADY.

The caller issues the AUD_SET command to change both the "current"
and "next" files. If the audit system is on, the file specified by epath is
used as the "current" audit file, and the file specified by npath is used
as the "next" audit file. If the audit files do not already exist, they are
created with the specified mode. The auditing system begins writing
to the specified "current" file. Either an empty string or NULL npath
can be specified if the caller wants to designate that no "next" file be
available to the auditing system. If the auditing system is off, no
action is performed; -1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETCURR command to change only the
"current" audit file. If the audit system is on, the file specified by
epath is used as the "current" audit file. If the specified "current"
audit file does not exist, it is created with the specified mode. Npath is
ignored. The auditing system begins writing to the specified "current"
file. If the audit system is off, no action is performed; -1 is returned
and errno is set to EALREADY.

-1- HP-UX Release 7.0: September 1989

AUDCTL(2) AUDCTL(2)

AUD_SETNEXT The caller issues the AUD_SETNEXT command to change only the
"next" audit file. If the auditing system is on, the file specified by
npath is used as the "next" audit file. epath is ignored. If the "next"
audit file specified does not exist, it is created with the specified mode.
Either an empty string or NULL npath can be specified if the caller
wants to designate that no "next" file be available to the auditing sys­
tem. If the auditing system is off, no action is performed; -1 is
returned, and errno is set to EAl.-READY.

The caller issues the AUD_SWITCH command to cause auditing sys­
tem to switch audit files. If the auditing system is on, it uses the
"next" file as the new "current" audit file and sets the new "next"
audit file to NULL. epath, npath,and mode are ignored. The auditing
system begins writing to the new "current" file. If the auditing sys­
tem is off, no action is performed; -1 is returned, and errno is set to
EALREADY. If the auditing system is on and there is no available
"next" file, no action is performed; -1 is returned, and errno is set to
ENOENT.

The caller issues the AUD_OFF command to halt the auditing system.
If the auditing system is on, it is turned off and the "current" and
"next" audit files are closed. epath, npath, and mode are ignored. If
the audit system is already off, -1 is returned and errno is set to EAL­
READY.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

EXAMPLES
In the following example, audctl is used to determine whether the auditing system is on, and to
retrieve the names of the audit files that are currently in use by the system.

ERRORS

char cfile[P A TH_MAX + 1 J, x_file[P A TH_MAX + 1 J;
int mode=0600;

if (audctl(AUD_GET, c_file, x_file, mode))
switch (errno) {

case ENOENT:
strcpy(x_file," -none-");
break;

case EALREADY:
printf(IIThe auditing system is OFF\n");
return 0;

case default:
fprintf(stderr, "Audctl failed: errno=%d\n", errno);
return 1;

printf(IIThe auditing system is ON: cfile=%s x_file=%s\n", cfile, x_file);
return 0;

Audctl fails if one of the following is true:

HP-UX Release 7.0: September 1989 -2- (Section 2) 9

AVDCTL(2)

[EPERM]

[EALREADY]

[EBUSY]

[EFAULT]

[EINVAL]

[ENOENT]

AUTHOR

AVDCTL(2)

The caller does not have superuser privilege, or one or both of the
given files are not regular files and cannot be used.

The AVO_OFF, AVO_SET, AVD_SETCVRR, AVD_SETNEXT,
AVO_SWITCH, or AVO_GET emd specified when the auditing system
is off.

User attempt to start the auditing system failed because auditing is
already on.

Bad pointer. One or more of the required function parameters are not
accessible.

The epath or npath is greater than PATH_MAX in length, the epath or
npath specified is not an absolute path name.

No available "next" file when emd is AVD_GETNEXT or
AVO_SWITCH.

Audetl was developed by HP.

SEE ALSO
audit(5), audsys(lM), audomon(lM).

10 (Section 2) -3- HP-UX Release 7.0: September 1989

AUDSWITCH(2) AUDSWITCH(2)

NAME
audswitch - suspend or resume auditing on the current process

SYNOPSIS
#include <sysjaudit.h>

int audswitch (aflag)
int aflag;

DESCRIPTION
Audswitch suspends or resumes auditing within the current process. This call is restricted to
superusers.

One of the following aflags must be used:

AUD_SUSPEND Suspend auditing on the current process.

AUD_RESUME Resume auditing on the current process.

Audswitch can be used in self-auditing privileged processes to temporarily suspend auditing
during intervals where auditing is to be handled by the process itself. Auditing is suspended by
a call to audswitch with the AUD_SUSPEND parameter and resumed later by a call to audswitch
with the AUD_RESUME parameter.

An audswitch call to resume auditing serves only to reverse the action of a previous audswitch
call to suspend auditing. A call to audswitch to resume auditing when auditing is not
suspended has no effect.

Audswitch affects only the current process. For example, audswitch cannot suspend auditing for
processes exec'ed from the current process. (Use setaudproc(2) to enable or disable auditing for
a process and its children).

RETURN VALUE
Upon successful completion, audswitch returns O. If an error occurs, -1 is returned and the glo­
bal variable errno is set to indicate the error.

ERRORS
Audswitch fails if one of the following is true:

The user is not a superuser. [EPERM]

[EINVAL]

AUTHOR

The input parameter is neither AUD_RESUME nor AUD_SUSPEND.

Audswitch was developed by HP.

SEE ALSO
audit(S), setaudproc(2), audusr(lM), audevent(lM).

HP-UX Release 7.0: September 1989 -1- (Section 2) 11

AUDWRITE(2) AUDWRITE(2)

NAME
audwrite - write an audit record for a self-auditing process

SYNOPSIS
#inc1ude <sys/audit.h>

int audwrite(audrec_p)
struct selLaudiLrec *audrecp;

DESCRIPTION
Audwrite is called by trusted self-auditing processes, which are capable of turning off the regu­
lar auditing (using audswitch(2» and doing higher-level auditing on their own. Audwrite is res­
tricted to superusers.

Audwrite checks to see if the auditing system is on and the calling process and the event
specified are being audited. If these conditions are met, audwrite writes the audit record pointed
to by audrec_p into the audit file. The record consists of an audit record body and a header with
the following fields:

u_Iong ah_time;
u_short ah_pid;
u_short ah_error;
u_short ah_event;
u_short ah_Ien;

/* Date/time (tv_sec of time val) * /
/* Process ID * /
/* Success/failure * /
/* Event being audited * /

/* Length of variant part * /

The header has the same format as the regular audit record, while the body contains additional
information about the high-level audit event. The header fields ah_error, ahjvent, and ah_len
are specified by the calling process. Audwrite fills in ah_time and ah_pid fields with the correct
values. This is done to reduce the risk of forgery. After the header is completed, the record
body is attached and the entire record is written into the current audit file.

RETURN VALUE
If the write is successful, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the reason for the failure.

ERRORS
Audwrite fails if one of the following is true:

[EPERM]

[EINVAL]

The caller is not a superuser.

The event number in the audit record is invalid.

WARNINGS
If audwrite causes a file space overflow, the calling process might be suspended until the file
space is cleaned up. However a returned call with the return value of 0 indicates that the audit
record has been successfully written.

AUTHOR
Audwrite was developed by HP.

SEE ALSO
audswitch(2), audit(4).

12 (Section 2) -1- HP-UX Release 7.0: September 1989

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for the calling
process's data segment; see exec(2). The change is made by resetting the process's break value
and allocating the appropriate amount of space. The break value is the address of the first loca­
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. Incr can
be negative, in which case the amount of allocated space is decreased.

ERRORS
Brk and sbrk will fail without making any change in the allocated space if one or more of the
following are true:

[ENOMEM] Such a change would result in more space being allocated than is allowed by a
system-imposed maximum (see ulimit(2».

[ENOMEM] Such a change would cause a conflict between addresses in the data segment
and any attached shared memory segment (see shmop(2».

[ENOMEM] Such a change would be impossible as there is insufficient swap space avail­
able.

WARNINGS
The pointer returned by sbrk is not necessarily word-aligned. Loading or storing words through
this pointer could cause word alignment problems.

Care should be taken when using either brk(2) or sbrk(2) in conjunction with calls to the
malloc(3C) or malloc(3X) library routines. There is only one program data segment from which
all three of these routines allocate and deallocate program data memory. Although it is not
recommended practice, it is possible to deallocate program data memory allocated through
malloc(3C) with a subsequent call to brkO.

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

AUTHOR
Brk and sbrk were developed by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

STANDARDS CONFORMANCE
brk: XPG2

sbrk: XPG2

HP-UX Release 7.0: September 1989 -1- (Section 2) 13

BSDPROC(2) BSDPROC(2)

NAME
killpg, getpgrp, setpgrp, sigvec, signal - 4.2 BSD-compatible process control facilities

SYNOPSIS
int killpg(pgrp, sig)
int pgrp, sig;

int getpgrp(pid)
int pid;

int setpgrp(pid, pgrp)
int pid, pgrp;

#include <signal.h>

int sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

void (*signal(sig, func»()
int sig;
void (*func)();

DESCRIPTION
These calls simulate (and are provided for backward compatibility with) functions of the same
name in the 4.2 Berkeley Software Distribution.

This version of setpgrp is equivalent to the system call setpgid(pid, pgrp) (see setpgid(2».

This version of getpgrp is equivalent to the system call getpgrp2(pid) (see getpid(2».

Killpg is equivalent to the system call kill(-pgrp, sig) (see kill(2».

Sigvec is equivalent to the system call sigvector(sig, vec, ovec) (see sigvector(2», except for the
following:

When SIGCHLD or SIGCLD is used and vec specifies a catching function, the routine acts
as if the SV _BSDSIG flag were included in the sv _flags field of vec.

The name sv_onstack can be used as a synonym for the name of the sv_flags field of vec
and ovec.

If vec is not a null pointer and the value of (vec- >sv_flags & 1) is "true", the routine
acts as if the SV _ONSTACK flag were set.

If ovec is not a null pointer, the flag word returned in ovec->sv_flags (and therefore the
value of ovec->sv _onstack) will be equal to 1 if the system was reserving space for pro­
cessing of that signal because of a call to sigspace(2), and 0 if not. The SV _BSDSIG bit in
the value placed in ovec->sv_flags is always clear.

If the reception of a caught signal occurs during certain system calls, the call will always
be restarted, regardless of the return value from a catching function installed with
sigvecO. The affected calls are wait(2), semop(2), msgsnd(2), msgrcv(2), and read(2) or
write(2) on a slow device (such as a terminal or pipe, but not a file). Other interrupted
system calls are not restarted.

This version of signal has the same effect as sigvec(sig, vec, ovec), where vec->sv _handler is
equal to tunc, vec->sv_mask is equal to 0, and vec->sv_flags is equal to O. Signal returns the
value that would be stored in ovec->sv _handler if the equivalent sigvec call would have suc­
ceeded. Otherwise, signal returns -1 and errno is set to indicate the reason as it would have

14 (Section 2) -1- HP-UX Release 7.0: September 1989

BSDPROC(2) BSDPROC(2)

been set by the equivalent call to sigvec.

These functions can be linked into a program by giving the -IBSD option to Id(I).

WARNINGS
While the 4.3 BSD release defined extensions to some of the interfaces described here, only the
4.2 BSD interfaces are emulated by this package.

Bsdproc should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
Bsdproc was developed by HP and the University of California, Berkeley.

SEE ALSO
Id(I), kill(2), getpid(2), msgsnd(2), msgrcv(2), read(2), semop(2), setpgid(2), setsid(2), sigvec­
tor(2), wait(2), write(2), sigset(2V), sigstack(2), signal(5).

HP-UX Release 7.0: September 1989 -2- (Section 2) 15

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
chai' *pathi

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning
with /.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the fol­
lowing are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

[ENOENT]

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

Path is null.

[ENAMETOOLONG]

[ELOOP]

RETURN VALUE

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
]OSIX_NO_ TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

AUTHOR
Chdir was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
cd(1), chroot(2).

STANDARDS CONFORMANCE
chdir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

16 (Section 2) -1- HP-UX Release 7.0: September 1989

CHMOD(2) CHMOD(2)

NAME
chmod, fchmod - change access mode of file

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

int chmod (path, mode)
char *path;
mode_t mode;

int fchmod (fildes, mode)
int fildes;
mode_t mode;

DESCRIPTION
The path argument points to a path name naming a file. The fildes argument is a file descriptor.
Chmod and fchmod set the access permission portion of the file's mode according to the bit pat­
tern contained in mode.

The following symbolic constants representing the access permission bits are defined with the
indicated values in <sys/stat.h> and are used to construct the argument mode. The value of
the argument mode is the bitwise inclusive OR of the values for the desired permissions.

S_ISUID
S_ISGID
S_ENFMT
S_ISVTX
S_IRUSR
S_IWUSR
S_IXUSR
S_IRGRP
S_IWGRP
S_IXGRP
S_IROTH
S_IWOTH
S_IXOTH

04000
02000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user ID on execution.
Set group ID on execution.
Record locking enforced.
Save text image after execution.
Read by owner.
Write by owner.
Execute (search) by owner.
Read by group.
Write by group.
Execute (search) by group.
Read by others (that is, anybody else).
Write by others.
Execute (search) by others.

The effective-user-ID of the process must match that of the owner of the file or the superuser to
change the mode of a file.

If the effective-user-ID of the process is not that of the superuser, S_ISVTX (mode bit 01000,
save text image on execution) is cleared.

If the effective-user-ID of the process is not that of the superuser, and the effective-group-ID of
the process does not match the· group ID of the file and none of the group IDs in the supple­
mentary groups list match the group ID of the file, S_ISGID, S_ENFMT (mode bit 02000, set
group ID on execution and enforced file locking mode) is cleared.

The set-group-ID on execution bit is also used to enforce file-locking mode (see lockf(2) and
fcntl(2}} on files that are not group executable. This might affect future calls to open(2}, creat(2},
read(2}, and write(2} on such files.

If an executable file is prepared for sharing, S_ISVTX (mode bit 01000) prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user
terminates. Then, when the next user of the file executes it, the text need not be read from the
file system but can simply be swapped in, thus saving time.

HP-UX Release 7.0: September 1989 -1- (Section 2) 17

CHMOD(2) CHMOD(2)

Access Control Lists
All optional entries in a file's access control list are deleted when chmod is executed. (This
behavior conforms to the IEEE Standard POSIX 1003.1-1988.) To preserve optional entries in a
file's access control list, it is necessary to save and restore them using getacl(2) and setacl(2).

To set the permission bits of access control list entries, use setacl(2) instead of chmod.

For more information on access control list entries, see ad (5).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chmod and fchmod fail and the file mode is unchanged if one or more of the following is true:

[EACCES]

[EFAULT]

[ELOOP]

Search permission is denied on a component of the path prefix.

Path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

Too many symbolic links are encountered in translating path.

{ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOTDIR]

[EPERM]

[EROFS]

DEPENDENCIES

A component of path exceeds NAMLMAX bytes while _POSIX_NO_TRUNC is in
effect or path exceeds PATH_MAX bytes.

A component of path does not exist.

The file named by path does not exist.

A component of the path prefix is not a directory.

The effective-user-ID does not match that of the owner of the file and the
effective-user-ID is not that of the super-user.

The named file resides on a read-only file system.

HP Clustered Environment:
If the file is a directory, the access permission bit S_CDF (04000) indicates a hidden direc­
tory (see cdf(4».

RFA and NFS
Fchmod is not supported on remote files.

AUTHOR
Chmod was developed by AT&T, the University of California, Berkeley, and HP.

Fchmod was developed by the University of California, Berkeley.

SEE ALSO
chmod(l), chown(2), creat(2), fcntl(2), getad(2), lockf(2), mknod(2), open(2), read(2), setad(2),
write(2), cdf(4), acl(5).

STANDARDS CONFORMANCE
chmod: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

18 (Section 2) -2- HP-UX Release 7.0: September 1989

CHOWN(2) CHOWN(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
#inc1ude <sysjtypes.h>

int chown (path, owner, group)
char *pathi
uid_t owner;
gid_ t group;

int fchown (fildes, owner, group)
int fildes;
uid_t owner;
gid_t group;

DESCRIPTION
Chown changes the user and group ownership of a file. The path argument points to a path
name naming a file. The fildes argument is a file descriptor. The chown and jchown functions
set the owner ID and group ID of the file to the numeric values contained in owner and group
respectively. A value of UID_NO_CHANGE or GID_NO_CHANGE can be specified in owner
or group to leave unchanged the file's owner ID or group ID respectively. Note that owner and
group should be less than or equal to UID_MAX (see limits(5».

Only processes with effective user ID equal to the file owner or superuser can change the own­
ership of a file. If privilege groups are supported, the owner of a file can change the ownership
only if he is a member of a privilege group allowing CHOWN, as set up by setprivgrp(lM). All
users get CHOWN privileges by default.

The group ownership of a file can be changed to any group in the current process's access list
or to the real or effective group ID of the current process. If privilege groups are supported
and the user is permitted the CHOWN privilege, the file can be given to any group.

If chown is invoked on a regular file by other than the superuser, the set-user-ID and set­
group-ID bits of the file mode are cleared. Whether chown preserves or clears these bits on files
of other types is implementation dependent.

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using the file's
access control list (see acl(5». When using chown(2) in conjunction with ACLs, if the new
owner and/or group does not have an optional ACL entry corresponding to u. % and/or %.g in
the file's access control list, the file's access permission bits remain unchanged. However, if the
new owner and/or group is already designated by an optional ACL entry of u.% and/or %.g,
chown sets the file's permission bits (and the three basic ACL entries) to the permissions con­
tained in that entry.

ERRORS
Chown fails and the owner and group of the file remain unchanged if one or more of the fol­
lowing is true:

[EBADF]

[ENOTDIR]

[ENOENT]

[EACCESJ

[EPERMJ

Fildes is not a valid file descriptor.

A component of the path prefix is not a directory.

The file named by path does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID is not superuser and one or more of the following condi­
tions exist:

HP-UX Release 7.0: September 1989 -1- (Section 2) 19

CHOWN(2)

[EROFS]

[EFAULT]

CHOWN(2)

The effective user ID does not match the owner of the file.

When changing the owner of the file, if the owner of the file is not a member
of a privilege group allowing the CHOWN privilege.

When changing the group of the file, if the owner of the file is not a member
of a privilege group allowing the CHOWN privilege and the group number is
not in the current process's access list.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]

[ELOOP]

DEPENDENCIES

A component of path exceeds NAME_MAX bytes while _POSIX_NO_ TRUNC is in
effect, or path exceeds PATH_MAX bytes.

Too many symbolic links were encountered in translating path.

HP Clustered Environment:
Chown does not clear the set-user-ID bit of a directory, because that bit indicates that the
directory is hidden (see cdf(4».

When chown is called from a diskless node, the privilege groups checked are the ones set
up on the cluster server.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

AUTHOR
Fchown was developed by the University of California, Berkeley.

SEE ALSO
chown(l), setprivgrp(lM), chmod(2), setacl(2), acl(5), limits(5).

STANDARDS CONFORMANCE
chown: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

20 (Section 2) -2- HP-UX Release 7.0: September 1989

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *pathi

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become
the root directory, the starting point for path searches for path names beginning with J. The
user's working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot
be used to access files outside the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chroot will fail and the root directory will remain unchanged if one or more of the following
are true:

[ENOTDIR]

[ENOENT]

[EPERM]

[EFAULT]

Any component of the path name is not a directory.

The named directory does not exist or a component of the path does not exist.

The effective user ID is not super-user.

Path points outside the allocated address space of the process. The reliable
detection of this error will be implementation dependent.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_N03RUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

SEE ALSO
chroot(lM), chdir(2).

STANDARDS CONFORMANCE
chroot: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 2) 21

CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, tcntl, or pipe system call. Close
closes the file descriptor indicated by fildes. All associated file segments which have been
locked by this process with the lockt function are released (i.e., unlocked).

ERRORS
[EBADF] Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), lockf(2), open(2), pipe(2).

ST ANDARDS CONFORMANCE
close: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

22 (Section 2) -1- HP-UX Release 7.0: September 1989

CNODEID(2)

NAME
cnodeid - get the cnode ID of the local machine

SYNOPSIS
#include <sys/types.h>

cnode_t cnodeid 0

DESCRIPTION
Cnodcid returns the cnode ID of the local machine.

SEE ALSO
cnodes(l), cnodes(2), getccent(3C).

AUTHOR
Cnodeid was developed by HP.

HP-UX Release 7.0: September 1989 -1-

CNODEID(2)

(Section 2) 23

CNODES(2) CNODES(2)

NAME
cnodes - get a list of active nodes in cluster

SYNOPSIS
#inc1ude <sys/types.h>
#include <sys/param.h>

int cnodes (buf)
cnode_t *buf;

DESCRIPTION
Cnodes returns in but the current number of active cnodes in the cluster. If but is not a null
pointer, it should be a pointer to an array of at least MAX_ CNODE cnode IDs. This array will
be filled with the cnode IDs of nodes currently in the cluster; the list of cnode IDs is terminated
by the cnode ID O.

RETURN VALUE
Upon successful completion, cnodes returns the current number of active cnodes. If the value 0
is returned, the machine is not a member of a cluster. In case of an error, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
Cnodes may fail if:

[EFAULT] But is not a null pointer and points to an illegal address. Reliable detection of
this error is not guaranteed.

SEE ALSO
cnodeid(2), cnodes(1), getccent(3C).

AUTHOR
Cnodes was developed by HP.

24 (Section 2) -1- HP-UX Release 7.0: September 1989

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>
#inc1ude <fcntl.h>

int creat (path, mode)
char *path;
mode_t mode;

DESCRIPTION
Creat creates a new regular file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, its length is truncated to 0, and its mode and owner are unchanged. Other­
wise, the file's owner ID is set to the effective user ID of the process. If the set-group-ID bit of
the parent directory is set, the directory's group ID is set to the group ID of the parent directory.
Otherwise, the directory's group ID is set to the process's effective group ID. The low-order 12
bits of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).
The "save text image after execution" bit of the mode are cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing
(only), even if the mode does not permit writing. The file offset is set to the beginning of the
file. The file descriptor is set to remain open across exec system calls (see fcntl(2)). No process
can have more than OPEN_MAX files open simultaneously. This is discussed in open(2). A new
file can be created with a mode that forbids writing.

Access Control Lists (ACLs)
On systems that support access control lists, three base ACL entries are created corresponding to
the file access permission bits. An existing file's access control list is unchanged by creat (see
setacl(2), chmod(2), and acl(S)).

ERRORS
Creat fails if one or more of the following is true:

[ENOSPC] Not enough space on the file system.

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist (for example, path is null, or a component of path
does not exist).

Search permission is denied on a component of the path prefix.

The file does not exist and the directory in which the file is to be created does
not permit writing.

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

The file exists and write permission is denied.

The named file is an existing directory.

More than the maximum number of file descriptors are currently open.

Path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

HP-UX Release 7.0: September 1989 -1- (Section 2) 25

CREAT(2)

[ENFILE]

[ENXIO]

[EAGAIN]

[ELOOP]

RETURN VALUE

CREAT(2)

The system file table is full.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

The file exists, enforcement mode file and record locking is set and there are
outstanding record locks on the file.

Too many symbolic links were encountered in translating the path name.

Upon successful completion, a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), lockf(2), Iseek(2), open(2), read(2), setacl(2), truncate(2),
umask(2), write(2), acl(5).

STANDARDS CONFORMANCE
creat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

26 (Section 2) -2- HP-UX Release 7.0: September 1989

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION

DUP(2)

Fildes is a file descriptor obtained from a ereat, open, dup, fentZ, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (see fentl(2), F _DUPFD).

The new file descriptor is set to remain open across exee system calls. See fent! (2).

The file descriptor returned is the lowest one available.

ERRORS
Dup will fail if one or more of the following are true:

[EBADF]

[EMFILE]

RETURN VALUE

Fildes is not a valid open file descriptor.

The maximum number of file descriptors are currently open.

Upon successful completion a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

AUTHOR
Dup was developed by AT&T Bell Laboratories and the Hewlett-Packard Company.

SEE ALSO
close(2), creat(2), dup2(2), exec(2), fcntl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 2) 27

DUP2(2) DUP2(2)

NAME
dup2 - duplicate an open file descriptor to a specific slot

SYNOPSIS
int dup2(fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, tcntl, or pipe system call.

Fildes2 is a non-negative integer less than the maximum value allowed for file descriptors.

Dup2 causes fildes2 to refer to the same file as fildes. If fildes2 already referred to an open file, it
is closed first.

The file descriptor returned by dup2 has the following in common with fildes:

Same open file (or pipe).

Same file pointer (that is, both file descriptors share one file pointer.)

Same access mode (read, write or read/write).

Same file status flags (see tcntl(2), F _DUPFD).

The new file descriptor is set to remain open across exec system calls. See tcntl (2).

This routine is found in the C library. Programs using dup2 but not using other routines from
the Berkeley importability library (such as the routines described in bsdproc(2» should not give
the -lBSD option to Id(l).

ERRORS
Dup2 will fail if the following is true:

[EBADF] Fildes is not a valid open file descriptor or fildes2 is not in the range of legal
file descriptors.

RETURN VALUE
Upon successful completion, dup2 returns a non-negative integer, namely the new file descriptor
fildes2. Otherwise, it returns -1 and sets errno to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

ST ANDARDS CONFORMANCE
dup2: SVID2, XPG3, POSIX.1, FIPS 151-1

28 (Section 2) -1- HP-UX Release 7.0: September 1989

ERRNO(2) ERRNO(2)

NAME
errno - error indicator for system calls

SYNOPSIS
#include <errno.h>
extern int errnoi

DESCRIPTION
The value of the external variable errno is set whenever an error occurs in a system call. This
value can be used to obtain a more detailed description of the error. An error condition is indi­
cated by an otherwise impossible returned value. This is almost always -1; the individual
descriptions specify the details. Because errno is not cleared on successful system calls, its
value should be checked only when an error has been indicated.

Each system call description attempts to list all possible error numbers. The following is a com­
plete list of the error names. The numeric values can be found in <errno.h> but should not
normally be used.

E2BIG Arg list too long. An argument and or environment list longer than maximum
supported size is presented to a member of the exec family. Other possibilities
include: message size or number of semaphores exceeds system limit (msgop,
semop), or too many privileged groups have been set up (setprivgrp).

EACCES Permission denied. An attempt was made to access a file or IPC object in a
way forbidden by the protection system.

EADDRINUSE Address already in use. Only one usage of each address is normally permitted.

EADDRNOTAVAIL

EAFNOSUPPORT

EAGAIN

EALREADY

EBADF

EBUSY

ECHILD

Cannot assign requested address. Normally results from an attempt to create a
socket with an address not on this machine.

Address family not supported by protocol family. An address incompatible
with the requested protocol was used. For example, you should not necessarily
expect to be able to use PUP Internet addresses with ARPA Internet protocols.

No more processes. A fork failed because the system's process table i~ full or
the user is not allowed to create any more processes, or a semop or msgop call
would have to block.

Operation already in progress. An operation was attempted on a non-blocking
object which already had an operation in progress.

Bad file number. Either a file descriptor refers to no open file, a read (respec­
tively write) request is made to a file which is open only for writing (respec-
tively reading), or the file descriptor is not in the legal range of file descriptors.

Device or resource busy. An attempt to mount a device that was already
mounted or an attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active text segment). It
will also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable, such as when a non­
shareable device file is in use.

No child processes. A wait was executed by a process that had no existing or
unwaited-for child processes.

ECONNABORTED
Software caused connection abort. A connection abort was caused internal to
your host machine.

HP-UX Release 7.0: September 1989 -1- (Section 2) 29

ERRNO(2)

ECONNREFUSED

ERRNO(2)

Connection refused. No connection could be made because the target machine
actively refused it. This usually results from trying to connect to a service that
is inactive on the foreign host.

ECONNRESET Connection reset by peer. A connection was forcibly closed by a peer. This
normally results from the peer executing a shutdown(2) call.

EDEADLK Resource deadlock would occur. A process which has locked a system resource
would have been put to sleep while attempting to access another process'
locked resource.

EDESTADDRREQ
Destination address required. A required address was omitted from an opera­
tion on a socket.

EDOM Math argument. The argument of a function in the math package (3M) is out
of the domain of the function.

EEXIST File exists. An existing file was mentioned in an inappropriate context, e.g.,
link.

EFAULT Bad address. The system encountered a hardware fault in attempting to use an
argument of a system call; can also result from passing the wrong number of
parameters to a system call. The reliable detection of this error will be imple­
mentation dependent.

EFBIG File too large. The size of a file exceeded the maximum file size (for the file
system) or ULIMIT was exceeded. (see ulimit(2)), or a bad semaphore number
in a semop(2) call.

EHOSTDOWN Host is down. A socket operation encountered a dead host. Networking
activity on the local host has not been intiated.

EHOSTUNREACH
No route to host. A socket operation was attempted to an unreachable host.

EIDRM Identifier Removed. This error is returned to processes that resume execution
due to the removal of an identifier from the file system's name space (see
msgctl(2), semctl(2), and shmctl(2)).

EINPROGRESS Operation now in progress. An operation which takes a long time to complete
was attempted on a non-blocking object (see ioctl(2) and fcntl(2)).

EINTR Interrupted system call. An asynchronous signal (such as interrupt or quit),
which the user has elected to catch, occurred during a system call. If execution
is resumed after processing the signal, it will appear as if the interrupted sys­
tem call returned this error condition unless the system call is restarted (see
sigvector(2)).

EINVAL Invalid argument. Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or kill; reading or writing a
file for which lseek has generated a negative pointer). Also set by the math
functions described in the (3M) entries of this manual.

EIO I/O error - some physical 1/0 error. This error may in some cases occur on a
call following the one to which it actually applies.

EISCONN Socket is already connected. A connect request was made on an already con­
nected socket, or, a sendto or sendmsg request on a connected socket specified a
destination other than the connected party.

30 (Section 2) -2- HP-UX Release 7.0: September 1989

ERRNO(2)

EISDIR

ELOor

EMFILE

EMLINK

EMSGSIZE

ERRNO(2)

Is a directory. An attempt to open a directory for writing.

Too many levels of symbolic links. A path name search involved more than
MAXSYMLINKS symbolic links. MAXSYMLINKS is defined in <sys/param.h>.

Too many open files. No process may have more than a system defined
number of file descriptors open at a time.

Too many links. An attempt to make more than the maximum number of
links to a file.

Message too long. The socket requires that the message be sent atomically,
and the size of the message to be sent made this impossible.

ENAMETOOLONG

ENET

ENETDOWN

ENETRESET

File name 'too long. A path specified exceeds the maximum path length for the
system. The maximum path length is specified by PATH_MAX and is defined
in <limits.h>. PATH_MAX is guaranteed to be at least 1023 bytes. This error
is also generated if the length of a path name component exceeds NAME_MAX
and the _POSIX_NO_ TRUNC option is in effect for the specified path.
Currently, _POSIX_NO_ TRUNC is in effect only for HFS file systems configured
to allow path name components up to 255 bytes long (see convertfs(lM» and
therefore only path names referring to such file systems will generate the error
for this case. The values of NAME_MAX, PATH_MAX, and _POSIX_NO_TRUNC

for a particular path name can be queried by using the pathconf(2) system call.

Local area network error. An error occurred in the software or hardware asso­
ciated with your local area network.

Network is down. A socket operation encountered a dead network.

Network dropped connection on reset. The host you were connected to
crashed and rebooted.

ENETUNREACH Network is unreachable. A socket operation was attempted to an unreachable
network.

EN FILE

ENOBUFS

ENODEV

ENOENT

ENOEXEC

ENOMEM

File table overflow. The system's table of open files is full, and temporarily no
more opens can be accepted.

No buffer space available. An operation on a socket was not performed
because the system lacked sufficient buffer space.

No such device. An attempt was made to apply an inappropriate system call
to a device; e.g., read a write-only device.

No such file or directory. This error occurs when a file name is specified and
the file should exist but doesn't, or when one of the directories in a path name
does not exist. It also occurs with msgget, semget, shmget when key does not
refer to any object and the IPC_CREAT flag is not set.

Exec format error. A request is made to execute a file which, although it has
the appropriate permissions, does not start with a valid magic number (see
a.out(4)), or the file is too small to have a valid executable file header.

Not enough space. During a system call such as exec, brk, fork, or sbrk, a pro­
gram asks for more space than the system is able to supply. This may not be a
temporary condition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap space during a
fork.

HP-UX Release 7.0: September 1989 -3- (Section 2) 31

ERRNO(2) ERRNO(2)

32

ENOMSG No message of desired type. An attempt was made to receive a message of a
type that does not exist on the specified message queue; see msgop(2).

ENOPROTOOPT Protocol not available. A bad option was specified in a getsockopt(2) or set­
sockopt(2) call.

ENOSPC No space left on device. During a write to an ordinary file, there is no free
space left on the device; or, no space in system table during msgget(2),
semget(2), or semop(2) while SEM_UNDO flag is set.

ENOSYS Function is not available. The requested function or operation is not imple­
mented or not configured in the system.

ENOTBLK Block device required. A non-block file was mentioned where a block device
was required, e.g., in mount.

ENOTCONN Socket is not connected. A request to send or receive data was disallowed
because the socket was not connected.

ENOTDIR Not a directory. A non-directory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(2).

ENOTEMPTY Directory not empty. An attempt was made to remove a non-empty directory.

ENOTSOCK Socket operation on non-socket. An operation was attempted on something
that is not a socket.

ENOTTY Not a typewriter. The (ioctl(2» command is inappropriate to the selected dev­
ice type.

ENXIO No such device or address. I/O on a special file refers to a subdevice which
does not exist, or beyond the limits of the device. It may also occur when, for
example, a tape drive is not online or no disk pack is loaded on a drive.

EOPNOTSUPP Operation not supported. The requested operation on a socket, RFA file, or NFS
file is either invalid or unsupported. For example, this might occur when an
attempt to accept a connection on a datagram socket fails.

EPFNOSUPPORT

EPIPE

Protocol family not supported. The protocol family has not been configured
into the system or no implementation for it exists. the socket is not connected.

Broken pipe. A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is
ignored.

EPROTONOSUPPORT
Protocol not supported. The protocol has not been configured into the system
or no implementation for it exists.

EPROTOTYPE Protocol wrong type for socket. A protocol was specified that does not support
the semantics of the socket type requested. For example you cannot use the
ARP A Internet UDP protocol with type SOCK_STREAM.

ERANGE Result too large. The value of a function in the math package (3M) is not
representable within machine precision, or a semop(2) call would cause either a
semaphore value or a semaphore adjust value to exceed it system-imposed
maximum.

EROFS

(Section 2)

Read-only file system. An attempt to modify a file or directory was made on a
device mounted read-only.

-4- HP-UX Release 7.0: September 1989

ERRNO(2) ERRNO(2)

ESHUTDOWN Cannot send after socket shutdown. A request to send data was disallowed
because the socket had already been shut down with a previous shutdown(2)
call.

ESOCKTNOSUPPORT

ESPIPE

Socket type not supported. The support for the socket type has not been
configured into the system or no implementation for it exists.

Illegal seek. An lseek was issued to a pipe.

ESRCH No such process. No process can be found corresponding to that specified by
pid in kill, rtprio or ptrace, or the process is not accessible.

ETIMEDOUT Connection timed out. A connect request failed because the connected party
did not properly respond after a period of time. (The timeout period is depen­
dent on the communication protocol.)

ETXTBSY Text file busy. An attempt to execute an executable file which is currently
open for writing (or reading). Also, an attempt to open for writing an other­
wise writable file which is currently open for execution.

EWOULDBLOCK Operation would block. An operation which would cause a process to block
was attempted on a object in non-blocking mode (see ioctl(2) and fcntl(2».

EXDEV

DEPENDENCIES

Cross-device link. A link to a file on another device was attempted.

The following NFS errors are also defined:

ERE FUSED The same error as. ECONNREFUSED. The external variable errno is defined as
ECONNREFUSED for NFS compatibility.

EREMOTE

ESTALE

Series 800:

Too many levels of remote in path. An attempt was made to remotely mount
an NFS file system into a path which already has a remotely mounted NFS file
system component.

Stale NFS file handle. A client referenced an open file, but the file had previ­
ously been deleted.

In the definition of error ENOMEM, the term "segmentation registers" is invalid.

STANDARDS CONFORMANCE
errno: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

HP-UX Release 7.0: September 1989 -5- (Section 2) 33

EXEC(2) EXEC(2)

NAME
exec!, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int exec1 (path, argO, argl, "" argn, (char *) 0)
char *path, *argO, *argl, "" *argn;

int execv (path, argv)
char *path, *argv[];

int exec1e (path, argO, argl, "" argn, (char *) 0, envp)
char *path, *argO, *argl, "" *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int exec1p (file, argO, argl, "" argn, (char *) 0)
char *file, *argO, *argl, "" *argn;

int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
Exec, in all its forms, loads a program from an ordinary, executable file onto the current pro­
cess, replacing the current program. The path or file argument refers to either an executable
object file or a file of data for an interpreter. In this case, the file of data is also called a script
file.

An executable object file consists of a header (see a.out(4», text segment, and data segment.
The data segment contains an initialized portion and an uninitialized portion (bss). For execlp
and execvp the shell (/bin/sh) can be loaded to interpret a script instead. A successful call to
exec does not return because the new program overwrites the calling program.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is the address of an array of character pointers to the
arguments themselves. As indicated, argc usually has a value of at least one, and the first
member of the array points to a string containing the name of the file. (The exit conditions
from main are discussed in exit(2).)

Path points to a path name that identifies the executable file containing the new program.

File (in execlp or execvp) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by searching the directories passed as the
environment line "PATH =" (see environ (5». The environment is supplied by the shell (see
sh(I». If file does not have an executable magic number (magic(4», it is passed to /bin/sh as a
shell script.

ArgO, argl, ... , argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new program. By convention, at least argO must be present
and point to a string identical to path or path's last component.

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new program. By convention, argv must have at least one
member, and must point to a string that is identical to path or path's last component. Argv is
terminated by a null pointer.

34 (Section 2) -1- HP-UX Release 7.0: September 1989

EXEC(2) EXEC(2)

Envp is an array of character pointers to null··terminated strings. These strings constitute the
environment in which the new program runs. Envp is terminated by a null pointer. For execl
and execv, the C run-time start-off routine places a pointer to the environment of the calling
program in the global cell:

extern char **environ;
and it is used to pass the environment of the calling program to the new program.

Open file descriptors remain open, except for those whose close-on-exec flag is set; see fcntl (2).
TIle file offset, access lllode, and status flags of open file descriptors arc unchanged.

Note that normal executable files are open only briefly, when they start execution. Other exe­
cutable file types can be kept open for a long time, or even indefinitely under some cir­
cumstances.

The processing of signals by the process is unchanged by exec, except that signals caught by the
process are set to their default value; see signal(2).

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2»,
exec sets the effective-user-ID of the new process to the user ID of the executable file. Similarly,
if the set-group-ID mode bit of the executable file is set, the effective-group-ID of the process is
set to the group ID of the executable file. The real-user-ID and real-group-ID of the process are
unchanged. Note that the set-user(group)-ID function does not apply to scripts; thus, if exec/p
or execvp executes a script, the set-user(group)-ID bits are ignored, even if they are set.

The saved-user-ID and saved-group-ID of the process are always set to the effective-user-ID and
effective-group-ID, respectively, of the process at the end of the exec, whether or not set­
user(group)-ID is in effect.

The shared memory segments attached to the calling program are not attached to the new pro­
gram (see shmop(2».

Profiling is disabled for the new process; see profil (2).

The process also retains the following attributes:

current working directory
file creation mode mask (see umask(2»
file locks (see fcntl(2», except for files closed-on-exec
file size limit (see ulimit(2»
interval timers (see getitimer(2»
nice value (see nice(2»
parent process ID
pending signals
process ID
process group ID
real user ID
real group ID
real-time priority (see rtprio(2»
root directory (see chroot(2»
semadj values (see semop(2»
session membership
signal mask (see sigvector(2»
supplementary group IDs
time left until an alarm clock signal (see alarm(2»
trace flag (see ptrace(2) PT_SETTRC request)
tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2»

The initial line of a script file must begin with #! as the first two bytes, followed by 0 or more
spaces, followed by interpreter or interpreter argument. One or more space or tab must separate

HP-UX Release 7.0: September 1989 -2- (Section 2) 35

EXEC(2) EXEC(2)

interpreter and argument. The first line should end with either a new line or null character.

#! interpreter
#! interpreter argument

When the script file is executed, the system executes the specified interpreter as an executable
object file. Even in the case of execlp or execvp, no path searching is done of the interpreter
name.

The argument is anything that follows the interpreter and tabs or spaces. If an argument is
given, it is passed to the interpreter as argv [1] and the name of the script file is passed as
argv[2]. Otherwise, the name of the script file is passed as argv[l]. The argv[O] is passed as
specified in the exec call, unless either argv or argv [0] is null as specified, in which case a
pointer to a null string is passed as argv[O]. All other arguments specified in the exec call are
passed following the name of the script file (that is, beginning at argv[3] if there is an argument;
otherwise at argv[2]).

If the initial line of the script file exceeds a system-defined maximum number of characters, exec
fails. The minimum value for this limit is 32.

Set-user-ID and set-group-ID bits are honored for the script and not for the interpreter.

RETURN VALUE
If exec returns to the calling program, an error has occurred; the return value is -1 and errno is
set to indicate the error.

ERRORS

36

Exec fails and returns to the calling program if one or more of the following is true:

[E2BIG] The number of bytes in the new program's argument list is greater than the
system-imposed limit. This limit is at least 5120 bytes on HP-UX systems.

[EACCES]

[EACCES]

[EACCES]

[EACCES]

[EFAULT]

[EFAULT]

[EINVAL]

[ELOOP]

Read permission is denied for the executable file or interpreter, and trace flag
(see ptrace(2) request PLSETTRC) of the process is set.

Search permission is denied for a directory listed in the executable file's or the
interpreter's path prefix.

The executable file or the interpreter is not an ordinary file.

The file described by path or file is not executable. The superuser cannot exe­
cute a file unless at least one access permission bit or entry in its access control
list has an execute bit set.

Path, argv, or envp point to an illegal address. The reliable detection of this
error is implementation dependent.

The executable file is shorter than indicated by the size values in its header, or
is otherwise inconsistent. The reliable detection of this error is implementation
dependent.

The executable file is incompatible with the architecture on which the exec has
been performed, and is presumed to be for a different architecture. It is not
guaranteed that every architecture's executable files wiill be recognized.

Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG]

(Section 2)

The executable file's path name or the interpreter's path name exceeds
P ATB_MAX bytes, or the length of a component of the path name exceeds
NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

-3- HP-UX Release 7.0: September 1989

EXEC(2)

[ENOENT]

[ENOENT]

[ENOEXEC]

[ENOEXECj

[ENOMEM]

[ENOTDIR]

EXEC(2)

Path is null.

One or more components of the executable file's path name or the interpreter's
path name does not exist.

The exec is not an exeelp or execvp, and the executable file has the appropriate
access permission, but there is neither a valid magic number nor the characters
#! as the first two bytes of its initial line.

TIle iluillber of bytes in the initial line of ~ script file exceeds the system's max­
imum.

The new process requires more memory than is available or allowed by the
system-imposed maximum.

A component of the executable file's path prefix or the interpreter's path prefix
is not a directory.

[ETXTBSY]

DEPENDENCIES

The executable file is currently open for writing.

Series 800
Unsharable executable files (EXEC_MAGIC magic number produced via the -N option of
/d(l)) are not supported.

SEE ALSO
sh(l), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), acl(5), environ(5), signal(5).

STANDARDS CONFORMANCE
environ: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

exeel: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

exeele: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

execlp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

execv: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

execve: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

execvp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -4- (Section 2) 37

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
#include <stdlib.h>

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

38

Exit terminates the calling process and passes status to the system for inspection, see wait(2).
Returning from main in a C program has the same effect as exit; the status value is the function
value returned by main. (This value will be undefined if main does not take care to return a
value or to call exit explicitly.)

The exit function cannot return to its caller. The result of an exit call during exit processing is
undefined.

The functions exit and _exit, are equivalent except that exit calls functions registered by atexit
and flushes stdio buffers, while _exit does not. Both exit and _exit terminate the calling process
with the following consequences:

Functions registered by atexit(2) are called in reverse order of registration.

All file descriptors open in the calling process are closed.

All files created by tmpfile(3C) are removed.

If the parent process of the calling process is executing a wait, wait3, or waitpid, it is
notified of the calling process's termination and the low order eight bits, i.e., bits 0377,
of status are made available to it, see wait(2).

If the parent process of the calling process is not executing await, wait3, or waitpid,
and does not have SIGCLD set to SIG_IGN, the calling process is transformed into a
zombie process. A zombie process is a process that only occupies a slot in the process
table. It has no other space allocated either in user or kernel space. Time accounting
information is recorded for use by times(2).

The parent process ID of all of the calling process's existing child processes and zombie
processes is set to 1. This means the initialization process (proc1) inherits each of these
processes.

Each attached shared memory segment is detached and the value of shm_nattach in
the data structure associated with its shared memory identifier is decremented by 1, see
shmop(2).

For each semaphore for which the calling process has set a semadj value, see semop(2),
that semadj value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is performed, see plock(2).

An accounting record is written on the accounting file if the system's accounting routine
is enabled, see acct (2).

A SIGCHLD signal is sent to the parent process.

If the calling process is a controlling process, the SIGHUP signal is sent to each process
in the foreground process group of the controlling terminal belonging to the calling pro­
cess. The controlling terminal associated with the session is disassociated from the ses­
sion, allowing it to be acquired by a new controlling process.

(Section 2) -1- HP-UX Release 7.0: September 1989

EXIT(2) EXIT(2)

If the exit of the calling process causes a process group to become orphaned, and if any
member of the newly-orphaned process group is stopped, all processes in the newly­
orphaned process group are sent SIGHUP and SIGCONT signals.

If the current process has any child processes that are being traced, they will be sent a
SIGKILL signal.

AUTHOR
Exit was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($?) in sh(l), acct(2), plock(2), semop(2), shmop(2), times(2), vfork(2), wait(2),
signal(S).

ST ANDARDS CONFORMANCE
exit: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

_exit: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2- (Section 2) 39

FCNTL(2) FCNTL(2)

NAME
fentl - file control

SYNOPSIS

#include <sysjtypes.h>
#inc1ude <unistd.h>
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

union
int val;
struct flock *lockdes;

} arg;

DESCRIPTION
FentZ provides for control over open files. Fildes is an open file descriptor.

The following are possible values of the emd argument:

F _DUPFD Return a new file descriptor having the following characteristics:

F_SETFD

F_GETFL

F_SETFL

F_GETLK

F_SETLK

40 (Section 2)

Lowest numbered available file descriptor greater than or equal to argo val.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

Same file status flags (that is, both file descriptors share the same file status
flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across exee(2) system calls.

Get the close-on-exec flag associated with the file descriptor fiZdes. If the low­
order bit is 0 the file will remain open across exee(2), otherwise the file will be
closed upon execution of exee(2).

Set the close-on-exec flag associated with fiZdes to the low-order bit of argo val
(see F _GETFD).

Get file status flags and access modes; see fentZ(S).

Set file status flags to argo val. Only certain flags can be set; see fentZ (5). It is
not possible to set both O_NDELAY and O_NONBLOCK .

Get the first lock that blocks the lock described by the variable of type struct
flock pointed to by argo The information retrieved overwrites the information
passed to fentZ in the flock structure. If no lock is found that would prevent
this lock from being created, the structure is passed back unchanged, except
that the lock type is set to F _UNLCK.

Set or clear a file segment lock according to the variable of type struct flock
pointed to by arg.lockdes (see fentZ(5». The emd F _SETLK is used to establish
read (F _RDLCK) and write (F _ WRLCK) locks, as well as to remove either type of
lock (F_UNLCK). If a read or write lock cannot be set, fentZ returns immediately
with an error value of -1.

-1- HP-UX Release 7.0: September 1989

FCNTL(2)

F_SETLKW

FCNTL(2)

This emd is the same as F _SETLK except that if a read or write lock is blocked
by other locks, the process will sleep until the segment is free to be locked.

A read lock prevents any other process from write-locking the protected area. More than one
read lock can exist for a given segment of a file at a given time. The file descriptor on which a
read lock is being placed must have been opened with read access.

A write lock prevents any other process from read-locking or write-locking the protected area.
Only one write lock may exist for a given segment of a file at a given time. The file descriptor
on which a write lock is being placed must have been opened with write access.

The structure flock describes the type (Ctype), starting offset (Cwhence), relative offset
(Cstart), size (Clen), and process ID (Cpid) of the segment of the file to be affected. The pro­
cess ID field is only used with the F _GETLK emd to return the value of a block in lock. Locks
can start and extend beyond the current end of a file, but cannot be negative relative to the
beginning of the file. A lock can be set to always extend to the end of file by setting Clen to
zero (0). If such a lock also has Cstart set to zero (0), the whole file will be locked. Changing
or unlocking a segment from the middle of a larger locked segment leaves two smaller seg­
ments for either end. Locking a segment already locked by the calling process causes the old
lock type to be removed and the new lock type to take effect. All locks associated with a file
for a given process are removed when a file descriptor for that file is closed by that process or
the process holding that file descriptor terminates. Locks are not inherited by a child process in
a fork(2) system call.

When enforcement-mode file and record locking is activated on a file (see ehmod(2», future
read(2) and write(2) system calls on the file are affected by the record locks in effect.

NETWORKING FEATURES
NFS

The advisory record-locking capabilities of fentl(2) are implemented throughout the net­
work by the "network lock daemon"; see loekd(lM). If the file server crashes and is
rebooted, the lock daemon attempts to recover all locks associated with the crashed server.
If a lock cannot be reclaimed, the process that held the lock is issued a SIGLOST signal.

Record locking, as implemented for NFS files, is only advisory.

ERRORS
Under the following conditions, the function fentl fails and sets the external variable errno
accordingly:

[EBADF]

[EMFlLE]

[EMFlLE]

[EMFILE]

[EMFILE]

[EINVAL]

[EINVAL]

[EINVAL]

Fildes is not a valid open file descriptor, or was not opened for reading when
setting a read lock or for writing when setting a write lock.

Cmd is F _DUPFD and the maximum number of file descriptors is currently
open.

Cmd is F _SETLK or F _SETLKW, the type of lock is a read or write lock and no
more file-locking headers are available (too many files have segments locked).

Cmd is F _DUPFD and argo val is greater than or equal to the maximum number
of file descriptors.

Cmd is F _DUPFD and argo val is negative.

Cmd is F _ GETLK, F _SETLK, or F _SETLKW and arg.lockdes or the data it points to
is not valid, or fildes refers to a file that does not support locking.

Cmd is not a valid command.

Cmd is F_SETFL and both O_NONBLOCK and O_NDELAY are specified.

HP-UX Release 7.0: September 1989 -2- (Section 2) 41

FCNTL(2)

{EINTR]

{EACCES]

{ENOLCK]

{ENOLCK]

(ENOLCK]

[EDEADLK]

[EFAULT]

RETURN VALUE

FCNTL(2)

Cmd is F _SETLKW and the call was interrupted by a signal.

Cmd is F _SETLK, the type of lock (Ctype)isaread (F _RDLCK) or write lock
(LWRLCK) and the segment of a file to be locked is already write-locked by
another process, or the type is a write lock (F _ WRLCK) and the segment of a file
to be iocked is aiready read- or write-iocked by another process.

Cmd is F _SETLK or F _SETLKW, the type of lock is a read or write lock and no
more file-locking headers are available (too many files have segments locked),
or no more record locks are available (too many file segments locked).

Cmd is F _SETLK or F _SETLKW, the type of lock (Ctype) is a read lock
(F _RDLCK) or write lock (F _ WRLCK) and the file is a NFS file with access bits set
for enforcement mode.

Cmd is F _GETLK, F _SETLK, or F _SETLKW, the file is a NFS file, and a system
error occurred on the remote node.

Cmd is F _SETLKW, when the lock is blocked by a lock from another process
and sleeping (waiting) for that lock to become free. This causes a deadlock
situation.

Cmd is either F _ GETLK, F _SETLK or F _SETLKW, and arg points to an illegal
address.

Upon successful completion, the value returned depends on cmd as follows:

F _DUPFD A new file descriptor.

F _GETFD Value of close-on-exec flag (only the low-order bit is defined).

F_SETFD

F_GETFL

F_SETFL

F_GETLK

F_SETLK

F_SETLKW

Value other than -1.

Value of file status flags and access modes.

Value other than -1.

Value other that -1.

Value other than -1.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

AUTHOR
FcntZ was developed by HP, AT&T and the University of California, Berkeley.

APPLICA TION USAGE
Because in the future the external variable errno will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application programs
should expect and test for either value, for example:

42 (Section 2) -3- HP-UX Release 7.0: September 1989

FCNTL(2)

SEE ALSO

flk->Ltype = F _RDLCK;
if (fcntl(fd, F _SETLK, flk) == -1)

if «errno == EACCES) I I (errno == EAGAIN»

/'"

else if ...

* section locked by another process,
* check for either EAGAlN or EACCES
* due to different implementations
*/

j*
* check for other errors
*j

chmod(2), close(2), exec(2), lockf(2), open(2), read(2), write(2), fcntl(5).
lockd(lM), statd(lM), in NFS Services Reference Pages.

FUTURE DIRECTIONS

FCNTL(2)

The error condition which currently sets errno to EACCES will instead set errno to EAGAIN
(see also APPLICATION USAGE above).

ST ANDARDS CONFORMANCE
fcntl: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -4- (Section 2) 43

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
#inc1ude <sys/types.h>
pid_t fork (;

DESCRIPTION
Fork causes the creation of a new process. The new process (child process) is an exact copy of
the calling process (parent process). This means that the child process inherits the following
attributes from the parent process:

real, effective, and saved user ID
real, effective, and saved group ID
list of supplementary group IDs (see getgroups(2))
process group ID
environment
file descriptors
close-on-exec flags (see exec(2))
signal handling settings (SIC_DFL, SIC_ICN, address)
signal mask (see sigvector(2))
profiling on/off status (see profil(2))
command name in the accounting record (see acct(4))
nice value (see nice(2))
all attached shared memory segments (see shmop(2))
current working directory
root directory (see chroot(2))
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
real-time priority (see rtprio(2))

Each of the child's file descriptors shares a common open file description with the correspond­
ing file descriptor of the parent. This implies that changes to the file offset, file access mode,
and file status flags of file descriptors in the parent also affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

The child process has a unique process ID. The child process ID also does not match
any active process group ID.

The child process has a different parent process ID (which is the process ID of the
parent process).

The set of signals pending for the child process is initialized to the empty set.

The trace flag (see ptrace(2) PLSETTRC request) is cleared in the child process.

The AFORK flag in the ac_flags component of the accounting record is set in the child
process.

Process locks, text locks, and data locks are not inherited by the child (see plock(2)).

All semadj values are cleared (see semop(2)).

The child process's values of tms_utime, tms_stime, tms3utime, and tms3stime are
set to zero; see times (2).

The time left until an alarm clock signal is reset to 0 (clearing any pending alarm), and
all interval timers are set to 0 (disabled).

The vfork(2) system call can be used to fork processes more quickly than fork, but has some res­
trictions. See vfork(2) for details.

44 (Section 2) -1- HP-UX Release 7.0: September 1989

FORK(2) FORK(2)

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

The parent and child processes resume execution immediately after the fork call; they are dis­
tinguished by the value returned by fork.

ERRORS
Fork fails and no child process is created if one or more of the following is true:

[EAGAIN]

[EAGAIN]

[ENOMEM]

WARNINGS

The system-imposed limit on the total number of processes under execution
would be exceeded.

The system-imposed limit on the total number of processes under execution by
a single user would be exceeded.

There is insufficient swap space and/or physical memory available in which to
create the new process.

Standard I/O streams (see stdio(3S» are duplicated in the child. Therefore, if fork is called after
a buffered I/0 operation without first closing or flushing the associated standard I/O stream
(see fclose(3S», the buffered input or output might be duplicated.

AUTHOR
Fork was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
acct(2), chroot(2), exec(2), exit(2), fcntl(2), getgroups(2), lockf(2), nice(2), plock(2), profil(2),
ptrace(2), rtprio(2), semop(2), setuid(2), setpgrp(2), shmop(2), signal(5), times(2), ulimit(2),
umask(2), vfork(2), wait(2), fclose(3S), stdio(3S), acct(4).

STANDARDS CONFORMANCE
fork: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2- (Section 2) 45

FSCTL(2) FSCTL(2)

NAME
fsctl - file system control

SYNOPSIS
#inc1ude <sys/cdfsdir.h>
#inciude <sysicdfs.h>

int fsct1(fildes, command, outbuf, out/en)
int fildes, command, out/en;
char *outbuf;

DESCRIPTION
Fsctl provides for access to file-system-specific information. Fildes is an open file descriptor for
a file in the file system of interest. The possible values for command depend on the type of file
system. Currently, defined commands exist only for the cdfs file system (see sys/cdfsdir.h).

Outbuf is a pointer to the data area in which data is returned from the file system. Outlen gives
the length of the data area pointed to by outbuf.

The cdfs commands are:

CDFS_DIR_REC
Returns the directory record for the file or directory indicated by fildes.
The record is returned in a structure of type cddir, defined in sysjcdfsdir.h.

CDFS_XAR Returns the extended attribute record, if any, for the file or directory indi­
cated by fildes. Because the size of an extended attribute record varies, be
sure outbuf points to a data area of sufficient size. To find the necessary
size, do the following:

1. Use statfs(2). to get the logical block size of the cdfs volume.

2. Use an fsctl call with the CDFS_DIR_REC command to get the
extended attribute record size (in blocks) for the file or directory of
interest. The mincdd_xar _len field in the returned structure contains
the size of the extended attribute record in logical blocks. (If this
field is zero, the file or directory has no extended attribute record.)

3. Multiply mincdd_xar _len by the logical block size obtained in step 1
to get the total space needed.

4. Once you get the extended attribute record, cast outbuf into a
pointer to a structure of type cdxar _iso (defined in sys/cdfsdir.h).
This enables you to access those fields which are common to all
extended attribute records. (See the EXAMPLES section of this
manual entry for an example of this process.)

If the extended attribute record contains additional system use or
application use data, that data will have to be accessed manually.

CDFS_AFID Returns the abstract file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character. Note
that the constant CDMAXNAMELEN defined in sys/cdfsdir.h gives the
maximum length a file identifier can have. Thus, CDMAXNAMELEN+l can
be used for outlen and the size of outbuf.

CDFS_BFID Returns the bibliographic file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character. CDMAX­
NAMELEN+l can be used for the value of outlen and the size of outbuf.

CDFS_CFID Returns the copyright file identifier for the primary volume whose root
directory is specified by fildes, terminated with a NULL character.

46 (Section 2) -1- HP-UX Release 7.0: September 1989

FSCTL(2)

EXAMPLES

FSCTL(2)

CDMAXNAMELEN+l can be used for the value of outlen and the size of
outbuf.

CDFS_ VOL_ID

Returns the volume ID for the primary volume specified by fildes, ter­
minated with a NULL character. The maximum size of the volume ID is 32
bytes, so a length of 33 can be used for outlen and the size of utbuf.

CDFS_ VOL_SET_ID
Returns the volume set ID for the primary volume specified by fildes, ter­
minated with a NULL character. The maximum size of the volume set ID
is 128 bytes, so a length of 129 can be used for outlen and the size of out­
buf,

The following code segment gets the extended attribute record for a file on a cdfs volume. The
filename is passed in as the first argument to the routine. Note that error checking is omitted
for brevity.

#include <sysjtypes.h>
#include <sysjvfs.h>
#include <fcntl.h>
#include <sysjcdfsdir.h>
main(argc, argv)
int argc;
char *argv[];
{

int fildes, size = 0;
char *mallocO, *outbuf;
struct statfs buf;
struct cddir cdrec;
struct cdxaciso *xar;

statfs(argv[1], &buf); j* get logical block size * j

fildes = open(argv[l], O_RDONLY); /* open file arg *j

/* get directory record for file arg * j
fsctl(fildes, CDFS_DIR_REC, &cdrec, sizeof(cdrec»;

size = buf.Cbsize * cdrec.cdd_min.mincdd_xaclen; /* compute size * j

if(size) { /* if size != 0 then there is an xar * j
outbuf = malloc(size); /* malloc sufficient memory * j

fsctl(fildes, CDFS_XAR, outbuf, size); j* get xar * j

xar = (struct cdxar_iso *)outbuf; /* cast outbuf to access fields * j

HP-UX Release 7.0: September 1989 -2- (Section 2) 47

FSCTL(2) FSCTL(2)

RETURN VALUE
Fsctl returns the number of bytes read if successful. If an error occurs, -1 is returned and errno
is set to indicate the error:

SEE ALSO

[EBADF]

[EFAULT]

[ENOENT]

[EINVAL]

[EINVAL]

Fildes is not a valid open file descriptor.

Outbuf points to an invalid address.

The requested information does not exist.

Command is not a valid command.

Out len is negative, or fildes does not refer to a CDFS file system.

statfs(2), cdfs(4), cdfsdir(4), cdnode(4), cdrom(4).

48 (Section 2) -3- HP-UX Release 7.0: September 1989

FSYNC(2)

NAME
fsync - synchronize a file's in-core state with its state on disk

SYNOPSIS
int fsync(fildes)
int fildes;

DESCRIPTION

FSYNC(2)

Fsync causes all modified data and attributes of fildes to be moved to a permanent storage dev­
ice. This normally results in all in-core modified copies of buffers for the associated file to be
written to a disk. Fsync applies to ordinary files, and applies to block special devices on sys­
tems which permit I/O to block special devices.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

ERRORS
Fsync will fail if one of the following conditions is true and errno will be set accordingly:

[EBADF]

[EINVAL]

RETURN VALUE

Fildes is not a valid descriptor.

Fildes refers to a file type to which fsync does not apply.

A 0 value is returned on success. A -1 value indicates an error.

BUGS
The current implementation of this call is expensive for large files.

AUTHOR
Fsync was developed by the Hewlett-Packard Company, and the University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering and Com­
puter Science.

SEE ALSO
fcntl(2), fcntl(S), open(2), select(2), sync(2), sync(lM).

STANDARDS CONFORMANCE
fsync: XPG3

HP-UX Release 7.0: September 1989 -1- (Section 2) 49

FTIME(2) FTIME(2)

NAME
ftime - get date and time more precisely

SYNOPSIS
#inc1ude <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;

REMARKS
This facility is provided for backwards compatibility with Version 7 systems. Either time or get­
timeofday should be used for all new code.

DESCRIPTION
Ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

j*
* Structure returned by ftime system call
*j

struct timeb {

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time in seconds since 00:00:00 GMT, January 1, 1970, up to 1000 mil­
liseconds of more-precise interval, the local timezone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year. Gettimeofday should be consulted for more details on
the meaning of the timezone field.

This call can be accessed by giving the -IV7 option to ld(I).

Ftime can fail for exactly the same reasons as gettimeofday(2).

SEE ALSO

BUGS

date(I), gettimeofday(2), stime(2), time(2), ctime(3C).

The millisecond value usually has a granularity greater than one due to the resolution of the
system clock. Depending on any granularity (particularly of one) will render code non-portable.

50 (Section 2) -1- HP-UX Release 7.0: September 1989

GETACCESS(2) GET ACCESS (2)

NAME
getaccess - get a user's effective access rights to a file

SYNOPSIS
#include <unistd.h>
#include <limits.h>
#include <sys/getaccess.h>

int getaccess (path: uid: ngroups, gidset, label, privs)
char *path;
int uid;
int ngroups;
int gidset[];
void *label;
void *privs;

Remarks:
To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION
Getaccess identifies the access rights (read, write, execute/search) a specific user ID has to an
existing file. Path points to a path name of a file. If the call succeeds, it returns a value of zero
or greater, representing the specified user's effective access rights (modes) to the file. The rights
are expressed as the OR of bits (R_OK, W _OK, and X_OK) whose values are defined in the header
<unistd.h>. A return of zero means that access is denied.

The uid parameter is a user 10. Special values, defined in <sys/getaccess.h>, represent the cal­
ling process's effective, real, or saved user ID:

DID_EUID Effective user ID.
UID_RUID Real user ID.
UID_SUID Saved user ID.

Ngroups is the number of group IDs in gidset, not to exceed NGROUPS_MAX + 1
(NGROUPS_MAX is defined in <limits.h». If the ngroups parameter is positive, the gidset
parameter is an array of group ID values to use in the check. If ngroups is a recognized negative
value, gidset is ignored. Special negative values of ngroups, defined in <sys/getaccess.h>,
represent various combinations of the process's effective, real, or saved user ID and its supple­
mentary groups list:

NGROUPS_EGID
NGROUPS_RGID
NGROUPS_SGID
NGROUPS_SUPP
NGROUPS_EGID _SUPP
NGROUPS_RGID _SUPP
NGROUPS_SGID_SUPP

Use process's effective group ID only.
Use process's real group ID only.
Use process's saved group ID only.
Use process's supplementary groups only.
Use process's effective group ID plus supplementary groups.
Use process's real group ID plus supplementary groups.
Use process's saved group ID plus supplementary groups.

The label and privs parameters are placeholders for future extensions. For now, the values of
these parameters must be (void *) O.

The access check rules for access control lists are described in acl(S). In addition, the W_OK bit
is cleared for files on read-only file systems or shared-text programs being executed. Note that
as in access(2), the X_OK bit is not turned off for shared-text programs open for writing because
there is no easy way to know that a file open for writing is a shared-text program.

If the caller's user ID is 0, or if it is UID_Eum, UID_RUID, or DID_SUID (see <sys/getaccess.h»
and the process's respective user ID is 0, then R_OK and W _OK are always set, except when

HP-UX Release 7.0: September 1989 -1- (Section 2) 51

GET ACCESS(2) GETACCESS(2)

W _OK is cleared for files on read-only file systems or shared-text programs being executed.
X_OK is set if and only if the file is not a regular file or the execute bit is set in any of the file's
ACL entries.

Getaccess checks each directory component of path by first using the caller's effective user ID,
effective group ID, and supplementary groups list, regardless of the user ID specified. An error
occurs, distinct from fIno access allowed," if the caller cannot search the path to the file. (In
this case it is inappropriate for the caller to learn anything about the file.)

Comparison of access(2) and getaccess(2)
The following table compares various attributes of access and getaccess.

C~~~£~~;IT:i~i:;;~;~::::::::::J:::~~~~~~::::::::::::::::i
1 uses real uid, real gid, and 1 uses specified uid and 1
1 supplementary groups list 1 groups list; macros available 1

~-----------------------------~-f~~!Y~~~lJ2!~~~----------I
1 checks specific mode value, 1 returns all mode bits, each 1
1 returns succeed or fail 1 on or off 1 r-----------------------------l--------------------------I
1 checks path to file using 1 same 1
L~~!~~~~ff~SEJ~_~Q~ ____________ j __________________________ I

1 W _OK false if shared-text 1 same 1

~~~e-£~¥~E~~P~!~~~~S~!~4-----~--------------------------I 
1 W _OK false if file on 1 same 1 
L~~a~EEly_~£_~~~~~ ___________ j __________________________ I 

1 X OK not modified for file 1 same 1 

~~~~£~!~-~P£~-~!-~!~!~-------~------------------------_~ 
1 R_OK and W _OK always true for 1 same 1

~~~~~~!-~~£~~~~~E-~~~------i--------------------------: 
1 X_OK always true for 1 X_OK true for super-user 1 
I superuser 1 if file is not a regular I 
1 1 file OR execute is set in 1 
L _____________________________ j_~~y_~f_~~E~~ ___________ J 

RETURN VALUE 
Upon successful completion, getaccess returns a non-negative value representing the access 
rights of the specified user to the specified file. If an error occurs, a value of -1 is returned and 
the error code is stored in the global variable errno. 

ERRORS 
Getaccess fails if any of the following is true: 

[EACCES] 

[EFAULT] 

[EINVAL] 

[EINVAL] 

EINVAL] 

[ELOOP] 

A component of the path prefix denies search permission to the caller. 

Path or gidset points outside the allocated address space of the process. The 
reliable detection of this error is implementation dependent. 

Ngroups is invalid; ngroups is either zero, an unrecognized negative value, or a 
value larger than NGROUPS + 1. 

Gidset contains an invalid group ID value. 

The value of label or privs is not a null pointer. 

Too many symbolic links were encountered in translating the path name. 

[ENAMETOOLONG] 
"The length of the specified path name exceeds PATH_MAX bytes, or the length 

52 (Section 2) -2- HP-UX Release 7.0: September 1989 



GET ACCESS(2) GET ACCESS(2) 

of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_ TRUNC is in effect. 

[ENOENT] The named file does not exist (for example, path is null or a component of path 
does not exist). 

[ENOTDIR] A component of the path prefix is not a directory. 

[EOPNOTSUPP] getaccess() is not supported on some types of remote files. 

EXAMPLES 
The following call determines the caller's effective access rights to file "test," and succeeds if 
the user has read access: 

#inc1ude <unistd.h> 
#inc1ude <sys/getaccess.h> 

int mode; 
mode = getaccess (II test ", UID_EUID, NGROUPS_EGID_SUPP, 
(int *) 0, (void *) 0, (void *) 0); 

if «mode >= 0) && (mode & R_OK» ... 

Here's one way to test access rights to file "jtmpjhold" for user ID 23, group ID 109: 

int gid = 109; 
int mode; 

mode = getaccess ("/tmp/hold", 23,1, & gid, 
(void *) 0, (void *) 0); 

Should the need arise, the following code builds a gidset that includes the process's effective 
group ID: 

AUTHOR 

#inc1ude <limits.h> 

int gidset [NGROUPS_MAX + 1]; 
int ngroups; 

gidset [0] = getegid(); 
ngroups = 1 + getgroups (NGROUPS_MAX, & gidset [1]); 

Getaccess was developed by HP. 

SEE ALSO 
access(2), chmod(2), getacl(2), setacl(2), stat(2), acl(S), unistd(S). 

HP-UX Release 7.0: September 1989 -3- (Section 2) 53 



GETACL(2) GETACL(2) 

NAME 
getacl, fgetacl - get access control list (ACL) information 

SYNOPSIS 
#indude . <unistd.h> 
#indude <sys/ad.h> 

int getad (path, nentries, ad) 
ehar *path; 
int nentries; 
struet ad_entry ad[]; 

int fgetad (fildes, nentries, ad) 
int fildes; 
int nentries; 
struet ad_entry ad[]; 

Remarks: 
To ensure continued conformance with emerging industry standards, features described in this 
manual entry are likely to change in a future release. 

DESCRIPTION 
Getacl returns a complete listing of all ACL entries (uid.gid, mode) in an existing file's access 
control list. Path points to a path name of a file. 

Similarly, fgetacl returns a complete listing of all ACL entries for an open file known by the file 
descriptor fildes. 

The nentries parameter is the number of entries being reported on, and is never more than the 
constant NACLENTRIES defined in <sys/ad.h>. If nentries is non-zero, it must be at least as 
large as the number of entries in the file's ACL, including base entries (see setacl(2». Getacl 
returns the number of entries in the file's ACL, as well as the ACL entries themselves in the 
array of structures acl declared by the calling program. 

If nentries is zero, getacl returns the number of entries in the file's ACL, including base ACL 
entries, and acl is ignored. 

Entries are reported in groups of decreasing order of specificity (see setacl(2», then sorted in 
each group by user ID and group ID. The content of array entries beyond the number of 
defined entries for the file is undefined. 

RETURN VALUE 
Upon successful completion, getacl and fgetacl return a non-negative value. If an error occurs, a 
value of -1 is returned, and the global variable errno is set to indicate the error. 

ERRORS 
Getacl or fgetacl fail to modify the acl array if any of the following is true: 

[ENOTDIR] 

[ENOENT] 

[EBADF] 

[EACCES] 

[EFAULT] 

[EINVAL] 

54 (Section 2) 

A component of the path prefix is n<?t a directory. 

The named file does not exist (for example, path is null or a component of path 
does not exist). 

Fildes is not a valid file descriptor. 

A component of the path prefix denies search permission. 

Path or a portion of acl to be written points outside the allocated address space 
of the process. 

Nentries is non-zero and less than the number of entries in the file's ACL, or it 
is greater than NACLENTRIES. 

-1- HP-UX Release 7.0: September 1989 



GETACL(2) GETACL(2) 

[EOPNOTSUPP] Getacl is not supported on remote files by some networking services. 

[ENFILE] The system file table is full. 

[ENAMETOOLONG] 
The length of path exceeds PATH_MAX bytes, or the length of a component of 
path exceeds NAME_MAX bytes while _POSIX_NO_ TRUNC is in effect. 

[ELOOP] 

EXAMPLES 

Too many symbolic links were encountered in translating the path name. 

The following call returns the number of entries in the ACL on file" /users/bill/mcfile". 

#indude <sys/ad.h> 

entries = getad(II/users/bill/mcfile ll
, 0, (struct ad_entry *) 0); 

The following call returns in acl all entries in the ACL on the file opened with file descriptor 5. 

#indude <sys/ad.h> 

int nentries; 
struct ad_entry ad [NACLENTRIES]; 

entries = fgetad (5, NACLENTRIES, ad); 

DEPENDENCIES 
RFA and NFS 

Getacl and fsetacl are not supported on remote files. 

AUTHOR 
Getacl and fgetacl were developed by HP. 

SEE ALSO 
access(2), chmod(2), getaccess(2), setad(2), stat(2), unistd(5). 

HP-UX Release 7.0: September 1989 -2- (Section 2) 55 



GET AUDID(2) 

NAME 
getaudid - get the audit ID (aid) for the current process 

SYNOPSIS 
#include <sys/audit.h> 

int getaudid 0 

DESCRIPTION 

GETAUDID(2) 

Getaudid returns the audit ID (aid) for the current process. This call is restricted to the 
superuser. 

RETURN VALUE 
Upon successful completion, the audit 10 is returned; otherwise, a -1 is returned. 

ERRORS 
Getaudid fails if the following is true: 

[EPERM] 

AUTHOR 

The caller is not a superuser. 

Getaudid was developed by HP. 

SEE ALSO 
setaudid(2). 

56 (Section 2) -1- HP-UX Release 7.0: September 1989 



GETAUDPROC(2) 

NAME 
getaudproc - get the audit process flag for the calling process 

SYNOPSIS 
#include <sysjaudit.h> 

int getaudproc () 

DESCRIPTION 

GETAUDPROC(2) 

Getaudproc returns the audit process flag for the calling process. the audit process flag 
(u_audproc) determines whether the process, run by a given user, should be audited. The pro­
cess is audited if the returned flag is 1. If the returned flag is 0, the process is not audited. This 
call is restricted to the superuser. 

RETURN VALUE 
Upon successful completion, the audit process flag is returned; otherwise, a -1 is returned. 

ERRORS 
Getaudproc fails if the following is true: 

[EPERM] 

AUTHOR 

The caller is not a superuser. 

Getaudproc was developed by HP. 

SEE ALSO 
setaudproc(2). 

HP-UX Release 7.0: September 1989 -1- (Section 2) 57 



GETCONTEXT(2) GETCONTEXT(2) 

NAME 
getcontext - return the process context for context dependent file search 

SYNOPSIS 
int getcontext(contextbuf,length) 
char *wlliexioUI; 
int length; 

DESCRIPTION 
Getcontext reads the per-process context (see context(5» into the buffer pointed to by contextbuf. 
The context is returned as a null-terminated string containing a blank-separated list of names. 
The function value returned by getcontext is the length of this string, induding the null termina­
tor. If this string, induding the null terminator, is less than length bytes, a truncated, null­
terminated string of length bytes is returned. In particular, if length is zero, only the function 
value is returned. 

RETURN VALUE 
Upon successful completion, the length of the context string induding the null terminator is 
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Getcontext may fail if the following is true: 

[EFAULT] Contextbuf points to an illegal address. Reliable detection of this error is not 
guaranteed. 

EXAMPLES 
In the following example getcontext is called once with a length parameter of zero to determine 
the size of a buffer to allocate for the context. 

int length; 
char *contextbuf; 

AUTHOR 

length = getcontext «char *)0, 0); 
contextbuf = malloc (length); 
(void) getcontext (contextbuf, length); 

Getcontext was developed by HP. 

SEE ALSO 
context(5), cdf(4), getcontext(I). 

58 (Section 2) -1- HP-UX Release 7.0: September 1989 



GETDIRENTRIES (2) GETDIRENTRIES(2) 

NAME 
getdirentries - get entries from a directory in a filesystem-independent format 

SYNOPSIS 
#include <ndir.h> 

int getdirentries(fildes, buf, nbytes, basep) 
int fildes; 
char *buf; 
int nbytes; 
long *basep; 

DESCRIPTION 
Getdirentries places directory entries from the directory referenced by the file descriptor fildes 
into the buffer pointed to by but, in a file system-independent format. Up to nbytes of data are 
transferred. Nbytes must be greater than or equal to the block size associated with the file; see 
stat(2}. Smaller block sizes can cause errors on certain file systems. 

The data in the buffer consists of a series of direct structures, each containing the following 
entries: 

unsigned long d_fileno; 
unsigned short d_reclen; 
unsigned short d_namlen; 
char d_name[MAXNAMLEN + 1]; 

The d_fileno entry is a number unique for each distinct file in the file system. Files linked by 
hard links (see link(2)} have the same d_fileno. The ~(Creclen entry identifies the length, in 
bytes, of the directory record. The d_name entry contains a null-terminated file name. The 
d_namlen entry specifies the length of the file name. Thus the actual size of d_namecan vary 
from 2 to MAXNAMLEN + 1. Note that the direct structures in the buffer are not necessarily 
tightly packed. The d_reclen entry must be used as an offset from the beginning of a direct 
structure to the next structure, if any. 

The return value of the system call is the actual number of bytes transferred. The current posi­
tion pointer associated with fildes is set to point to the next block of entries. The pointer is not 
necessarily incremented by the number of bytes returned by getdirentries. If the value returned 
is zero, the end of the directory has been reached. 

The current position pointer is set and retrieved by Iseek(2). Getdirentries writes the position of 
the block read into the location pointed to by basep. The current position pointer can be set 
safely only to a value previously returned by Iseek(2}, to a value previously returned in the 
location pointed to by basep, or to zero. Any other manipulation of the position pointer causes 
undefined results. 

RETURN VALUE 
If successful, the number of bytes actually transferred is returned. Otherwise, -1 is returned 
and the global variable errno is set to indicate the error. 

ERRORS 
Getdirentries will fail if one or more of the following are true: 

[EBADF] Fildes is not a valid file descriptor open for reading. 

[EFAULT} 

IEINTR] 

[EIO] 

Either but or basep points outside the allocated address space. 

A read from a slow device was interrupted by the delivery of a signal before 
any data arrived. 

An I/0 error occurred while reading from or writing to the file system. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 59 



GETDIRENTRIES(2) GETDIRENTRIES(2) 

AUTHOR 
Getdirentries was developed by Sun Microsystems, Inc. 

SEE ALSO 
open(2), Iseek(2). 

60 (Section 2) -2~ HP-UX Release 7.0: September 1989 



GETEVENT(2) 

NAME 
getevent - get events and system calls that are currently being audited 

SYNOPSIS 
#inc1ude <sys/audit.h> 

int get event <a_syscall, a_event) 
struct aud_type *a_syscall; 
struct aud_event_tbl *a_event; 

DESCRIPTION 

GETEVENT(2) 

Getevent gets the events and system calls being audited. The events are returned in a table 
pointed to by a_event. The system calls are returned in a table pointed to by a_syscall. This call 
is restricted to the superuser. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned; otherwise, a -1 is returned. 

ERRORS 
Getevent fails if the following is true: 

[EPERM] 

AUTHOR 

The caller is not a superuser. 

Getevent was developed by HP. 

SEE ALSO 
setevent(2), audevent(1M). 

HP-UX Release 7.0: September 1989 -1- (Section 2) 61 



GET GROUPS (2) GETGROUPS(2) 

NAME 
getgroups - get group access list 

SYNOPSIS 
#include <sys/param.h> 
#include <sysjtypes.h> 

int getgroups(ngroups, gidset) 
int ngroups; 
gid_t *gidset; 

DESCRIPTION 
Getgroups gets the current group access list of the user process and stores it in the array gidset. 
The parameter ngroups indicates the number of entries which may be placed in gidset. No more 
than NGROUPS, as defined in <sysjparam.h>, will ever be returned. 

As a special case, if the ngroups argument is zero, getgroups returns the number of group entries 
for the process. In this case, the array pointed to by the gidset argument is not modified. 

EXAMPLES 
The following call to getgroups(2) retrieves the group access list of the calling process and stores 
the group ids in array mygidset: 

int ngroups = NGROUPS; 
gid_t mygidset[NGROUPS]; 
int ngrps; 

ngrps = getgroups (ngroups, mygidset); 

RETURN VALUE 
A non-negative value indicates that the call succeeded, and is the number of elements returned 
in gidset. A value of -1 indicates that an error occurred, and the error code is stored in the glo­
bal variable errno. 

ERRORS 
The possible errors for getgroups are: 

[EFAULT] 

[EINVAL] 

AUTHOR 

Gidset specifies an invalid address. The reliable detection of this error will be 
implementation dependent. 

The argument ngroups is not zero and is less than the number of groups in the 
current group access list of the process. 

Getgroups was developed by HP and the University of California, Berkeley 

SEE ALSO 
setgroups(2), initgroups(3C) 

STANDARDS CONFORMANCE 
getgroups: XPG3, POSIX.1, FIPS 151-1 

62 (Section 2) -1- HP-UX Release 7.0: September 1989 



GETHOSTNAME(2) 

NAME 
gethostname - get name of current host 

SYNOPSIS 
int gethostname(hostname, size) 
char *hostname; 
unsigned int size; 

DESCRIPTION 

GETHOSTNAME(2) 

Gethostname returns in the array to which hostname points, the standard host name for the 
current processor as set by sethostname(2). Size specifies the length of the hostname array. Host­
name is null-terminated unless insufficient space is provided. 

RETURN VALUE 
Gethostname returns 0 if successful. Otherwise, -1 is returned and errno is set to indicate the 
error. 

ERRORS 
Gethostname can fail if the following is true: 

[EFAULT] Hostname points to an illegal address. The reliable detection of this error is 
implementation dependent. 

DEPENDENCIES 
Series 300 

Gethostname returns a non-negative integer if successful. 

AUTHOR 
Gethostname was developed by the University of California, Berkeley. 

SEE ALSO 
hostname(l), uname(l), sethostname(2), uname(2). 

HP-UXRelease 7.0: September 1989 -1- (Section 2) 63 



GETITIMER(2) GETITIMER(2) 

NAME 
getitimer, setitimer - get/set value of interval timer 

SYNOPSIS 
#include <time.h> 

getitimer(which, value) 
int which; 
struct itimerval *value; 

setitimer(which, value, ovalue) 
int which; 
struct itimerval *value, *ovalue; 

DESCRIPTION 
The system provides each process with three interval timers, defined in <time.h>. The getiti­
mer call returns the current value for the timer specified in which, while the setitimer call sets 
the value of a timer (optionally returning the previous value of the timer). 

A timer value is defined by the itimerval structure: 

struct itimerval { 

}; 

struct timeval it_interval; 
struct timeval it_value; 

/* timer interval * / 
/* current value * / 

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non­
zero, it specifies a value to be used in reloading it_value when the timer expires. Setting 
it_value to 0 disables a timer. Setting it_interval to 0 causes a timer to be disabled after its next 
expiration (assuming it_value is non-zero). 

Time values smaller than the resolution of the system clock are rounded up to this resolution. 
The machine-dependent clock resolution is l/HZ seconds, where the constant HZ is defined in 
<sys/param.h>. Time values larger than an implementation-specific maximum value are 
rounded down to this maximum. The maximum values for the three interval timers are 
specified by the constants MAX_ALARM, MAX_ VT ALARM, and MAX_PROF defined in 
<sys/param.h>. On all implementations, these values are guaranteed to be at least 31 days (in 
seconds). 

The which parameter specifies which timer to use. The possible values are ITIMER_REAL, 
ITIMER_ VIRTUAL, and ITIMER_PROF. 

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this 
timer expires. 

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the process 
is executing. A SIGVTALRM signal is delivered when it expires. 

The ITIMER_PROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling 
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG­
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs 
using this timer must be prepared to restart interrupted system calls. 

Interval timers are not inherited by a child process across a fork, but are inherited across an 
exec. 

Three macros for manipulating time values are defined in <time.h>. Timerclear sets a time 
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time 
values. (Beware that >= and <= do not work with the timercmp macro.) 

64 (Section 2) -1- HP-UX Release 7.0: September 1989 



GETITIMER(2) GETITIMER(2) 

The timer used with ITIMER_REAL is also used by alarm(2). Thus successive calls to alarm, 
getitimer, and setitimer set and return the state of a single timer. In addition, a call to alarm sets 
the timer interval to zero. 

RETURN VALUE 
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a 
more precise error code is placed in the global variable errno. 

ERRORS 
Getitimer or setitimer can fail if any of the following is true: 

[EFAULT] The value structure specified a bad address. The reliable detection of this error 
will be implementation dependent. 

[EINVAL] A value structure specified a microsecond value less that zero or greater than or 
equal to one million. 

[EINVAL] 

EXAMPLES 

Which does not specify one of the three possible timers. 

The following call to setitimer(2) sets the real-time interval timer to expire initially after 10 
seconds and every 0.5 seconds thereafter: 

AUTHOR 

struct itimerval rttimer; 
struct itimerval old_rttimer; 

rttimer.it_ value.tv _sec = 10; 
rttimer.it_value.tv_usec = 0; 
rttimer.it_interval.tv_sec = 0; 
rttimer.it_interval.tv _usec = 500000; 

setitimer (ITIMER_REAL, &rttimer, &old_rttimer); 

Getitimer was developed by the University of California, Berkeley. 

SEE ALSO 
alarm(2), exec(2), gettimeofday(2), signal(5). 

HP-UX Release 7.0: September 1989 -2- (Section 2) 65 



GETPID(2) GETPID(2) 

NAME 
getpid, getpgrp, getppid, getpgrp2 - get process, process group, and parent process ID 

SYNOPSIS 
#include <sys/types.h> 
pid_t getpid 0 
pid_ t getpgrp 0 
pid_ t getppid 0 
pid_t getpgrp2 (pid) 
pid_t pid; 

DESCRIPTION 
Getpid returns the process ID of the calling process. 

Getpgrp returns the process group ID of the calling process. 

Getppid returns the parent process ID of the calling process. 

Getpgrp2 returns the process group ID of the specified process. If pid is zero, the call applies to 
the current process. For this to be allowed, the current process and the referenced process must 
be in the same session. 

ERRORS 
Getpgrp2 will fail if any of the following are true: 

[EPERM] 

[ESRCH] 

The current process and the specified process are not in the same session. 

No process can be found corresponding to that specified by pid. 

AUTHOR 
Getpid, getppid, getpgrp, and getpgrp2 were developed by HP, AT&T, and the University of Cal­
ifornia, Berkeley. 

SEE ALSO 
exec(2), fork(2), setpgrp(2), setpgid(2), signal(5). 

STANDARDS CONFORMANCE 
getpid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

getpgrp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

getppid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

66 (Section 2) -1- HP-UX Release 7.0: September 1989 



GETPRIVGRP(2) GETPRIVGRP(2) 

NAME 
getprivgrp, setprivgrp - get and set special attributes for group 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sysjprivgrp.h> 

int getprivgrp(grplist) 
siruci privgrp_map grplist[PRIV _MAXGRPS]; 

int setprivgrp(grpid, mask) 
gid_ t grpid; 
int mask[PRIV _MASKSIZ]; 

DESCRIPTION 
Setprivgrp associates a kernel capability with a group id. This allows sub setting of super-user 
like privileges for members of a particular group or groups. Setprivgrp takes two arguments: 
the integer group id and a mask of permissions. The mask is created by treating the access 
types defined in <sysjprivgrp.h> as bit numbers (using 1 for the least Significant bit). Thus, 
privilege number 5 would be represented by the bit 1«(5-1) or 16. More generally, privilege 
p is represented by: 

As it is possible to have more than word size distinct privileges, mask is a pointer to an integer 
array of size PRIV _MASKSIZ. 

Setprivgrp privileges include those specified in the file <sysjprivgrp.h>. A process may access 
the system call protected by a specific privileged group if it belongs to or has an effective group 
id of a group having access to the system call. All processes are considered to belong to the 
pseudo-group PRIV _ GLOBAL. 

Specifying a grpid of PRIV _NONE causes privileges to be revoked on all privileged groups 
having any of the privileges specified in mask. Specifying a grpid of PRIV _GLOBAL causes 
privileges to be granted to all processes. 

The constant PRIV _MAXGRPS in <sysjprivgrp.h> defines the system limit on the number of 
groups which can be assigned privileges. One of these is always the psuedo-group 
PRIV _GLOBAL, allowing for PRIV _MAXGRPS-1 actual groups. 

Getprivgrp returns a table of the privileged group assignments into a user supplied structure. 
Grplist points to an array of structures of type privgrp_map associating a groupid with a 
privilege mask. Privilege masks are formed by aring together elements from the access types 
specified in <sysjprivgrp.h>. The array may have gaps in it distinguished as having a 
priv_groupno field of PRIV _NONE. The group number PRIV _GLOBAL gives the global 
privilege mask. Only information about groups which are in the user's group access list, or 
about his real or effective group id, is returned to an ordinary user. The complete set is 
returned to the super-user. 

EXAMPLES 
The following example prints out PRIV _GLOBAL and the group ids of the privilege groups to 
which the user belongs: 

#include <sysjtypes.h> 

struct privgrp_map pgrplist[PRIV _MAXGRPS]; 
int i; . 
gid_t pgid; 

HP-UX Release 7.0: September 1989 -1- (Section 2) 67 



GETPRIVGRP(2) GETPRIVGRP(2) 

NOTES 

getprivgrp (pgrplist); 
for (i=O; i<PRIV _MAXGRPS; H+) { 

} 

if «pgid = pgrplist[i]. priv _groupno) != PRIV _NONE) { 
if (pgid == PRIV _GLOBAL) 

printf (II(PRIV_GLOBAL) "); 
printf (llprivilege group id = %d\n", pgid); 

Only the super-user may use setprivgrp. 

ERRORS 
Setprivgrp returns -1 and an error code in errno if: 

[EPERM] The caller is not super user. 

[EFAULT] Mask points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

[EINVAL] 

[E2BIG] 

Mask has bits set for one or more unknown privileges. 

The request would require assigning privileges to more than PRIV _MAXGRPS 
groups. 

Getprivgrp returns -1 and an error code in errno if: 

[EFAULT] Grplist points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

Both calls return 0 on success. 

DEPENDENCIES 
HP Clustered Environment: 

In a clustered environment privilege groups are maintained separately on each machine in 
the cluster. The CHOWN privilege from diskless nodes is determined by the privilege 
groups set up on the cluster server. 

AUTHOR 
Getprivgrp was developed by HP. 

SEE ALSO 
getprivgrp(1), setgroups(2), setprivgrp(1M), privgrp(4). 

68 (Section 2) -2- HP-UX Release 7.0: September 1989 



GETTIMEOFDA Y(2) GETTIMEOFDAY(2) 

NAME 
gettimeofday, settimeofday - get/set date and time 

SYNOPSIS 
#inc1ude <time.h> 

int gettimeofday(tp, tzp) 
struct timeval *tpi 
struct timezone *tzp; 

int settimeofday(tp, tzp) 
struct timeval *tPi 
struct timezone *tzPi 

DESCRIPTION 
Gettimeofday returns and settimeofday sets the system's notion of the current Greenwich time 
and the system's notion of the current time zone. Time is expressed in seconds and 
microseconds since midnight January 1, 1970. 

The structures pointed to by tp and tzp are defined in <time.h> as: 

struct timeval { 
unsigned long tv _sec; 
long tv _usec; 

}; 

struct timezone { 
int tz_minuteswest; 
int tz_dsttime; 

}; 

/* seconds since Jan. 1, 1970 * / 
/* and microseconds * / 

/* of Greenwich * / 
/* type of dst correction to apply * / 

The timezone structure indicates the local time zone (measured in minutes of time westward 
from Greenwich), and a flag that, if nonzero, indicates that Daylight Savings time applies 
locally during the appropriate part of the year. Programs should use this timezone information 
only in the absence of the TZ environment variable. 

Only the super-user may set the time of day. 

EXAMPLES 
The following example calls gettimeofday(2)· twice. It then computes the lapsed time between 
the calls in seconds and microseconds and stores the result in a timeval structure: 

struct timeval first, 
second, 
lapsed; 

struct timezone tzp; 

gettimeofday (&first, &tzp); 

/* lapsed time * / 

gettimeofday (&second, &tZP)i 

if (first.tv _usec > second.tv _usee) { 
second.tv _usec += 1000000i 
second.tv _sec--; 

lapsed.tv _usec = second.tv _usec - first. tv _useCi 

HP-UX Release 7.0: September 1989 -1- (Section 2) 69 



GETTIMEOFDA Y (2) 

lapsed.tv _sec = second.tv _sec - first. tv _sec; 

RETURN VALUE 

GETTIMEOFDA Y(2) 

A 0 return value indicates that the call succeeded. A -1 return value indicates an error 
occurred, and in this case an error code is stored into the global variable errno. 

ERRORS 
The following error codes may be set in errno: 

[EFAULT] 

[EPERM] 

Clustered Systems 

An argument address referenced invalid memory. The reliable detection of this 
error will be implementation dependent. 

A user other than the super-user attempted to set the time. 

In an HP Clustered Environment, setting the time of day sets the date and timezone on all sys­
tems in the cluster. 

WARNINGS 
The microsecond value usually has a granularity much greater than one due to the resolution of 
the system clock. Depending on any granularity (particularly of one) will render code non­
portable. 

DEPENDENCIES 
Series 300 

Gettimeofday has a granularity of 4 microseconds. 

AUTHOR 
Gettimeofday was developed by the University of California, Berkeley. 

SEE ALSO 
date(l), stime(2), time(2), ctime(3C). 

70 (Section 2) -2- HP-UX Release 7.0: September 1989 



GETUID(2) GETUID(2) 

NAME 
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group 
IDs 

SYNOPSIS 
#include <sysjtypes.h> 

uid_t getuid 0 
uid_ t geteuid 0 

gid_t getgid 0 

gid_ t getegid () 

DESCRIPTION 
Getuid returns the real-user-ID of the calling process. 

Geteuid returns the effective-user-ID of the calling process. 

Getgid returns the real-group-1D of the calling process. 

Getegid returns the effective-group-1D of the calling process. 

There is no way to ascertain the saved-user-ID or saved-group-1D of a process. 

SEE ALSO 
setuid(2). 

STANDARDS CONFORMANCE 
getuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

getegid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

geteuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

getgid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 71 



IOCTL(2) IOCTL(2) 

NAME 
ioctl - control device 

SYNOPSIS 
#include <sysjioctl.h> 

ioctl (fildes, request, arg) 
int fildes, request; 

DESCRIPTION 
Ioctl performs a variety of functions on character special files (devices). The write-ups of vari­
ous devices in Section (7) discuss how ioctl applies to them. The type of arg is dependent on 
the specific ioctl call, as described in Section (7). 

Request is made up of several fields. They encode the size and direction of the argument (refer­
enced by arg ), as well as the desired command. An enumeration of the request fields are: 

IOCIN 

IOCOUT 

Argument is read by the driver. (That is, the argument is copied from the 
application to the driver.) 

Argument is written by the driver. (That is, the argument is copied from the 
driver to the application.) 

IOCSIZE_MASK Number of bytes in the passed argument. A nonzero size indicates that arg is 
a pointer to the passed argument. A zero size indicates that arg is the passed 
argument (if the driver wants to use it), and is not treated as a pointer. 

IOCCMD_MASK The request command itself. 

When both laC_IN and laC_OUT are zero, it can be assumed that request is not encoded for 
size and direction, for compatibility purposes. Requests which do not require any data to be 
passed and requests which use arg as a value (as opposed to a pointer), have the laC_IN bit set 
to one and the IOCSIZE_MASK field set to zero. 

The following macros are used to create the request argument. X and yare concatenated 
«x< <8) I y) to form IOCCMD and shifted into the proper location according to 
IOCCMD_MASK. T is the type (e.g. struct hpib_cmd) of the actual argument that the request 
references, and its size is taken and shifted into the appropriate place according to 
IOCSIZE_MASK. 

_IOR(x,y,t) Sets laC_OUT and initializes the values at IOCCMD_MASK and 
IOCSIZE_MASK accordingly. 

_IOW(x,y,t) Sets laC_IN and initializes the values at IOCCMD_MASK and 
IOCSIZE_MASK accordin gly. 

_IOWR(x,y,t) Sets both laC_IN and laC_OUT and initializes the values at IOCCMD_MASK 
and IOCSIZE_MASK. 

Note: any data structure referenced by arg may not contain any pointers. 

RETURNS 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

Ioctl will fail if one or more of the following are true: 

[EBADF] Fildes is not a valid open file descriptor. 

[ENOTTY] 

[EINVAL] 

[EINTR] 

72 (Section 2) 

The request is not appropriate to the selected device. 

Request or arg is not valid. 

A signal was caught during the ioctl system call. 

-1- HP-UX Release 7.0: September 1989 



IOCTL(2) IOCTL(2) 

[EPERM] Typically this error indicates that an ioctl request was attempted that is forbid­
den in some way to the calling process. 

WARNINGS 
Check all references to signaf(5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

AUTHOR 
Ioctl was developed by AT&T Bell Laboratories and the Hewlett-Packard Company. 

SEE ALSO 
ioctl(5), termio(7). 

STANDARDS CONFORMANCE 
ioctf: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -2- (Section 2) 73 



KILL(2) KILL(2) 

NAME 
kill, raise - send a signal to a process or a group of processes 

SYNOPSIS 
#inc1ude <signal.h> 

int kill (pid, sig) 
pid_t pid; 
int sig; 

int raise (sig) 
int sig; 

DESCRIPTION 
Kill sends a signal to a process or a group of processes. The process or group of processes to 
which the signal is to be sent is specified by pid. The signal to be sent is specified by sig and is 
either one from the list given in signal(2), or O. 

Raise sends signal sig to the executing program. The signal to be sent is specified by sig and is 
either one from the list given in signal (2), or O. 

If sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can 
be used to check the validity of pid. 

The real or effective user ID of the sending process must match the real or saved user ID of the 
receiving process, unless the effective user ID of the sending process is super-user. As a single 
special case, the continue signal SIGCONT can be sent to any process that is a member of the 
same session as the sending process. 

The value KILL_ALL_OTHERS is defined in the file <sys/signal.h> and is guaranteed not to 
be the ID of any process in the system or the negation of the ID of any process in the system. 

If pid is greater than zero and not equal to KILLALL_OTHERS, sig is sent to the process 
whose process ID is equal to pid. Pid can equal 1 unless sig is SIGKILL or SIGSTOP. 

If pid is 0, sig is sent to all processes excluding special system processes whose process group 
ID is equal to the process group ID of the sender. 

If pid is -1 and the effective user ID of the sender is not super-user, sig is sent to all processes 
excluding special system processes whose real or saved user ID is equal to the real or effective 
user ID of the sender. 

If pid is -1 and the effective user ID of the sender is super-user, sig is sent to all processes 
excluding special system processes. 

If pid is KILL_ALL_OTHERS, kill behaves much as when pid is equal to -I, except that sig is 
not sent to the calling process. 

If pid is negative but not -1 or KILL_ALL_OTHERS, sig is sent to all processes (excluding spe­
cial system processes) whose process group ID is equal to the absolute value of pid, and whose 
real and/or effective user ID meets the constraints described above for matching user IDs. 

ERRORS 
Kill fails and no signal is sent if one or more of the following is true: 

[EINVAL] 

[EINVAL] 

[EPERM] 

[EPERM] 

74 (Section 2) 

Sig is not a valid signal number or zero. 

Sig is SIGKILL or SIGSTOP and pid is 1 (proc1). 

The user ID of the sending process is not super-user and its real or effective 
user ID does not match the real or saved user ID of the receiving process. 

The sending and receiving processes are not in the same session. 

-1- HP-UX Release 7.0: September 1989 



KILL(2) KILL(2) 

[ESRCH] No process or process group can be found corresponding to that specified by 
pid. 

Raise will fail and no signal will be sent if the following is true: 

[EINVAL] 

RETURN VALUE 

Sig is not a valid signal number or zero. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set tu indicate the error. 

AUTHOR 
Kill was developed by HP, AT&T, and the University of California, Berkeley. 

SEE ALSO 
ki1l(l), getpid(2), setpgrp(2), signal(2). 

STANDARDS CONFORMANCE 
kill: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

raise: ANSI C 

HP-UX Release 7.0: September 1989 -2- (Section 2) 75 



LINK(2) LINK(2) 

NAME 
link - link to a file 

SYNOPSIS 
int link (pathl, path2) 
char *pathl, *path2; 

DESCRIPTION 
Pathl points to a path name naming an existing file. Path2 points to a path name naming the 
new directory entry to be created. Link creates a new link (directory entry) for the existing file. 

ERRORS 
Link will fail and no link will be created if one or more of the following are true: 

[ENOTDIR] 

[ENOENT] 

[ENOSPC] 

[EACCES] 

[ENOENT] 

[EEXIST] 

[EPERM] 

[EXDEV] 

[ENOENT] 

[EACCES] 

[EROFS] 

[EFAULT] 

[ENOENT] 

[EMLINK] 

A component of either path prefix is not a directory. 

A component of either path prefix does not exist. 

The directory to contain the file cannot be extended. 

A component of either path prefix denies search permission. 

The file named by pathl does not exist. 

The link named by path2 exists. 

The file named by pathl is a directory and the effective user ID is not super­
user. 

The link named by path2 and the file named by pathl are on different logical 
devices (file systems). 

Path2 points to a null path name. 

The requested link requires writing in a directory that does not permit writing. 

The requested link requires writing in a directory on a read-only file system. 

Path points outside the allocated address space of the process. The reliable 
detection of this error will be implementation dependent. 

Pathl or path2 is null. 

The maximum number of links to a file would be exceeded. 

[ENAMETOOLONG] 

[ELOOP] 

RETURN VALUE 

Either path specified exceeds PATH_MAX bytes, or a component of either path 
specified exceeds NAME_MAX while POSIX_NO_ TRUNC is in effect. 

Too many symbolic links were encountered in translating either path name. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

SEE ALSO 
cp(l), link(1M), symlink(2), symlink(4), unlink(2). 

STANDARDS CONFORMANCE 
link: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

76 (Section 2) -1- HP-UX Release 7.0: September 1989 



LOCKF(2) LOCKF(2) 

NAME 
lockf - provide semaphores and record locking on files 

SYNOPSIS 
#include <unistd.h> 

int lockf(fildes, function, size) 
int fildes, function; 
iong size; 

DESCRIPTION 
Lockf will allow regions of a file to be used as semaphores (advisory locks) or accessible only by 
the locking process (enforcement mode record locks). Other processes that attempt to access 
the locked resource will either return an error or sleep until the resource becomes unlocked. All 
the locks for a process are removed when the process closes the file or terminates. 

Fildes is an open file descriptor. The file descriptor must have been opened with write-only 
permission (O_WRONLY) or read-write permission (O_RDWR) in order to establish a lock with 
this function call (see open(2». 

If the calling process is a member of a group that has the PRIV _LOCKRDONLY privilege (see 
setprivgrp(2», it can also use lockf to lock files opened with read-only permission (O_RDONLY). 

Function isa control value that specifies the action to be taken. The permissible values for func­
tion are defined in <unistd.h> as follows: 

#define F _ULOCK 
#define F _LOCK 
#define F _ TLOCK 
#define F _ TEST 

o /* unlock a region * / 
1 /* lock a region * / 
2 /* test and lock a region * / 
3 /* test region for lock * / 

All other values of function are reserved for future extensions and will result in an error return if 
not implemented. 

F _TEST is used to detect if a lock by another process is present on the specified region. Lockf 
returns zero if the region is accessible and -1 if it is not; in this case errno will be set to 
EACCES. F _LOCK and F _ TLOCK both lock a region of a file if the region is available. 
F _ULOCK removes locks from a region of the file. 

Size is the number of contiguous bytes to be locked or unlocked. The resource to be locked 
starts at the current offset in the file, and extends forward for a positive size, and backward for 
a negative size (the preceding bytes up to but not including the current offset). If size is zero, 
the region from the current offset through the end of the largest possible file is locked (that is, 
from the current offset through the present or any future end-of-file). An area need not be allo­
cated to the file in order to be locked, as such locks may exist past the end of the file. 

The regions locked with F _LOCK or F _ TLOCK may, in whole or part, contain or be contained 
by a previously locked region for the same process. When this occurs or if adjacent regions 
occur, the regions are combined into a single region. If the request requires that a new element 
be added to the table of active locks and this table is already full, an error is returned, and the 
new region is not locked. 

F _LOCK and F _ TLOCK requests differ only by the action taken if the resource is not available: 
F _LOCK will cause the calling process to sleep until the resource is available, and the 
F _ TLOCK will return an EACCES error if the region is already locked by another process. 

F _ULOCK requests may, in whole or part, release one or more locked regions controlled by the 
process. When regions are not fully released, the remaining regions are still locked by the pro­
cess. Releasing the center section of a locked region requires an additional element in the table 

HP-UX Release 7.0: September 1989 -1- (Section 2) 77 



LOCKF(2) LOCKF(2) 

of active locks. If this table is full, an EDEADLK error is returned, and the requested region is 
not released. 

Regular files with the file mode of S_ENFMT not having the group execute bit set will have an 
enforcement policy enabled. With enforcement enabled, reads and writes that would access a 
locked region will sleep until the entire region is available if O_NDELAY is cleared, but will 
return -1 with ermo set if 0 _NDELA Y is set. File access by other system functions, such as 
exec(2), are not subject to the enforcement policy. Locks on directories, pipes, and special files 
are advisory only; no enforcement policy will be used. 

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by 
accessing the locked resource of another process. Thus, calls to fcntl(2), lockf(2), read(2), or 
write(2) scan for a deadlock prior to sleeping on a locked resource. Deadlock is not checked for 
the wait(2) and pause(2) system calls, so potential for deadlock is not eliminated. A creat(2) call 
or an open (2) call with the 0_ CREATE and 0_ TRUNC flags set on a regular file will return 
EAGAIN error if another process has locked part of the file and the file is currently in enforce­
ment mode. 

NETWORKING FEATURES 
NFS 

The advisory record-locking capabilities of lockf(2) are implemented throughout the net­
work by the "network lock daemon"; see lockd(lM). If the file server crashes and is 
rebooted, the lock daemon attempts to recover all locks associated with the crashed server. 
If a lock cannot be reclaimed, the process that held the lock is issued a SIGLOST signal. 

Only advisory record locking is implemented for NFS files. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Lockf fails if any of the following occur: 

[EACCES] 

[EBADF] 

[EDEADLK] 

[EINTR] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[ENOLCK] 

[ENOLCK] 

WARNINGS 

Function is F _ TLOCK or F _TEST and the region is already locked by another 
process. 

Fildes is not a valid, open file descriptor. 

A deadlock would occur or the number of entries in the system lock table 
would exceed a system-dependent maximum. HP-UX guarantees this value to 
be at least 50. 

A signal was caught during the lockf system call. 

Function is not one of the functions specified above. 

Size plus current offset produces a negative offset into the file. 

The resulting upper bound of the region to be locked would be greater than 
2'30, or the current offset is greater than 2'30. 

Function is F _ TLOCK or F _LOCK and the file is a NFS file with access bits set 
for enforcement mode. 

The file is a NFS file and a system error occurred on the remote node. 

Deadlock conditions may arise when either the wait(2} or pause(2) system calls are used in con­
junction with enforced locking; see those pages for details. 

File and record locking using file descriptors obtained through dup(2) or link(2) may not work 
as expected. For example, unlocking regions that were locked using either file descriptor may 

78 (Section 2) -2- HP-UX Release 7.0: September 1989 



LOCKF(2) LOCKF(2) 

also unlock regions that were locked using the other file descriptor. 

Unexpected results may occur in processes that use buffers in the user address space. The pro­
cess may later read/write data which is or was locked. The standard I/O package, stdio(3S), is 
the most common source of unexpected buffering. 

In a hostile environment, locking may be misused by holding key public resources locked. This 
is particularly true with public read files that have enforcement enabled. 

H is not recommended that the PRIV _LOCKRDONL Y capability be used, as it is provided only 
for backward compatibility. This feature may be modified or dropped from the future releases 
of HP-UX. 

APPLICATION USAGE 
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a 
section of a file is already locked by another process, portable application programs should 
expect and test for either value. For example: 

SEE ALSO 

if (lockf(fd, F _ TLOCK, siz) == -1) 
if «errno == EAGAIN) II (errno == EACCES» 

/* 
* section locked by another process 
* check for either EAGAIN or EACCES 
* due to different implementations 

*/ 
else if ... 

/* 
* check for other errors 
*/ 

chmod(2), close(2), creat(2), fcntl(2), open(2), pause(2), read(2), stat(2), wait(2), write(2), 
unistd(5). 
lockd(1M), statd(1M), in NFS Services Reference Pages. 

FUTURE DIRECTIONS 
The error condition that currently sets errno to EACCES will instead set errno to EAGAIN. 
(See also APPLICATION USAGE above.) 

STANDARDS CONFORMANCE 
lockf: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -3- (Section 2) 79 



LSEEK(2) 

NAME 
lseek - move read/write file pointer; seek 

SYNOPSIS 
#include <sys/types.h> 
#include <unistd.h> 

ofLt lseek (fildes, offset, whence) 
int fildes; 
off_t offset; 
int whence; 

DESCRIPTION 
Lseek sets the file pointer associated with the file descriptor as follows: 

If whence is SEEK_SET, the pointer is set to offset bytes. 
If whence is SEEK_CUR, the pointer is set to its current location plus offset. 
If whence is SEEK_END, the pointer is set to the size of the file plus offset. 

These symbolic constants are defined in <unistd.h>. 

RETURN VALUE 

LSEEK(2) 

When [seek completes successfully, it returns a non-negative integer, which is the resulting file 
offset as measured in bytes from the beginning of the file. Otherwise, a value of -1 is returned 
and errno is set to indicate the error. 

ERRORS 
Lseek fails and the file offset remains unchanged if one or mQre of the following is true: 

[EBADF] Fildes is not an open file descriptor. 

[ESPIPE] Fildes is associated with a pipe or FIFO. 

[EINV AL and SIGSYS signal] 
Whence is not one of the supported values. 

[EINV AL] The resulting file offset would be negative. 

WARNINGS 
Some devices are incapable of seeking. The value of the file offset associated with such a dev­
ice is undefined. 

Using [seek with a whence of SEEK_END on device special files is not supported and the results 
are not defined. 

SEE ALSO 
creat(2), dup(2), fcntl(2), open(2), unistd(5). 

STANDARDS CONFORMANCE 
[seek: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

80 (Section 2) -1- HP-UX Release 7.0: September 1989 



MKDIR(2) MKDIR(2) 

NAME 
mkdir - make a directory file 

SYNOPSIS 
#inc1ude <sysjtypes.h> 
#inc1ude <sysjstat.h> 

int mkdir(path, mode) 
char *path; 
mode_t mode; 

DESCRIPTION 
Mkdir creates a new directory file named by path. The file permission bits of the new directory 
are initialized from mode, and are modified by the process's file mode creation mask. For each 
bit set in the process's file mode creation mask, the corresponding bit in the new directory's 
mode is cleared (see umask(2». 

The directory's owner ID is set to the process's effective-user-ID. If the set-group-ID bit of the 
parent directory is set, the directory's group ID is set to group ID of the parent directory. Other­
wise, the directory's group ID is set to the process's effective-group-ID. The set-group-ID bit of 
the new directory is set to the same value as the set-group-ID bit of the parent directory. 

Symbolic constants defining the access permission bits are found in the <sys/stat.h> header 
and are used to construct the argument mode. The value of the argument mode is the bitwise 
inclusive OR of the values of the desired permissions. 

S_IRUSR Read by owner. 
S_IWUSR Write by owner. 
S_IXUSR Execute (search) by owner. 
S_IRGRP Read by group. 
S_IWGRP Write by group. 
S_IXGRP Execute (search) by group. 
S_IROTH Read by others (that is, anybody else). 
S_IWOTH Write by others. 
S_IXOTH Execute (search) by others. 

Access Control Lists (ACLs) 
On systems implementing access control lists, the directory is created with three base ACL 
entries, corresponding to the file access permission bits (see acl(5». 

RETURN VALUE 
Upon successful completion, mkdir returns a value of 0; a return value of -1 indicates an error, 
and an error code is stored in errno. 

ERRORS 
Mkdir fails and no directory is created if any of the following is true: 

[EACCESJ 

[EACCES] 

[EEXIST] 

[EFAULTJ 

[EIO] 

[ELOOP] 

[EMLINKJ 

A component of the path prefix denies search permission. 

The parent directory of the new directory denies write permission. 

The named file already exists. 

Path points outside the process's allocated address space. The reliable detec­
tion of this error is implementation dependent. 

An I/O error occurred while writing to the file system. 

Too many symbolic links are encountered in translating the path name. 

The maximum number of links to the parent directory, {LINK_MAX}, would be 
exceeded. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 81 



MKDIR(2) MKDIR(2) 

[ENAMETOOLONG] 
The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect. I 

[ENOENT] 

[ENOSPC] 

[ENOTDIR] 

[EROFS] 

AUTHOR 

A component of the path prefix does not exist. 

Not enough space on the file system. 

A component of the path prefix is not a directory. 

The named file resides on a read-only file system. 

Mkdir was developed by the University of California, Berkeley. 

SEE ALSO 
chmod(2), setacl(2), stat(2), umask(2), acl(5). 

STANDARDS CONFORMANCE 
mkdir: SVID2, XPG3, POSIX.1, FIPS 151-1 

82 (Section 2) -2- HP-UX Release 7.0: September 1989 



MKNOD(2) MKNOD(2) 

NAME 
mknod - make a directory, or a special or regular file 

SYNOPSIS 
#include <sys/types.h> 
#inc1ude <sys/stat.h> 

int mknod (path, mode, dey) 
char "'path; 
mode_t mode; 
dev_t dey; 

int mkrnod(path, mode, deY, cnodeid) 
char *path; 
int mode; 
dev_t dey; 
cnode_t cnodeid; 

DESCRIPTION 
Mknod creates a new file named by the path name pointed to by path. The mode of the new 
file is specified by the mode argument. Mkrnod is the same as mknod but is used to make device 
files that can be accessed from a different cnode identified by the additional parameter cnodeid. 
A cnodeid value of 0 creates a "generic" device file that can be accessed by any cnode. 

Symbolic constants defining the file type and file access permission bits are found in the 
<sys/stat.h> header file and are used to construct the mode argument. The value of the mode 
argument should be the bitwise inclusive OR of the values of the desired file type, miscellane­
ous mode bits, and access permissions. If the S_IFMT portion of mode has a value of 0, mknod 
creates a regular file. The mode value 0044000 (S_CDF I S_IFDIR) is used with mkrnod to indi­
cate a hidden directory (see cdf(4». 

S_IFMT File type mask 
S_IFNWK Network special file 
S_IFlFO FIFO special file 
S_IFCHR Character special file 
S_IFDIR Directory node 
S_IFBLK Block special file 
S_IFREG Regular file 
S_ISUID Set user ID on execution 
S_ISGID Set group ID on execution 
S_ENFMT Record locking enforced 
S_ISVTX Save text image after execution 
S_IRWXU Permission mask for owner 
S_IRUSR Read by owner 
S_IWUSR Write by owner 
S_IXUSR Execute (search) by owner 
S_IRWXG Permission mask for group 
S_IRGRP Read by group 
S_IWGRP Write by group 
S_IXGRP Execute (search) by group 
S_IRWXO Permission mask for others 
S_IROTH Read by others 
S_IWOTH Write by others 
S_IXOTH Execute (search) by others 

The owner ID of the file is set to the effective-user-ID of the process. If the set-group-ID bit of 
the parent directory is set, the directory's group ID is set to the group ID of the parent directory. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 83 



MKNOD(2) MKNOD(2) 

Otherwise, the directory's group ID is set to the effective-group-ID of the process. 

The file access permission bits of mode are modified by the process's file mode creation mask: 
for each bit set in the process's file mode creation mask, the corresponding bit in the file's mode 
is cleared (see umask(2)). 

On systems implementing access control lists (ACLs), the directory is created with three base 
ACL entries, corresponding to the file access permission bits (see ad (5)). 

Dev is meaningful only if mode indicates a block or character special file, and is ignored other­
wise. It is an implementation- and configuration-dependent specification of a character or block 
I/O device. Dev is created by using the makedev macro defined in <sys/sysmacros.h>. The 
makedev macro takes as arguments the major and minor device numbers, whose value and 
interpretation are implementation dependent. The result of makedev is an object of type dev_t. 

Mknod can be invoked only by the super-user for file types other than FIFO special. 

WARNINGS 
Proper discretion should be used when using mkrnod to create generic device files. A generic 
device file accessed from different cnodes applies to different physical devices. Thus the file's 
ownership and permissions may not be appropriate in the context of all the cnodes. 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Mknod fails and the new file is not created if one or more of the following is true: 

[EACCES] 

[EACCES] 

[EEXIST] 

[EFAULT] 

[ELOOP] 

Path is in a directory that denies write permission, mode is for a FIFO special 
file, and the caller is not a super-user. 

A component of the path prefix denies search permission. 

The named file exists. 

Path points outside the process's allocated address space. The reliable detection 
of this error is implementation dependent. 

Too many symbolic links are encountered in translating the path name. 

[ENAMETOOLONG] 

[ENOENT] 

[ENOENT] 

[ENOSPC] 

[ENOTDIR] 

[EPERM] 

[EROFS] 

AUTHOR 

The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect. 

Path is null. 

A component of the path prefix does not exist. 

Not enough space on the file system. 

A component of the path prefix is not a directory. 

The effective-user-ID of the process does not match that of the super-user, and 
the file type is not FIFO special. 

The directory in which the file is to be created is located on a read-only file 
system. 

Mknod was developed by AT&T and HP. 

SEE ALSO 
mkdir(2), mkdir(1), mknod(1M), chmod(2), exec(2), setacl(2), umask(2), cdf(4), fs(4), mknod(4), 

84 (Section 2) -2- HP-UX Release 7.0: September 1989 



MKNOD(2) 

acl(S). 

STANDARDS CONFORMANCE 
mknod: SVID2, XPG2 

HP-UX Release 7.0: September 1989 

MKNOD(2) 

-3- (Section 2) 85 



MOUNT(2) MOUNT(2) 

NAME 
mount - mount a file system 

SYNOPSIS 
int mount (spec, dir, rwflag) 
char *spec, *dir; 
int rwflag; 

DESCRIPTION 
Mount requests that a removable file system contained on the block special device file identified 
by spec be mounted on the directory identified by dir. Spec and dir are pointers to path names. 

Upon successful completion, references to the file dir will refer to the root directory on the 
mounted file system. 

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1, 
writing is forbidden, otherwise writing is permitted according to individual file accessibility. 

Mount may be invoked only by the super-user. 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Mount will fail if one or more of the following are true: 

[EPERM] 

[ENOENT] 

[ENOTDIR] 

[ENOTBLK] 

[ENXIO] 

[ENOTDIR] 

[EFAULT] 

[EBUSY] 

[EBUSY] 

[EBUSY] 

[ENOENT] 

[EACCES] 

The effective user ID is not super-user. 

The named file does not exist (for example, path is null or a component of path 
does not exist). 

A component of a path prefix is not a directory. 

Spec is not a block special device. 

The device associated with spec does not exist. 

Dir is not a directory. 

Spec or dir points outside the allocated address space of the process. The reli­
able detection of this error will be implementation dependent. 

Dir is currently mounted on, is someone's current working directory, or is oth­
erwise busy. 

The device associated with spec is currently mounted. 

There are no more mount table entries. 

Spec or dir is null. 

A component of the path prefix denies search permission. 

[ENAMETOOLONG] 

[ELOOP] 

WARNINGS 

The length of a specified path name exceeds PATH_MAX bytes, or the length of 
a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect. 

Too many symbolic links were encountered in translating either path name. 

If mount is called from the program level (i.e. not called from mount(lM», the table of mounted 
devices contained in /etc/mnttab is not updated. 

86 (Section 2) -1- HP-UX Release 7.0: September 1989 



MOUNT(2) MOUNT(2) 

DEPENDENCIES 
HP Clustered Environment 

When mount is called from a diskless node (cluster client), spec is interpreted as a device 
attached to the cluster server. This behavior is subject to change in future releases, and 
use in applications is not recommended. 

SEE ALSO 
mount(lM), umount(2). 

STANDARDS CONFORMANCE 
mount: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -2- (Section 2) 87 



MSGCTL(2) MSGCTL(2) 

NAME 
msgctl - message control operations 

SYNOPSIS 
#include <sysjtypes.h> 
#inciude <sysjipe.h> 
#include <sysjmsg.h> 

int msgetl (msqid, emd, buf) 
int msqid, emd; 
struct msqid_ds *buf; 

DESCRIPTION 
Msgctl provides a variety of message control operations as specified by cmd. The following 
cmds are available: 

IPC_ST AT Place the current value of each member of the data structure associated with msqid 
into the structure pointed to by buf. The contents of this structure are defined in 
the glossary. 

IPC_SET Set the value of the following members of the data structure associated with msqid 
to the corresponding value found in the structure pointed to by but: 

msg_perm. uid 
msg_perm.gid 
msg_perm.mode /* only low 9 bits */ 
msg_qbytes 

This cmd can only be executed by a process that has an effective user ID equal to 
either that of super user or to the value of either msg_perm.uid or msg_perm.euid 
in the data structure associated with msqid. Only super user can raise the value of 
msg_qbytes. 

IPC_RMID Remove the message queue identifier specified by msqid from the system and des­
troy the message queue and data structure associated with it. This cmd can only be 
executed by a process that has an effective user ID equal to either that of super-user 
or to the value of either msg_perm.uid or msg_perm.euid in the data structure 
associated with msqid. 

ERRORS 
Msgctl will fail if one or more of the following are true: 

[EINVAL] 

[EINVAL] 

[EACCES] 

[EPERM] 

[EPERM] 

[EFAULT] 

RETURN VALUE 

Msqid is not a valid message queue identifier. 

Cmd is not a valid command. 

Cmd is equal to IPC_STAT and {READ} operation permission is denied to the 
calling process (see the glossary). 

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling 
process is not equal to that of super-user and it is not equal to the value of 
either msg_perm.uid or msg_perm.euid in the data structure associated with 
msqid. 

Cmd is equal to IPC_SET, an attempt is being made to increase to the value of 
msg_qbytes, and the effective user ID of the calling process is not equal to that 
of super user. 

But points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 

88 (Section 2) -1- HP-UX Release 7.0: September 1989 



MSGCTL(2) 

errno is set to indicate the error. 

SEE ALSO 
ipcrm(l), ipcs(l), msgget(2), msgop(2), stdipc(3C). 

ST ANDARDS CONFORMANCE 
msgctl: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2-

MSGCTL(2) 

(Section 2) 89 



MSGGET(2) MSGGET(2) 

NAME 
msgget - get message queue 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sys/ipc.h> 
#include <sysjmsg.h> 

int msgget (key, msgflg) 
key_t key; 
int msgflg; 

DESCRIPTION 
Msgget returns the message queue identifier associated with key. 

A message queue identifier and associated message queue and data structure are created for key 
if one of the following is true: 

Key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available 
resources. The identifier will never be returned by another call to msgget until it has 
been released by a call to msgctl. The identifier should be used among the calling pro­
cess and its descendents; however, it is not a requirement. The resource can be 
accessed by any process having the proper permissions. 

Key does not already have a message queue identifier associated with it, and (msgflg & 
IPC_ CREA T) is "true". 

Upon creation, the data structure associated with the new message queue identifier is initialized 
as follows: 

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to 
the effective user ID and effective group ID, respectively, of the calling process. 

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg. 

Msg_qnum, msg_lspid, msg_Irpid, msg_stime, and msg_rtime are set equal to O. 

Msg_ctime is set equal to the current time. 

Msg_qbytes is set equal to the system limit. 

ERRORS 
Msgget will fail if one or more of the following are true: 

[EACCES] 

[ENOENT] 

[ENOSPC] 

[EEXIST] 

RETURN VALUE 

A message queue identifier exists for key, but operation permission as specified 
by the low-order 9 bits of msgflg would not be granted. 

A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is 
"false". 

A message queue identifier is to be created but the system-imposed limit on 
the maximum number of allowed message queue identifiers system wide would 
be exceeded. 

A message queue identifier exists for key but ( (msgflg & IPCCREAT) && ( 
msgflg & IPC_EXCL) ) is "true". 

Upon successful completion, a non-negative integer, namely a message queue identifier, is 
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
ipcrm(l), ipcs(l), msgctl(2), msgop(2), stdipc(3C). 

90 (Section 2) -1- HP-UX Release 7.0: September 1989 



MSGGET(2) 

STANDARDS CONFORMANCE 
msgget: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 

MSGGET(2) 

-2- (Section 2) 91 



MSGOP(2) MSGOP(2) 

NAME 
msgsnd, msgrcv - message operations 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sysiipc.h> 
#include <sysjmsg.h> 

int msgsnd (msqid, msgp, msgsz, msgflg) 
int msqid; 
void *msgp; 
int msgsz, msgflg; 

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg) 
int msqid; 
void *msgp; 
int msgsz; 
long msgtyp; 
int msgflg; 

DESCRIPTION 
Msgsnd is used to send a message to the queue associated with the message queue identifier 
specified by msqid. 

Msgp points to a user-defined buffer that must contain first a field of type long that will specify 
the type of the message, followed by a data portion that will hold the data bytes of the mes­
sage. The structure below is an example of what this user-defined buffer might look like: 

long mtype; j * message type * j 
char mtext[]; j * message text * j 

Mtype is a positive integer that can be used by the receiving process for message selection (see 
msgrcv below). Mtext is any text of length msgsz bytes. Msgsz can range from 0 to a system­
imposed maximum. 

Msgflg specifies the action to be taken if one or more of the following are true: 

The number of bytes already on the queue is equal to msg_qbytes (see message queue 
identifier in the Glossary). 

The total number of messages on all queues system-wide is equal to the system­
imposed limit. 

These actions are as follows: 

If (msgflg & IPC_NOWAIT) is "true", the message is not sent and the calling process 
returns immediately. 

If (msgflg & IPC_NOWAIT) is "false", the calling process suspends execution until one 
of the following occurs: 

The condition responsible for the suspension no longer exists, in which case 
the message is sent. 

Msqid is removed from the system (see msgctl(2». When this occurs, errno is 
set equal to EIDRM, and a value of -1 is returned. 

The calling process receives a signal to be caught. In this case the message is 
not sent and the calling process resumes execution in the manner prescribed in 
signal(5). 

Upon successful completion, the following actions are taken with respect to the data structure 
associated with msqid: 

92 (Section 2) -1- HP-UX Release 7.0: September 1989 



MSGOP(2) 

Msg_qnum is incremented by l. 

Msg_Ispid is set equal to the process ID of the calling process. 

Msg_stime is set equal to the current time. 

MSGOP(2) 

Msgrcv reads a message from the queue associated with the message queue identifier specified 
by msqid and places it in the structure pointed to by msgp. This structure is composed of the 
following members: 

long mtype; 
char mtext[]; 

/ * message type * / 
/ * message text * / 

Mtype is the received message's type as specified by the sending process. Mtext is the text of 
the message. Msgsz specifies the size in bytes of mtext. The received message is truncated to 
msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is "true". The truncated 
part of the message is lost and no indication of the truncation is given to the calling process. 

Msgtyp specifies the type of message requested as follows: 

If msgtyp is equal to 0, the first message on the queue is received. 

If msgtyp is greater than 0, the first message of type msgtyp is received. 

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to 
the absolute value of msgtyp is received. 

Msgflg specifies the action to be taken if a message of the desired type is not on the queue. 
These are as follows: 

If (msgflg & IPC_NOWAIT) is "true", the calling process will return immediately with a 
return value of -1 and errno set to ENOMSG. 

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend execution until 
one of the following occurs: 

A message of the desired type is placed on the queue. 

Msqid is removed from the system. When this occurs, errno is set equal to 
EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. In this case a mes­
sage is not received and the calling process resumes execution in the manner 
prescribed in signal(5». 

Upon successful completion, the following actions are taken with respect to the data structure 
associated with msqid. 

ERRORS 

Msg_qnum is decremented by 1. 

Msg_lrpid is set equal to the process ID of the calling process. 

Msg_rtime is set equal to the current time. 

Msgsnd fails and no message is sent if one or more of the following is true: 

Msqid is not a valid message queue identifier. 

Operation permission is denied to the calling process. 

Mtype is less than 1. 

[EINVAL] 

[EACCES] 

[EINVAL] 

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg & 
IPC_NOWAIT) is "true". 

[EINVAL] Msgsz is less than zero or greater than the system-imposed limit. 

HP-UX Release 7.0: September 1989 -2- (Section 2) 93 



MSGOP(2) 

[EFAULT] 

[EIDRM] 

[EINTR] 

MSGOP(2) 

Msgp points to an illegal address. The reliable detection of this error is imple­
mentation dependent. 

The message queue identifier msqid has been removed from the system. 

The function msgsnd was interrupted by a signal. 

Msgrcv fails and no message is received if one or more of the following is true: 

[EINVAL] Msqid is not a valid message queue identifier. 

[EACCES] 

[EINVAL] 

[E2BIG] 

[ENOMSG] 

[EFAULT] 

[EIDRM] 

[EINTR] 

RETURN VALUES 

Operation permission is denied to the calling process. 

Msgsz is less than O. 

Mtext is greater than msgsz and (msgflg & MSG_NOERROR) is "false". 

The queue does not contain a message of the desired type and (msgflg & 
IPCNOWAIT) is "true". 

Msgp points to an illegal address. The reliable detection of this error is imple­
mentation dependent. 

The message queue identifier msqid has been removed from the system. 

The function msgrcv was interrupted by a signal. 

Upon successful completion, the return value is as follows: 

Msgsnd returns a value of O. 

Msgrcv returns a value equal to the number of bytes actually placed into mtext. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

WARNINGS 
Check all references to signal (5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

SEE ALSO 
ipcs(l), msgctl(2), msgget(2), signal(5), stdipc(3C). 

STANDARDS CONFORMANCE 
msgrcv: SVID2, XPG2, XPG3 

msgsnd: SVID2, XPG2, XPG3 

94 (Section 2) -3- HP-UX Release 7.0: September 1989 



NICE(2) NICE(2) 

NAME 
nice - change priority of a process 

SYNOPSIS 
int nice (iner) 
int iner; 

DESCRIPTION 
Nice adds the value of incr to the nice value of the calling process. A process's nice value is a 
positive number for which a more positive value results in lower CPU priority. 

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. 
Requests for values above or below these limits result in the nice value being set to the 
corresponding limit. 

RETURN VALUE 
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

Note that nice assumes a user process priority value of 20. If the super-user of your system has 
changed the user process priority value to something less than 20, certain increments can cause 
nice to return -1, which is indistinguishable from an error return. 

ERRORS 
[EPERM] Nice will fail and not change the nice value if incr is negative or greater than 

40 and the effective user ID of the calling process is not super-user. 

SEE ALSO 
nice(1), exec(2). 

ST ANDARDS CONFORMANCE 
nice: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -1- (Section 2) 95 



OPEN(2) OPEN(2) 

NAME 
open - open file for reading or writing 

SYNOPSIS 
#include <sysjtypes.h> 
#indude <sysistat.h> 
#include <fcntl.h> 

int open (path, oflag [ , mode ] ) 
char *path; 
int oflag; 
mode_t mode; 

DESCRIPTION 
Path points to a path name naming a file; it must not exceed PATH_MAX bytes in length. Open 
opens a file descriptor for the named file and sets the file status flags 'according to the value of 
oflag. Oflag values are constructed by OR-ing flags from the list below. 

Exactly one of the flags O_RDONLY, O_WRONLY, or O_RDWR must be used in composing the 
value of oflag. If none or more than one is used, the behavior is undefined. Several other flags 
listed below can be changed by using fcntl while the file is open. See fcntl(2) and fcntl(S) for 
details. 

O_RDONLY 

O_NDELAY 

Open for reading only. 

Open for writing only. 

Open for reading and writing. 

This flag might affect subsequent reads and writes. See read(2) and write(2). 

When opening a FIFO with O_RDONLY or O_WRONLY set: 

If O_NDELAY is set: 

An open for reading-only returns without delay. An open for writing­
only returns an error if no process currently has the file open for read­
ing. 

If O_NDELAY is clear: 

An open for reading-only does not return until a process opens the file 
for writing. An open for writing-only does not return until a process 
opens the file for reading. 

When opening a file associated with a communication line: 

If O_NDELAY is set: 

The open returns without waiting for carrier. 

If O_NDELAY is clear: 

The open does not return until carrier is present. 

O_NONBLOCK Same effect as O_NDELAY for open(2), but slightly different effect in read(2) 
and write(2). Only one of O_NONBLOCK and O_NDELA Y may be specified. 

96 (Section 2) 

If set, the file offset is set to the end of the file prior to each write. 

If the file exists, this flag has no effect, except as noted under O_EXCL below. 
Otherwise, the owner ID of the file is set to the effective user ID of the process, 
the group ID of the file is set to the effective group ID of the process if the set­
group-ID bit of the parent directory is not set, or to the group ID of the parent 
directory if the set-group-ID bit of the parent directory is set. The file access 

-1- HP-UX Release 7.0: September 1989 



OPEN(2) OPEN(2) 

permission bits of the file mode are set to the value of mode modified as fol­
lows (see creat(2»: 

For each bit set in the file mode creation mask of the process, the 
corresponding bit in the new file's mode is cleared (see umask(2». 

The "save text image after execution II bit of the mode is cleared. See 
chmod(2). 

On systems \vith access control lists, three base .A .. CL entries are created 
corresponding to the file access permissions (see acl(5». 

If the file exists, its length is truncated to 0 and the mode and owner are 
unchanged. 

If O_EXCL and O_CREAT are set, open fails if the file exists. 

O_NOCTTY If set, and path identifies a terminal device, open does not cause the terminal to 
become the controlling terminal for the process. 

O_SYNC If a file is opened with O_SYNC or if that flag is set with the F _SETFL option of 
fcntl, file system writes for the file are done through the cache to the disk as 
soon as possible, and the process blocks until this is completed. This flag is 
ignored by all I/O calls except write, and is ignored for files other than ordi­
nary files and block special devices on those systems that permit I/O to block 
special devices. 

The name O_SYNCIO is a synonym for O_SYNC, and is defined for backward compatibility in 
<fcntl.h>. 

The file pointer used to mark the current position within the file is set to the beginning of the 
file. 

The new file descriptor is set to remain open across exec system calls; see fcntl (2). 

EXAMPLES 
The following call to open opens file inputfile for reading only and returns a file descriptor for 
inputfile. For an example of reading from file inputfile, see the read(2) manual page. 

int myfd; 

myfd = open (llinputfile ll , O_RDONLY); 

The following call to open opens file outputfile for writing and returns a file descriptor for 
outputfile. For an example of pre allocating disk space for outputfile, see the prealloc(2) manual 
page. For an example of writing to outputfile, see the write(2) manual page. 

int outfd; 
outfd = open (" outputfile II , 0_ WRONLY); 

RETURN VALUE 
Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

ERRORS 
Open fails and the file is not opened if one of the following conditions is true. Errno is set 
accordingly: 

[EACCES] 

[EACCES] 

[EACCES] 

Oflag permission is denied for the named file. 

A component of the path prefix denies search permission. 

The file does not exist and the directory in which the file is to be created does 
not permit writing. 

HP-UX Release 7.0: September 1989 -2- (Section 2) 97 



OPEN(2) 

[EAGAIN1 

[EAGAIN) 

[EEXIST) 

[EFAULT1 

[EINTR) 

[EINVAL] 

[EINVAL] 

[EISDIR) 

[ELOOP) 

[EMFILE) 

OPEN(2) 

One or more segments of a pre-existing file have been locked with lockf or 
fcntl by some other process, and O_TRUNC is set. 

The file exists, enforcement mode file/record locking is set, and there are out­
standing record locks on the file (see chmod(2». 

O_CREAT and O_EXCL are set, and the named file exists. 

Path points outside the allocated address space of the process. 

A signal was caught during the open system call, and the system call was not 
restarted (see signal(5) and sigvector(2». 

Oflag specifies both O_WRONLY and O_RDWR. 

Oflag specifies both O_NONBLOCK and O_NDELAY. 

The named file is a directory and oflag is write or read/write. 

Too many symbolic links are encountered in translating the path name. 

The maximum number of file descriptors allowed are currently open. 

[ENAMETOOLONG) 
The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of· the path name exceeds NAME_MAX bytes while 
_POSIX_NO_ TRUNC is in effect. 

[ENFILE) The system file table is full. 

[ENOENT) 

[ENOTDIR) 

[ENXIO) 

[ENXIO) 

[EROFS) 

[ETXTBSY) 

DEPENDENCIES 

The named file does not exist (for example, path is null or a component of path 
does not exist, or the file itself does not exist and O_CREAT is not set). 

A component of the path prefix is not a directory. 

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process 
has the file open for reading. 

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist. 

The named file resides on a read-only file system and oflag is write or 
read/write. 

The file is open for execution and oflag is write or read/write. Normal execut­
able files are only open for a short time when they start execution. Other exe­
cutable file types may be kept open for a long time, or indefinitely under some 
circumstances. 

HP Clustered Environment: 

AUTHOR 

Attempting to open a device file with a st_rcnode value that does not match the cnode ID 
of the machine on which the calling process is running (or "0") will fail with an EOPNOT­
SUPP error. 

Open was developed by HP, AT&T, and the University of California, Berkeley. 

SEE ALSO 
chmod(2), close(2), creat(2), dup(2), fcntl(2), lockf(2), Iseek(2), read(2), select(2), setacl(2), 
umask(2), write(2), acl(5), fcntl(5), signal(5). 

STANDARDS CONFORMANCE 
open: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

98 (Section 2) -3- HP-UX Release 7.0: September 1989 



PATHCONF(2) PATHCONF(2) 

NAME 
pathconf, fpathconf - get configurable pathname variables 

SYNOPSIS 
#include <unistd.h> 

long pathconf (path, name) 
char *pathi 
iot name; 

long fpathconf (fildes, name) 
int fildes, namei 

DESCRIPTION 
The pathconf and fpathconf functions provide a method for applications to determine the value 
of a configurable limit or option associated with a file or directory (see limits(S) and 
<unistd.h> ). 

For pathconf, the path argument points to the path name of a file or directory. 

For fpathconf, the fildes argument is an open file descriptor. 

For both functions, the name argument represents the variable to be queried regarding the file or 
directory to which the other argument refers. 

The following table lists the configuration variables available from pathconf and fpathconf, and 
lists for each variable the associated value of the name argument: 

Variable I Value of name I Notes ------------------------------1----------------------------1------
LINK_MAX I _PC_LINK_MAX I 1 
MAX_CANON I _PC_MAX_CANON I 2 
MAX_INPUT I _PC_MAX_INPUT I 2 
NAME MAX I PC NAME MAX I 3, 4 
PATH_MAX : =PC=PATH __ MAX: 4, S 
PIPE_BUF I _PC_PIPE_BUF I 6 
_POSIX_CHOWN_RESTRICTED I _PC_CHOWN_RESTRICTED 1 7, 8 
_POSIX_NO_TRUNC I _PC_NO_TRUNC I 3,4 
_PO SIX_ VDISABLE I _PC_ V _DISABLE I 2 

The variables in the table are defined as constants in <limits.h> or <unistd.h> if they do not 
vary from one pathname to another. The associated values of the name argument are defined in 
<unistd.h>. 

RETURN VALUE 
The following Notes further qualify the table above. 

1. If path or fildes refers to a directory, the value returned applies to the directory itself. 

2. If the variable is constant, the value returned is identical to the variable's definition in 
<limits.h> or <unistd.h> regardless of the type of fildes or path. The behavior is 
undefined if path or fildes does not refer to a terminal file. 

3. If path or fildes refers to a directory, the value returned applies to the filenames within the 
directory. 

4. If path or fildes does not refer to a directory, pathconf or fpathconf returns -1 and sets 
errno to EINV AL. 

S. If path or fildes refers to a directory, the value returned is the maximum length of a rela­
tive path name when the specified directory is the working directory. 

6. If path refers toa FIFO, or fildes refers to a pipe or FIFO, the value returned applies to the 
pipe or FIFO itself. If path or fildes refers to a directory, the value returned applies to any 

HP-UX Release 7.0: September 1989 -1- (Section 2)99 



PATHCONF(2) PATHCONF(2) 

FIFOs that exist or can be created within the directory. If PIPE_BUF is a constant, the 
value returned is identical to the definition of PIPE_BUF in <limits.h> regardless of the 
type of fildes or path. The behavior is undefined for a file othE.!r than a directory, FIFO, or 
pipe. 

7. If path or fildes refers to a directory, the value returned applies to files of any type, other 
than directories, that exist or can be created within the directory. 

8. _POSIX_CHOWN_RESTRICTED is defined if the privilege group PRIV _GLOBAL has 
been granted the CHOWN privilege. (See getprivgrp(2) and chown(2).) In all other cases, 
_POSIX_CHOWN_RESTRICTED is undefined and pathconf or fpathconf returns -1 
without changing errno. To determine if chown can be performed on a file, it is simplest 
to attempt the chown operation and check the return value for failure or success. 

If the variable corresponding to name is not defined for path or fildes, the pathconf and fpathconf 
functions succeed and return a value of -1, without changing the value of errno. 

Upon any other successful completion, these functions return the value of the named variable 
with respect to the specified file or directory, as described above. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
The pathconf and fpathconf functions fail if one of the following is true: 

[EACCES] 

[EBADF] 

[EFAULT] 

[EINVAL] 

[ELOOP] 

A component of the path prefix denies search permission. 

The fildes argument is not a valid open file descriptor. 

Path points outside the allocated address space of the process. 

The value of name is not valid, or the implementation does not support an 
association of the variable name with the specified file. 

Too many symbolic links were encountered in translating path. 

[ENAMETOOLONG] 
The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect. 

[ENOENT] The file named by path does not exist (for example, path is null or a com­
ponent of path does not exist). 

[ENOTDIR] A component of the path prefix is not a directory. 

EXAMPLES 
The following example sets val to the value of MAX_CANON for the device file being used as 
the standard input. If the standard input is a terminal, this value is the maximum number of 
input characters that can be entered on a single input line before typing the newline character: 

if (isatty(O» 
val = fpathconf(O, _PC_MAX_CANON); 

The following code segment shows two calls to pathconf, one to determine whether a file name 
longer than NAME_MAX bytes will be truncated to NAME_MAX bytes in the Itmp directory, 
and if so, another call to determine the actual value of NAME_MAX so that an error can be 
printed if a user-supplied file name, stored in filebuf, will be truncated in this directory: 

extern int errno; 
char *filebuf; 

errno = 0; /* reset errno * / 

100 (Section 2) -2- HP-UX Release 7.0: September 1989 



PATHCONF(2) 

if (pathconf(lI/tmpll _PC_NO_TRUNC) == -1 ) 
r _POSIX_NO_ TRUNC is not in effect for this directory * / 
if (strlen(filebuf) > pathconf(lI/tmpll, PC_NAME_MAX» { 

fprintf(stderr, "Filename %s too long.\n ll , filebuf); 
r take error action * / 

} 
else 

if (ermo) { 
perror(lIpathconfll ); 
r take error action * / 

} 
/* otherwise, _POSIX_NO_TRUNC is in effect for this directory */ 
if «fd = open(filebuf, O_CREAT, mode» < 0) 

perror(filebuf); 

DEPENDENCIES 
NFS/RFA 

ERRORS 

PATHCONF(2) 

[EOPNOTSUPPj Path or fildes refers to a file for which a value for name cannot be 
determined. In particular, _PC_LINK_MAX, _PC_NAME_MAX, 
_PC_PATH_MAX, _PC_CHOWN_RESTRICTED, and 
_PC_NO_TRUNC, cannot be determined for an NFS or RFA file. 

AUTHOR 
Pathconf and fpathconf were developed by HP. 

SEE ALSO 
errno(2), chown(2}, limits(5}, unistd(5}, termio(7}. 

STANDARDS CONFORMANCE 
pathconf: XPG3, POSIX.1, FIPS 151-1 
fpathconf: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -3- (Section 2) 101 



PAUSE(2) 

NAME 
pause ~ suspend process until signal 

SYNOPSIS 
pause () 

DESCRIPTION 

PAUSE(2) 

Pause suspends the calling process until it receives a signal. The signal must be one that is not 
currently set to be ignored or blocked (masked) by the calling process. 

If the signal causes termination of the calling process, pause will not return. 

If the signal is caught by the calling process and control is returned from the signal-catching 
function (see signal(5», the calling process resumes execution from the point of suspension; 
with a return value of -1 from pause and errno set to EINTR. 

WARNING 
Check all references to signal (5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

SEE ALSO 
alarm(2), kill(2), sigvector(2), wait(2), signal(5). 

STANDARDS CONFORMANCE 
pause: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

102 (Section 2) -1- HP-UX Release 7.0: September 1989 



PIPE(2) 

NAME 
pipe - create an interprocess channel 

SYNOPSIS 
int pipe (fildes) 
int fildes[2]; 

DESCRIPTION 

PIPE(2) 

Pipe creates an I/O mechanism called a pipe and returns two file descriptors, fildes[O] and 
fildes[l]. Fildes[O] is opened for reading and fildes[l] is opened for writing. 

A read-only file descriptor fildes[O] accesses the data written to fildes[l] on a first-in-first-out 
(FIFO) basis. For details of the I/O behavior of pipes see read(2) and write(2). 

EXAMPLES 
The following example uses pipe to implement the command string "ls I sort": 

#include <sys/types.h> 
pid_t pid; 
int pipefd[2]; 

/* Assumes file descriptor 0 and 1 are open * / 
pipe (pipefd); 

if «pid = fork()) == (pid_t)O) { 
close(l); /* close stdout * / 
dup (pipefd[1 ]); 
execlp ("ls", "Is", (char *)0); 

} 
else if (pid > (pid_t)O) { 

close(O); /* close stdin * / 
dup (pipefd[O]); 
execlp ("sort", "sort", (char *)0); 

} 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Pipe fails if one or more of the following is true: 

[EMFILE] 

[ENFILE] 

[ENOSPC] 

SEE ALSO 

NFILE - 1 or more file descriptors are currently open. 

The system file table is full. 

The file system lacks sufficient space to create the pipe. 

sh(l}, read(2), write(2}, popen(3S). 

STANDARDS CONFORMANCE 
pipe: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 103 



PLOCK(2) PLOCK(2) 

NAME 
plock - lock process, text, or data in memory 

SYNOPSIS 
#include <sysjlock.h> 

int plock (op) 
int 0Pi 

DESCRIPTION 
Plock allows the calling process to lock the text segment of the process (text lock), its data seg­
ment (data lock), or both its text and data segment (process lock) into memory. Locked seg­
ments are immune to all routine swapping. Plock also allows these segments to be unlocked. 
To use this call, the calling process must be a member of a privilege group allowing plock (see 
setprivgrp on getprivgrp(2» or the effective user ID of the calling process must be super-user. 
Op specifies the following: . 

PROCLOCK lock text and data segments into memory (process lock) 

TXTLOCK lock text segment into memory (text lock) 

DATLOCK 

UNLOCK 

EXAMPLES 

lock data segment into memory (data lock) 

remove locks 

The following call to plock locks the calling process in memory: 

plock (PROCLOCK)i 

RETURN VALUE 
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

ERRORS 
Plock will fail and not perform the requested operation if one or more of the following are true: 

[EPERM] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[ENOMEM] 

SEE ALSO 

The effective user ID of the calling process is not super-user and the user does 
not have PRIV _MLOCK. 

Op is equal 'to PROCLOCK and a process lock, a text lock, or a data lock already 
exists on the calling process. 

Op is equal to TXTLOCK and a text lock, or a process lock already exists on the 
calling process. 

Op is equal to DATLOCK and a data lock, or a process lock already exists on the 
calling process. 

Op is equal to UNLOCK and no type of lock exists on the calling process. 

Op is not equal to either PROCLOCK, TXTLOCK, DA TLOCK, or UNLOCK. 

Plock not allowed in [vfork, exec] window (see vfork(2». 

There is not sufficient lockable memory in the system to satisfy the locking 
request. 

exec(2), exit(2), fork(2). 

STANDARDS CONFORMANCE 
plock: SVID2, XPG2 

104 (Section 2) -1- HP-UX Release 7.0: September1989 



PREALLOC(2) PREALLOC(2) 

NAME 
prealloc - preallocate fast disk storage 

SYNOPSIS 
int prealloc (fildes, size) 
int fildes; 
unsigned size; 

DESCRIPT!ON 
Fildes is a file descriptor obtained from a creat, pen, dup, or fcntl system call for an ordinary file 
of zero length. It must be opened writable, since it will be written to by prealloc. Size is the size 
in bytes to be preallocated for the file specified by fildes. At least size bytes will be allocated. 
space is be allocated in an implementation-dependent fashion for fast sequential reads and 
writes. The EOF in an extended file will be left at the end of the preallocated area. The current 
file pointer is left at zero. The file is zero-filled. 

Using prealloc on a file does not give the file an attribute that is inherited when copying or res­
toring the file using a program such as cp(l) or tar(l). It simply ensures that disk space has 
been preallocated for size bytes in a manner suited for sequential access. The file can be 
extended beyond these limits by write operations past the original end of file. However, this 
space will not necessarily be allocated using any special strategy. 

EXAMPLES 
Assuming a process has opened a file for writing, the following call to prealloc preallocates at 
least 50000 bytes on disk for the file represented by file descriptor outfd: 

prealloc (outfd, 50000); 

DEPENDENCIES 
Since the exact effect and performance benefits obtainable by using this call vary with the 
implementation of the file system, performance related details are described in the system 
administrator manuals for each specific machine. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Prealloc will fail and no disk space will be allocated if one or more of the following are true: 

[EBADF] Fildes is not a valid open file descriptor opened for writing. 

[ENOTEMPTY] Fildes not associated with an ordinary file of zero length. 

[ENOSPC] Not enough space left on device to allocate the requested amount; no space 
was allocated. 

[EFBIG] Size exceeds the maximum file size or the process's file size limit. See ulimit(2). 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 
is returned and errno is set to indicate the error. 

AUTHOR 
Prealloc was developed by the Hewlett-Packard Company. 

SEE ALSO 
prealloc(l), creat(2), dup(2), fcntl(2), open(2), read(2), ulimit(2), write(2). 

WARNINGS 
The allocation of the file space is highly dependent on current disk usage. A successful return 
does not tell you how fragmented the file actually might be if the disk is nearing its capacity. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 105 



PROFIL(2) PROFIL(2) 

NAME 
profil - execution time profile 

SYNOPSIS 
#include <sys/param.h> 

void profil (buff, bufsiz, offset, scale) 
char *buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the 
user's program counter (pc) is examined each clock tick, offset is subtracted from it, and the 
result is multiplied by scale. If the resulting number corresponds to a word inside buff, that 
word is incremented. The number of samples per second for a given implementation is given 
by HZ as found in <sys/param.h> 

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 
0177777 (octal) gives a 1-1 mapping of pc's to words in buff; 077777 (octal) maps each pair of 
instruction words together. 02(octal) maps all instructions onto the beginning of buff (producing 
a non-interrupting core clock). 

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 
O. Profiling is turned off when an exec is executed, but remains on in child and parent both 
after a fork. Profiling will be turned off if an update in buff would cause a memory fault. 

RETURN VALUE 
Not defined. 

SEE ALSO 
prof(1), monitor(3C). 

STANDARDS CONFORMANCE 
profil: SVID2, XPG2 

106 (Section 2) -1- HP-UX Release 7.0: September 1989 



PTRACE(2) PTRACE(2) 

NAME 
ptrace - process trace 

SYNOPSIS 
#include <sys/ptrace.h> 

int ptrace(request, pid, addr, data, addr2)i 
int request, pid, addr, data, addr2i 

REMARKS 
Much of the functionality of this capability is highly dependent on the underlying hardware. 
An application that uses this system call should not be expected to be portable across architec­
tures or implementations. 

DESCRIPTION 
Ptrace provides a means by which a process may control the execution of another process. Its 
primary use is for the implementation of breakpoint debugging; see adb(l). The traced process 
behaves normally until it encounters a signal (see signal (2) for the list), at which time it enters a 
stopped state and the tracing process is notified via wait(2). When the traced process is in the 
stopped state, the tracing process can examine and modify the IIcore imagell using ptrace. Also, 
the tracing process can cause the traced process either to terminate or continue, with the possi­
bility of ignoring the signal that caused it to stop. 

The request argument determines the precise action to be taken by ptrace and is one of the fol­
lowing: 

PT _SETTRC This request must be issued by a child process if it is to be traced by its parent. 
It turns on the child's trace flag that stipulates that the child should be left in a 
stopped state upon receipt of a signal rather than the state specified by June; 
see signal(2). The pid, addr, data, and addr2 arguments are ignored, and a 
return value is not defined for this request. Peculiar results ensue if the parent 
does not expect to trace the child. 

The remainder of the requests can only be used by the tracing process. For each, pid is the pro­
cess ID of the process being traced, which must be in a stopped state before these requests are 
made. 

PT _RIUSER, PT _RDUSER 
With these requests, the word at location addr in the address space of the 
traced process is returned to the tracing process. If instruction (I) and data (D) 
space are separated, request PT _RIUSER returns a word from 1 space, and 
request PT _RDUSER returns a word from D space. If 1 and D space are not 
separated, either request PT _RIUSER or request PT _RDUSER may be used 
with equal results. The data and addr2 arguments are ignored. These two 
requests fail if addr is not the start address of a word, in which case a value of 
-1 is returned to the tracing process and its errno is set to EIO. 

PT _RUAREA With this request, the word at location addr in the USER area of the traced pro­
cess in the system's address space (see <sysjuser.h» is returned to the tracing 
process. Addresses in this area are system dependent, but start at zero. The 
limit can be derived from <sysjuser.h>. The data and addr2 arguments are 
ignored. This request fails if addr is not the start address of a word or is out­
side the area, in which case a value of -1 is returned to the tracing process and 
its errno is set to EIO. 

PT _ WIUSER, PT _ WDUSER 
With these requests, the value given by the data argument is written into the 
address space of the traced process at location addr. Request PT _ WIUSER 

HP-UX Release 7.0: September 1989 -1- (Section 2) 107 



PTRACE(2) PTRACE(2) 

writes a word into I space, and request PT _ WDUSER writes a word in 0 
space. Upon successful completion, the value written into the address space of 
the traced process is returned to the tracing process. The addr2 argument is 
ignored. These two requests fail if addr is not the start address of a word, or if 
addr is a location in a pure procedure space and either another process is exe­
cuting in that space or the tracing process does not have write access for the 
executable file corresponding to that space. Upon failure a value of -1 is 
returned to the tracing process and its errno is set to EIO. 

PT _ WUAREA With this request, a few entries in the traced process' USER area can be writ­
ten. Data gives the value that is to be written and addr is the location of the 
entry. The addr2 argument is ignored. The few entries that can be written are 
dependent on the architecture of the system, but include the user data registers, 
auxiliary data registers, and status register (the set of registers, or bits in regis­
ters, which the user's program could modify). 

PT _ CONTIN This request causes the traced process to resume execution. If the data argu­
ment is 0, all pending signals including the one that caused the traced process 
to stop are canceled before it resumes execution. If the data argument is a 
valid signal number, the traced process resumes execution as if it had incurred 
that signal, and any other pending signals are canceled. The addr argument 
must be equal to 1 for this request. The addr2 argument is ignored. Upon suc­
cessful completion, the value of data is returned to the tracing process. This 
request fails if data is not 0 or a valid signal number, in which case a value of 
-1 is returned to the tracing process and its errno is set to EIO. 

PT _EXIT This request causes the traced process to terminate with the same consequences 
as exit(2). The addr, data, and addr2 arguments are ignored. 

PT _SINGLE This request causes a flag to be set so that an interrupt occurs upon the com­
pletion of one machine instruction, and then executes the same steps as listed 
above for request PT_CONTIN. If the processor does not provide a trace bit, 
this request returns an error. This effectively allows single stepping of the 
traced process. 

Whether or not the trace bit remains set after this interrupt is a function of the 
hardware. 

PT _ATTACH This request stops the process identified by pid and allows the calling process 
to trace it. Process pid does not have to be a child of the calling process, but 
the effective user ID of. the calling process must match the real and saved uid 
of process pid (unless the effective user ID of the tracing process is superuser). 
The calling process can use the wait(2) system call to wait for process pid to 
stop. The addr, data, and addr2 arguments are ignored. 

PT_DETACH This request detaches the traced process pid and allows it to continue its execu-
tion in the manner of PT_CONTIN. 

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent exec(2) calls. If 
a traced process calls exec, it stops before executing the first instruction of the new image show­
ing signal SIGTRAP. 

ERRORS 

108 

In general, ptrace fails if one or more of the following is true: 

[EIO] 

[EPERM] 

(Section 2) 

Request is an illegal number. 

The specified process cannot be attached for tracing. 

-2- HP-UX Release 7.0: September 1989 



PTRACE(2) PTRACE(2) 

[ESRCH] Pid identifies a process to be traced that does not exist or has not executed a 
ptrace with request PT _SETTRC. 

DEPENDENCIES 
Series 300 

The following additional requests are available: 

PT _RFPREGS With this request, the child's floating point accelerator register set is 
returned to the parent process in addr. Addr must be the address of a 
buffer of at least 136 bytes. The first 128 bytes contains the 16 double 
precision floating point registers and the next 8 bytes contains the status 
and control registers. The data argument is ignored. This request fails if 
the child process is not using the floating point accelerator, in which case 
a value of -1 is returned to the parent process and the parent's errno is 
set to EIO. This request also fails if addr is a bad address, in which case a 
value of -1 is returned to the parent process and the parent's errno is set 
to EFAULT. 

PT _ WFPREGS With this request, the child's floating point accelerator register set is writ­
ten from the buffer pointed to by addr. Addr must be the address of a 
buffer of at least 136 bytes. The first 128 bytes contains the new values 
for the 16 double precision floating point registers and the next 8 bytes 
contains the new values for the status and control registers. The data 
argument is ignored. This request fails if the child process is not using the 
floating point accelerator, in which case a value of -1 is returned to the 
parent process and the parent's errno is set to EIO. This request also fails 
if addr is a bad address, in which case a value of -1 is returned to the 
parent process and the parent's errno is set to EFAULT. 

Series 800 
The request PT_WUAREA is not supported. Therefore, it returns -I, sets errno to EIO 
and does not affect the USER area of the traced process. 

If the addr argument to a PT_CONTIN or PT_SINGLE request is not I, the Instruction 
Address Offset Queue (program counter) is loaded with the values addr and addr+4 before 
execution resumes. Otherwise, execution resumes from the point where it was inter­
rupted. 

If the addr argument to a PT _DETACH request is not I, the Instruction Address Offset 
Queue is loaded with the values addr and addr2. 

Additional requests are available: 

PT _RUREGS With this request, the word at location addr in the save_state structure at 
the base of the per-process kernel stack is returned to the tracing process. 
Addr must be word-aligned and less than STACKSIZE*NBPG (see 
<sys/param.h> and <machine/param.h». The save_state structure 
contains the registers and other information about the process. The data 
and addr2 arguments are ignored. 

PT _ WUREGS The save_state structure at the base of the per-process kernel stack is 
written, as it is read with request PT _RUREGS. Only a few locations can 
be written in this way: the general registers, most floating point registers, 
a few control registers, and certain bits of the interruption processor 
status word. The addr2 argument is ignored. 

PT_RDTEXT, PT_RDDATA 
These requests are identical to PT _RIUSER and PT _RDUSER except that 
the data argument specifies the number of bytes to read and the addr2 

HP-UX Release 7.0: September 1989 -3- (Section 2) 109 



PTRACE(2) PTRACE(2) 

argument specifies where to store that data in the tracing process. 

PT_WRTEXT, PT_WRDATA 
These requests are identical to PT _ WIUSER and PT _ WDUSER except 
that the data argument specifies the number of bytes to write and the 
addr2 argument specifies where to read that data in the tracing process. 

SEE ALSO 
adb(1), exec(2), signal(2), wait(2). 

STANDARDS CONFORMANCE 
ptrace: SVID2, XPG2 

110 (Section 2) -4- HP-UX Release 7.0: September 1989 



READ(2) READ(2) 

NAME 
read, readv - read input 

SYNOPSIS 
int read (fildes, buf, nbyte) 
int fildes; 
char *buf; 
unsigned nbyte; 

#include <sysjtypes.h> 
#include <sysjuio.h> 

int readv (fildes, iov, iovcnt) 
int fildes; 
struet iovec *iov; 
int iovcnt; 

DESCRIPTION 
Read attempts to read nbyte bytes from the file associated with the file descriptor into the buffer 
pointed to by buf. Readv performs the same action but scatters the input data into the iovcnt 
buffers specified by the elements of the iovec array: iov[O], iov[I], ... , iov[ iovcnt - 1]. 

For readv, the iovec structure is defined as: 

struct iovec { 

}; 

caddct iov _base; 
int iov _len; 

Each iovec entry specifies the base address and length of an area in memory where data should 
be placed. Readv always fills one area completely before proceeding to the next area. The 
iovec array can be at most MAXIOV long. 

On devices capable of seeking, the read starts at a position in the file given by the file offset 
associated with fildes. Upon return from read, the file offset is incremented by the number of 
bytes actually read. 

Devices incapable of seeking always read from the current position. The value of a file offset 
associated with such a device is undefined. 

When attempting to read from a regular file with enforcement-mode file and record locking set 
(see chmod(2», and the segment of the file to be read is blocked by a write lock owned by 
another process, the behavior is determined by the O_NDELAY and O_NONBLOCK file status 
flags: 

If O_NDELAY or O_NONBLOCK is set, the read function returns -1 and errno is set to 
EAGAIN. 

If O_NDELAY and O_NONBLOCK are clear, the read function does not return until the 
blocking write lock is removed. 

When attempting to read from an empty pipe (or FIFO): 

If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN. 

If O_NDELAY is set, the read returns a O. 

If O_NDELAY and O_NONBLOCK are clear, the read blocks until data is written to the 
file or the file is no longer open for writing. 

When attempting to read a file associated with a tty that has no data currently available: 

HP-UX Release 7.0: September 1989 -1- (Section 2) 111 



READ(2) 

If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN. 

If O_NDELAY is set, the read returns a O. 

READ(2) 

If O_NDELAY and O_NONBLOCK are clear, the read blocks until data becomes avail­
able. 

RETURN VALUE 
Upon successful completion, read returns the number of bytes actually read and placed in the 
buffer; this number may be less than nbyte if 

the file is associated with a communication line (see ioctl(2) and termio(7», or 
the number of bytes left in the file is less than nbyte bytes. 

When an end-of-file is reached, a value of 0 is returned Otherwise, a -1 is returned and errno 
is set to indicate the error. 

ERRORS 
Read fails if one of the following conditions is true: 

[EBADF] 

[EINTR] 

[EAGAIN] 

[EDEADLK] 

[EFAULT] 

[EIO] 

[EISDIR] 

[ENOLCK] 

Fildes is not a valid file descriptor open for reading. 

A signal was caught during the read system call. 

Enforcement-mode file and record locking is set, O_NDELAY or 
O_NONBLOCK is set, and there is a blocking write lock. 

A resource deadlock would occur as a result of this operation (see lockf(2) and 
fcntl(2». 

Buf points outside the allocated address space. The reliable detection of this 
error is implementation dependent. 

The process is in a background process group and is attempting to read from 
its controlling terminal, and either the process is ignoring or blocking the 
SIGTTIN signal or the process group of the process is orphaned. 

An attempt was made to read a directory on an NFS file system using the read 
system call. 

The system record lock table is full, preventing the read from sleeping until the 
blocking write lock is removed. 

In addition, readv can return one of the following errors: 

[EFAULT] 
Iov_base or iov points outside of the allocated address space. The reliable detection of 
this error is implementation dependent. 

[EINVAL] 
Iovcnt is less then or equal to 0, or greater than MAXIOV. 

[EINVAL] 
The sum of iov _len values in the iov array exceeded UINT _MAX (see <limits.h». 

EXAMPLES 
Assuming a process opened a file for reading, the following call to read (2) reads BUFSIZ bytes 
from the file into the buffer pointed to by mybuf: 

#include <stdio.h> /* include this for BUFSIZ definition * / 
char mybuf[BUFSIZ]; 
int nbytes, fildes; 

nbytes = read (fildes, mybuf, BUFSIZ); 

112 (Section 2) -2- HP-UX Release 7.0: September 1989 



READ(2) READ(2) 

WARNINGS 
Record locking might not be enforced by the system, depending on the setting of the file's 
mode bits (see lockf(2». 

The character-special devices, and raw disks in particular, apply constraints on how read can be 
used. See the specific Section (7) entries for details on particular devices. 

Check all references to signal (5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

In general, avoid using read to get the contents of a directory; use the readdir library routine, see 
directory(3C}. 

DEPENDENCIES 
NFS 

When obtaining the contents of a directory on an NFS file system, the readdir library 
routine must be used; see directory(3C}. Read returns with an error if used to read a 
directory using NFS. 

AUTHOR 
Read was developed by HP, AT&T, and the University of California, Berkeley. 

SEE ALSO 
creat(2), dup(2), fcntl(2), ioctl(2), lockf(2), open(2), pipe(2), select(2), ustat(2), tty(7), 
directory(3C}. 

STANDARDS CONFORMANCE 
read: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -3- (Section 2) 113 



READLINK(2) READLINK(2) 

NAME 
readlink - read value of a symbolic link 

SYNOPSIS 
readlink(path, buf, bufsiz) 
char *path, *buf; 
int bufsiz; 

DESCRIPTION 
Readlink obtains the path name pointed to by the symbolic link, path. This path name is placed 
in the buffer buf, which has size bufsiz. The path name is not null terminated when returned. 

RETURN VALUE 
If the call succeeds, it returns the count of characters placed in the buffer. If an error occurs, it 
returns a -1 and places the error code in the global variable errno. 

ERRORS 
Readlink will fail and the file mode will be unchanged if: 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EINVAL] 

[EFAULT] 

AUTHOR 

A component of path exceeds NAME_MAX bytes while _POSIX_NO_ TRUNC is in 
effect, or path exceeds PATH_MAX bytes. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the path name. 

The named file is not a symbolic link. 

Buf points outside the process' allocated address space. Reliable detection of 
this error is implemenation dependent. 

Readlink was developed by the University of California, Berkeley. 

SEE ALSO 
stat(2), Istat(2), symlink(2), symlink( 4). 

114 (Section 2) -1- HP-UX Release 7.0: September 1989 



REBOOT(2) REBOOT(2) 

NAME 
reboot - boot the system 

SYNOPSIS 
#include <sys/reboot.h> 

int reboot (RB_AUTOBOOT [I RB_NOSYNC); 
int reboot (RB_HALT [I RB_NOSYNC); 
int reboot (howto, device_file [, filename [, server_linkaddress]]); 
int howto; 
char *device_file, * filename; 
char *server_linkaddress; 

DESCRIPTION 
Reboot causes the system to reboot. Howto is a mask of reboot options (see <sys/reboot.h», 
specified as follows: 

RB_NEWFILE 

RB_NEWSERVER 

A file system sync is performed (unless RB_NOSYNC is set) and the pro­
cessor is rebooted from the default device and file. 

The processor is simply halted. A sync of the file system is performed 
unless the RB_NOSYNC flag is set. RB_HALT should be used with caution. 

A sync of the file system is not performed. 

The device_file argument is used as the file name of the device from 
which to reboot. 

The filename argument is used as the name of the file being rebooted. 

The additional optional parameter, server _linkaddress, specifies the ETH­
ERNET link address of a new boot server. The server _linkaddress is a 12-
character hexadecimal number that has the same format as the machine 
ID field of /etc/clusterconf. The Ox prefix is optional. 

This allows a standalone system or HP cluster server to reboot and join 
an HP cluster as a diskless client, or for an existing diskless client to join a 
different HP cluster. 

Device_file specifies the "boot device," the device from which the reboot occurs. Device_file 
must be a block or character special file name and is used only if the RB_NEWDEVICE option is 
set. 

If the RB_NEWFILE option is set, filename specifies the "boot file", the name of the file being 
rebooted. This file will be loaded into memory by the bootstrap and control passed to it. 

If the RB_NEWSERVER option is set, reboot(2) does not verify that server _linkaddress is a valid 
ETHERNET address, nor that the specified server is valid or provides the required service. 

If the boot device is not a LAN device, the server _linkaddress information is ignored. The boot 
device is considered a LAN device if the previous boot was from a LAN device or if a LAN dev­
ice is specified via the RB_NEWDEVICE option. 

Unless the RB_NOSYNC flag has been specified, reboot(2) unmounts all mounted file systems 
and marks them clean so that it will not be necessary to run fsck(lM) on these files systems 
when the system reboots. 

Only the super-user can reboot a machine. 

RETURN VALUE 
If successful, this call never returns. Otherwise, a -1 is returned and an error code is returned 
in the global variable errno. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 115 



REBOOT(2) REBOOT(2) 

ERRORS 
Reboot fails if any of the following is true: 

[EFAULT] Device_file points outside the allocated address space of the pro­
cess. 

[ENAMETOOLONC] 

[EINVAL] 

[ENET] 

[ENOENT] 

[ENOTDIR] 

the path name specified by device_file exceeds PATH_MAX bytes, 
or the length of a component of the path name exceeds 
NAME_MAX bytes while _POSIX_NO_TRUNC is in effect. 

Device_file is not a block or a character device. 

The device specified by device_file is remote. 

The file specified by deviccfile does not exist. 

A component of the path prefix specified by device_file is not a 
directory. 

[ENXIO] 

[EPERM] 

DEPENDENCIES 

The device named by device_file does not exist. 

The effective user ID of the caller is not super-user. 

Series 300 
Filename must be one of the files listed by the boot ROM at power-up. 

The default device, file, and server for RB_AUTOBOOT are those from which the system 
was previously booted. 

If the RB_NEWDEVICE option is used and device_file specifies a LAN device, the 
RB_NEWSERVER option and server _linkaddress parameter must also be used. 

If an invalid server _linkaddress is specified with the RB_NEWSERVER option, or if the 
requested server does not respond, the Series 300 boot ROM displays the message BOOT­
INC A SYSTEM and retries infinitely, or until the requested server responds or the system 
is rebooted manually. 

Series 800 

AUTHOR 

The RB_NEWDEVICE, RB_NEWFILE, and RB_NEWSERVER options and the device_file, 
filename and server _linkaddress parameters are ignored, and, therefore, none of the errors 
associated with them are returned. 

The default file and device for RB_AUTOBOOT are /hp-ux on the current root device. 

Reboot was developed by HP and the University of California, Berkeley. 

SEE ALSO 
reboot(1M), clusterconf(4). 

116 (Section 2) -2- HP-UX Release 7.0: September 1989 



RENAME(2) RENAME(2) 

NAME 
rename - change the name of a file 

SYNOPSIS 
#include <stdio.h> 

rename(source, target) 
const char *source, *target; 

DESCRIPTION 
Rename causes the file named source to be renamed target. If target exists, it is first removed. 
Both source and target must be of the same type (that is, either directories or non-directories), 
and must reside on the same file system. 

If target can be created or if it existed before the call, rename guarantees that an instance of tar­
get will exist, even if the system crashes in the midst of the operation. 

If the final component of source is a symbolic link, the symbolic link is renamed, not the file or 
directory to which the symbolic link points. 

RETURN VALUE 
If the operation succeeds, 0 is returned. If not, rename returns -1 and the global variable errno 
indicates the reason for the failure. 

ERRORS 
Rename will fail and neither file will be affected if any of the following is true: 

[EACCES] 

[EACCES] 

[EBUSY] 

[EFAULT] 

[EINVAL] 

[EISDIR] 

[ELOOP] 

[ENAMETOOLONG] 

[ENOENT] 

[ENOSPC] 

[ENOTDIR] 

[ENOTDIR] 

[ENOTEMPTY] 

[EROFS] 

A component of either path prefix denies search permission. 

The requested link requires writing to a directory without write permis­
sion. 

Target is an existing directory that is the mount point for a mounted file 
system. 

Source or target points outside the allocated address space of the process. 
The reliable detection of this error is implementation dependent. 

Source is a parent directory of target, or an attempt is made to rename "." 
or " .. ". 

Target is a directory, but source is not. 

Too many symbolic links were encountered in translating either path 
name. 

A component of either path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect, or the entire length of either path name 
exceeds PATH_MAX bytes. 

A component of the source path does not exist, or a path prefix of target 
does not exist. 

The destination directory cannot be extended, because of a lack of space 
on the file system containing the directory. 

A component of either path prefix is not a directory. 

Source is a directory, but target is not. 

Target is a directory and is not empty. 

The requested link requires writing in a directory on a read-only file sys­
tem. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 117 



RENAME(2) 

[EXDEV] 

AUTHOR 

RENAME(2) 

The paths named by source and target are on different logical devices (file 
systems). 

Rename was developed by the University of California, Berkeley California, Computer Science 
Division, Department of Electrical Engineering and Computer Science. 

SEE ALSO 
open(2). 

STANDARDS CONFORMANCE 
rename: XPG3, POSIX.1, FIPS 151-1, ANSI C 

118 (Section 2) -2- HP-UX Release 7.0: September 1989 



RMDIR(2) RMDIR(2) 

NAME 
rmdir - remove a directory file 

SYNOPSIS 
rmdir(path) 
char *pathi 

DESCRIPTION 
Rmdir removes a directory file whose name is given by path. The directory must be empty 
(except for files "." and " .. ") before it can be removed. 

RETURN VALUE 
A 0 is returned if the directory removal succeeds; otherwise, a -1 is returned and an error code 
is stored in the global location errno. 

ERRORS 
The named file is removed unless one or more of the following is true: 

[EACCES] A component of the path prefix denies search permission. 

[EACCES] 

[EBUSY] 

[EEXIST] 

[EFAULT] 

Write permission is denied on the directory containing the link to be removed. 

The directory to be removed is the mount point for a mounted file system. 

The named directory is not empty. It contains files other than "." and " .. ". 

Path points outside the process's allocated address space. The reliable detec­
tion of this error is implementation dependent. 

[ENAMETOOLONG] 

[ENOENT] 

[ENOTDIR] 

[EROFS] 

[EINVAL] 

[ELOOP] 

AUTHOR 

The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
]OSIX_NO_TRUNC is in effect. 

The named file does not exist. 

A component of the path is not a directory. 

The directory entry to be removed resides on a read-only file system. 

The path is ".". 

Too many symbolic links were encountered in translating the path name. 

Rmdir was developed by the University of California, Berkeley. 

SEE ALSO 
mkdir(2), unlink(2). 

ST ANDARDS CONFORMANCE 
rmdir: SVID2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 119 



RTPRIO(2) RTPRIO(2) 

NAME 
rtprio - change or read realtime priority 

SYNOPSIS 
#inc1ude <sysjrtprio.h> 

rtprio (pid, prio) 
int pid, prio; 

DESCRIPTION 
Rtprio is used to set or read the realtime priority of a process. If pid is zero, it names the calling 
process; otherwise it gives the pid of the process. When setting the realtime priority of another 
process, the real or effective user ID of the calling process must match the real or saved user ID 
of the process to be modified, or the effective user ID of the calling process must be that of 
super-user. The calling process must also be a member of a privilege group allowing rtprio (see 
getprivgrp(2» or the effective user ID of the calling process must be super-user. Simply reading 
realtime priorities requires no special privilege. 

Real time scheduling policies differ from the normal timesharing policies in that the realtime 
priority is used to absolutely order all realtime processes; this priority is not degraded over time. 
All realtime processes are of higher priority than normal user and system processes, although 
some system processes may run at realtime priorities. If there are several eligible processes at 
the same priority level, they will be run in a round robin fashion as long as no process with 
higher priority intervenes. A realtime process will receive cpu service until it either voluntarily 
gives up the cpu or is preempted by a process of equal or higher priority. Interrupts may also 
preempt a realtime process. 

Valid realtime priorities run from zero to 127. Zero is the highest (most important) priority. 
This realtime priority is inherited across forks and execs. 

Prio specifies the following: 

0-127 Set process to this realtime priority. 

RTPRIO_NOCHG 
Do not change realtime priority. This is used for reading the process realtime 
priority. 

RTPRIO_RTOFF Set this process to no longer have a realtime priority. It will resume a normal 
timesharing priority. Any process, regardless of privilege, is allowed to turn off 
its own realtime priority using a pid of zero. 

EXAMPLES 
The following call to rtprio sets the calling process to a real-time priority of 90: 

rtprio (0, 90); 

RETURN VALUE 
If no error occurs, rtprio will return the pid's former (before the call) realtime priority. If the 
process was not a realtime process, RTPRIO_RTOFF will be returned. If an error does occur, -1 is 
returned and errno is set to one of the values described in the ERRORS section. 

ERRORS 
[EINVAL] Prio is not RTPRIO_NOCHG, RTPRIO_RTOFF, or in the range of 0 to 127. 

[EPERM] 

[EPERM] 

120 (Section 2) 

The calling process is not the super-user and neither its real or effective 
user-id match the real or saved user-id of the process indicated by pid. 

The group access list of the calling process does not contain a group having 
PRIV _RTPRIO capability and prio is not RTPRIO_NOCHG, or RTPRIO_RTOFF with 
a pid of zero. 

-1- HP-UX Release 7.0: September 1989 



RTPRIO(2) RTPRIO(2) 

[ESRCH] 

DEPENDENCIES 

No process can be found corresponding to that specified by pid. 

Series 800: 

AUTHOR 

Because processes executing at realtime priorities get scheduling preference over a system 
process executing at a lower priority, unexpected system behavior can occur after a power 
failure. For example, when init(lM) receives the powerfail signal SIGPWR, it normally 
reloads programmable hardware such as terminal multiplexers. If a higher-priority real­
time process is eligible to run after the power failure, running of init is delayed. This con­
dition temporarily prevents terminal input to any process, including realtime shells of 
higher priority than the eligible realtime process. To avoid this situation, a realtime pro­
cess should catch SIGPWR and suspend itself until init has finished its powerfail process-
ing. 

Rtprio was developed by HP. 

SEE ALSO 
rtprio(l), getprivgrp(2), nice(2), plock(2). 

WARNINGS 
Normally, compute bound programs should not be run at realtime priorities, because all time 
sharing work on the cpu would come to a complete halt. 

HP-UX Release 7.0: September 1989 -2- (Section 2) 121 



SELECT(2) SELECT(2) 

NAME 
select - synchronous I/O multiplexing 

SYNOPSIS 
#include <time.h> 

int select(nfds, readfds, writefds, exceptfds, timeout) 
int nfds, *readfds, *writefds, *exceptfds; 
struct timeval *timeout; 

DESCRIPTION 
Select examines the file descriptors specified by the bit masks readfds, writefds and exceptfds. 
The bits from 0 through nfds-1 are examined. File descriptor f is represented by the bit 1«f in 
the masks. More formally, a file descriptor is represented by: 

When select completes successfully it returns the three bit masks modified as follows: For each 
file descriptor less than nfds, the corresponding bit in each mask is set if the bit was set upon 
entry and the file descriptor is ready for reading, writing or has an exceptional condition pend­
ing. 

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com­
plete. If timeout is a zero pointer, the select waits until an event causes one of the masks to be 
returned with a valid (non-zero) value. To poll, the timeout argument should be non-zero, 
pointing to a zero valued timeval structure. Specific implementations may place limitations on 
the maximum timeout interval supported. The constant MAX_ALARM defined in 
<sys/param.h> specifies the implementation-specific maximum (in seconds). Whenever 
timeout ·specifies a value greater than this maximum, it is silently rounded down to this max­
imum. On all implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds). 
Note that the use of a timeout does not affect any pending timers set up by alarm(2) or setiti­
mer(2). 

Any or all of readfds, writefds, and exceptfds may be given as 0 if no descriptors are of interest. 
If all the masks are given as 0 and timeout is not a zero pointer, select blocks for the time 
specified, or until interrupted by a signal. If all the masks are given as 0 and timeout is a zero 
pointer, select blocks until interrupted by a signal. 

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions. 

EXAMPLES 
The following call to select checks if any of 4 terminals are ready for reading. Select will time 
out after 5 seconds if no terminals are ready for reading. Note that the code for opening the 
terminals or reading from the terminals is not shown in this example. Also, note that this 
example must be modified if the calling process has more than 32 file descriptors open. Follow­
ing this first example is an example of select with more than 32 file descriptors. 

#define MASK(f) 
#define NTTYS 4 

int tty[NTTYS]; 
int ttymask[NTTYS]; 
int readmask = 0; 
int readfds; 
int nfound, i; 
struct timeval timeout; 

122 (Section 2) 

(1 « (f) 

-1- HP-UX Release 7.0: September 1989 



SELECT(2) 

/* First open each terminal for reading and put the 
'" file descriptors into array tty[NTTYS]. The code 
'" for opening the terminals is not shown here. 
"'/ 

for (i=O; i < NTTYS; i++) { 
ttymask[i) = MASK(tty[i»; 
readmask 1= ttymask[i]; 

timeouttv_sec = 5; 
timeouttv_usec = 0; 
readfds = readmask; 

/* select on NTTYS+3 file descriptors if stdin, stdout 
'" and stderr are also open 

"'/ 
if «nfound = select (NTTYS+3, &readfds, 0, 0, &timeout» == -1) 

perror (llselect failed "); 
else if (nfound == 0) 

printf ("select timed out \nll); 
else for (i=O; i < NTTYS; i++) 

if (ttymask[i) & readfds) 
/* Read from tty[i]. The code for reading 

'" is not shown here. 

"'/ 
else printf ("tty[%d) is not ready for reading \n II ,i); 

SELECT(2) 

The following example is the same as the previous example, except that it will work for more 
than 32 open files. Definitions for howmany, fd_set, and NFDBITS are in <sys/types.h>. 

#include <sys/param.h> 
#include <sys/types.h> 
#include <sys/time.h> 

#define MASK(f) (1 «(f) 
#define NTTYS NOFILE - 3 
#define NWORDS howmany(FD_SETSIZE, NFDBITS) 

int tty[NTTYS); 
int ttymask[NTTYS); 
struct fd_set readmask, readfds; 
int nfound, i, j, k; 
struct timeval timeout; 

/* First open each terminal for reading and put the 
'" file descriptors into array tty[NTTYS). The code 
'" for opening the terminals is not shown here. 

"'/ 

for (k=O; k < NWORDS; k++) 
readmask.fds_bits[k) = 0; 

HP-UX Release 7.0: September 1989 -2- (Section 2) 123 



SELECT(2) 

RETURN VALUE 

for (i=O, k=O; i < NTTYS && k< NWORDS; k++) 
for (j=0; j < NFDBITS && i < NTTYS; j++, H+) { 

ttymask[i] = MASK(tty[i]); 
readmask.fds_bits[k] 1= ttymask[i]; 

timeouttv _sec = 5; 
timeout.tv_usec = 0; 
for (k=O; k < NWORDS; k++) 

readfds.fds_bits[k] = readmask.fds_bits[k]; 

j* select on NTTYS+3 file descriptors if stdin, stdout 
* and stderr are also open 
*j 

if «nfound = select (NTTYS+3, &readfds, 0, 0, &timeout» == -1) 
perror (llselect failed"); 

else if (nfound == 0) 
printf (llselect timed out \nll); 

else for (i=O, k=O; i < NTTYS && k < NWORDS; k++) 
for (j=0; j < NFDBITS && i < NTTYS; j++, H+) 

if (ttymask[i] & readfds.fds_bits[k]) 

SELECT(2) 

/* Read from tty[i]. The code for reading 
* is not shown here. 
*j 

else printf (IItty[%d] is not ready for reading \n",i); 

Select returns the number of descriptors contained in the bit masks, or -1 if an error occurred. 
If the time limit expires then select returns 0 and all the masks are cleared. 

ERRORS 
An error return from select indicates: 

[EBADF] 

[EINTR] 

[EFAULT] 

[EINVAL] 

[EINVAL] 

WARNINGS 

One or more of the bit masks specified an invalid descriptor. 

A signal was delivered before any of the selected for events occurred or before 
the time limit expired. 

One or more of the pointers was invalid. The reliable detection of this error 
will be implementation dependent. 

Invalid timeval passed for timeout. 

The value of nfds is less than zero. 

Check all references to signal(5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

The file descriptor masks are always modified on return, even if the call returns as the result of 
a timeout. 

DEPENDENCIES 
Series 300 

Select(2) supports the following devices and file types: 
pipes 

124 (Section 2) 

fifo special files (named pipes) 
All serial interfaces 
All ITEs and HP-HIL input devices 

-3- HP-UX Release 7.0: September 1989 



SELECT(2) SELECT(2) 

pty(7) special files 
HP 98643 LAN interface card driver 

File types not supporting select(2) always return true. 

Series 800 
Select(2) supports the following devices and file types: 

pipes 
fifo special files (named pipes) 
all serial devices 
All ITEs and HP-HIL input devices 
hpib(7) special files 
gpio(7) special files 
Ian (7) special files 
pty(7) special files 

The convention for device files that do not support select(2) is to always return true for 
those conditions the user is selecting on. 

Consult the individual device manual pages to determine the extent to which any particu­
lar driver supports select(2). 

HP Clustered Environment 
In a clustered environment, select is not supported for distributed fifos, i.e., fifos that are 
open simultaneously on multiple machines. In this case an error of EINV AL is returned. 

AUTHOR 
Select was developed by HP and the University of California, Berkeley. 

SEE ALSO 
fcntl(2), read(2), write(2). 

HP-UX Release 7.0: September 1989 -4- (Section 2) 125 



SEMCTL(2) SEMCTL(2) 

NAME 
semctl - semaphore control operations 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sysjipc.h> 
#include <sysjsem.h> 

int semctl (semid, semnum, cmd, arg) 
int semid, semnum, cmdi 
union semun { 

int vali 
struct semid_ds *bufi 
ushort *arraYi 

arg; 

DESCRIPTION 
Semctl provides a variety of semaphore control operations as specified by cmd. 

The following cmds are executed with respect to the semaphore specified by semid and semnum: 

GETV AL Return the value of semval (see the glossary). 

SETVAL 

GETPID 

Set the value of semval to arg.val. When this cmd is successfully exe­
cuted, the semadj value corresponding to the specified semaphore in all 
processes is cleared. 

Return the value of sempid. 

GETNCNT Return the value of semncnt. 

GETZCNT Return the value of semzcnt. 

The following cmds return and set, respectively, every semval in the set of semaphores. 

GETALL Place semvals into array pointed to by arg.array. 

SET ALL Set semvals according to the array pointed to by arg.array. When this 
cmd is successfully executed the semadj values corresponding to each 
specified semaphore in all processes are cleared. 

The following cmds are also available: 

IPC_ST AT Place the current value of each member of the data structure associated 
with semid into the structure pointed to by arg.buf. The contents of this 
structure are defined in the glossary. 

IPC_SET Set the value of the following members of the data structure associated 
with semid to the corresponding value found in the structure pointed to 
byarg.buf: 

sem_perm.uid 
sem_perm.gid 
sem_perm.mode j * only low 9 bits * j 

This cmd can only be executed by a process that has an effective user ID 
equal to either that of super-user or to the value of either sem_perm.uid 
or sem_perm.cuid in the data structure associated with semid. 

IPC_RMID Remove the semaphore identifier specified by semid from the system and 
destroy the set of semaphores and data structure associated with it. This 
cmd can only be executed by a process that has an effective user ID equal 
to either that of super-user or to the value of either sem_perm.uid or 
sem_perm.cuid in the data structure associated with semid. 

126 (Section 2) -1- HP-UX Release 7.0: September 1989 



SEMCTL(2) SEMCTL(2) 

EXAMPLES 
The following call to semetl initializes the set of 4 semaphores to the values 0, 1, 0 and 1 
respectively. This example assumes the process has a valid semid representing a set of 4 sema­
phores as shown on the semget(2) manual page. For an example of performing "P" and "v" 
operations on the semaphores below, refer to the semop(2) manual page. 

ushort semarray[4]; 

ERRORS 

semarray[O] = 0; 
semarray[l] = 1; 
semarray[2] = 0; 
semarray[3] = 1; 

semctl (mysemid, 0, SETALL, semarray); 

Semetl will fail if one or more of the following are true: 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EACCES] 

[ERANGE] 

[EPERM] 

[EFAULT] 

RETURN VALUE 

Semid is not a valid semaphore identifier. 

Semnum is less than zero or greater than or equal sem_nsems. 

Cmd is not a valid command. 

Operation permission is denied to the calling process (see the glossary). 

Cmd is SETV AL or SET ALL and the value to which semval is to be set is 
greater than the system imposed maximum. 

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling 
process is not equal to that of super-user and it is not equal to the value of 
either sem_perm.uid or sem_perm.cuid in the data structure associated with 
semid. 

Arg.buf or arg.array points to an illegal address. The reliable detection of this 
error will be implementation dependent. 

Upon successful completion, the value returned depends on emd as follows: 

GETVAL 

GETNCNT 

GETZCNT 

GETPID 

All others 

The value of semval. 

The value of semncnt. 

The value of semzcnt. 

The value of sempid. 

A value of O. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
ipcrm(l), ipcs(l), semget(2), semop(2), stdipc(3C). 

STANDARDS CONFORMANCE 
semctl: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 2) 127 



SEMGET(2) SEMGET(2) 

NAME 
semget - get set of semaphores 

SYNOPSIS 
#include <sysjtypes.h> 
#indu.de <sys/ipc.h> 
#include <sysjsem.h> 

int semget (key, nsems, semflg) 
key_t key; 
int nsems, semflg; 

DESCRIPTION 
Semget returns the semaphore identifier associated with key. 

A semaphore identifier and associated data structure and set containing nsems semaphores are 
created for key if one of the following is true: 

Key is equal to IPC_PRIV ATE. This call creates a new identifier, subject to available 
resources. The identifier will never be returned by another call to semget until it has 
been released by a call to semctl. The identifier should be used among the calling pro­
cess and its descendents; however, it is not a requirement. The resource can be 
accessed by any process having the proper permissions. 

Key does not already have a semaphore identifier associated with it, and (semflg & 
IPC_CREAT) is "true". 

Specific behavior may be requested by or'ing the following masks into semflg. 

IPC_ CREA T: Create a semaphore identifier, if one does not already exist for key. 

IPC_EXCL: If IPC_CREAT is specified and key already has a semaphore identifier 
associated with it, return an error. 

The low-order 9 bits of semflg are the semaphore operation permissions which are defined in 
the glossary. 

Upon creation, the data structure associated with the new semaphore identifier is initialized as 
follows: 

EXAMPLES 

In the operation-permission structure, sem_perm.euid and sem_perm.uid are set equal 
to the effective-user-ID of the calling process, while sem_perm.cgid and sem_perm.gid 
are set to the effective-group-ID of the calling process. 

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg. 

Sem_nsems is set equal to the value of nsems. 

Sem_otime is set equal to 0 and sem3time is set equal to the current time. 

The following call to semget returns a semid associated with the key returned by ftok(1I myfile ll 
, 

'A'). If a semid associated with the key does not exist, a new semid, set of 4 semaphores and 
associated data structure will be 1:reated. If a semid for the key already exists, the semid is sim­
ply returned. 

int semid; 
mysemid = semget (ftok("myfile",'A'), 4, IPC_CREAT I 0600); 

ERRORS 
Semget will fail if one or more of the following are true: 

[EINVAL] 

128 (Section 2) 

Nsems is either less than or equal to zero or greater than the system-imposed 
limit. 

-1- HP-UX Release 7.0: September 1989 



SEMGET(2) 

[EACCES] 

[EINVAL] 

[ENOENT] 

[ENOSPC) 

[ENOSPC) 

[EEXIST] 

RETURN VALUE 

SEMGET(2) 

A semaphore identifier exists for key, but operation permission as specified by 
the low-order 9 bits of semflg would not be granted. 

A semaphore identifier exists for key, but the number of semaphores in the set 
associated with it is less than nsems and nsems is not equal to zero. 

A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is 
"false". 

A semaphore identifier is to be created but the system-imposed limit on the 
maximum number of allowed semaphore identifiers system wide would be 
exceeded. 

A semaphore identifier is to be created but the system-imposed limit on the 
maximum number of allowed semaphores system wide would be exceeded. 

A semaphore identifier exists for key but ( (semflg & IPCCREA 1) && ( semflg & 
IPC_EXCL) ) is "true". 

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. 
Otherwise, a value of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
ipcrm(l), ipcs(l), semctl(2), semop(2), stdipc(3C). 

STANDARDS CONFORMANCE 
semget: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 2) 129 



SEMOP(2) SEMOP(2) 

NAME 
semop - semaphore operations 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <sys/ipc.h> 
#inc1ude <sys/sem.h> 

int semop (semid, sops, nsops) 
int semid; 
struct sembuf *sops; 
int nsopsi 

DESCRIPTION 
Semop is used to atomically perform an array of semaphore operations on the set of semaphores 
associated with the semaphore identifier specified by semid. Sops is a pointer to the array of 
semaphore-operation structures. Nsops is the number of such structures in the array. The con­
tents of each structure includes the following members: 

ushort sem_num; / * semaphore number * / 
/* semaphore operation */ 
/ * operation flags * / 

short sem_op; 
short sem_flg; 

Each semaphore operation specified by sem_op is performed on the corresponding semaphore 
specified by semid and sem_num. Semaphore array operations are atomic, in that none of the 
semaphore operations will be performed until blocking conditions .on all of the semaphores in 
the array have been removed. 

Sem_op specifies one of three semaphore operations as follows: 

If sem_op is a negative integer, one of the following will occur: 

130 (Section 2) 

If semval (see semaphore identifier in the Glossary) is greater than or equal to the 
absolute value of sem_op, the absolute value of sem_op is subtracted from semval. 
Also, if (sem_flg & SEM_VNDO) is "true", the absolute value of sem_op is added to 
the calling process's semadj value (see the Glossary and exit(2» for the specified 
semaphore. 

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) 
is "true", semop will return immediately. 

If semval is less than the absolute value of sem_op and (sem_flg & IPCNOWAIT) 
is "false", semop will increment the semncnt associated with the specified sema­
phore and suspend execution of the calling process until one of the following con­
ditions occur: 

Semval becomes greater than or equal to the absolute value of sem_op. When 
this occurs, the value of semncnt associated with the specified semaphore is 
decremented, the absolute value of sem_op is subtracted from semval and, if 
(sem_flg & SEM_VNDO) is "true", the absolute value of sem_op is added to the 
calling process's semadj value for the specified semaphore. 

The semid for which the calling process is awaiting action is removed from the 
system (see semctl(2». When this occurs, errno is set equal to EIDRM, and a 
value of -1 is returned. 

The calling process receives a signal that is to be caught. When this occurs, the 
value of semncnt associated with the specified semaphore is decremented, and 
the calling process resumes execution in the manner prescribed in signal (5). 

-1- HP-UX Release 7.0: September 1989 



SEMOP(2) SEMOP(2) 

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg & 
SEM_UNDO) is "true", the value of sem_op is subtracted from the calling process's semadj value 
for the specified semaphore. 

If sem_op is zero, one of the following will occur: 

EXAMPLES 

If semval is zero, semop will proceed to the next semaphore operation specified by sops, 
or return immediately if this is the last operation. 

If serrlval is not equal to zero and (sem_flg & IPC_NOW.t\!T) is Utrue", semop will return 
immediately. 

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is "false", semop will incre­
ment the semzcnt associated with the specified semaphore and suspend execution of the 
calling process until one of the following occurs: 

Semval becomes zero, at which time the value of semzcnt associated with the 
specified semaphore is decremented. 

The semid for which the calling process is awaiting action is removed from the sys­
tem. When this occurs, errno is set equal to EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. When this occurs, the 
value of semzcnt associated with the specified semaphore is decremented, and the 
calling process resumes execution in the manner prescribed in signal(S). 

The following call to semop atomically performs a "P" or "get" operation on the second sema­
phore in the semaphore set and a "V" or "release" operation on the third semaphore in the set. 
This example assumes the process has a valid semid which represents a set of 4 semaphores as 
shown on the semget(2) manual page. It also assumes that the semvals of the semaphores in 
the set have been initialized as shown on the semctl(2) manual page. 

ERRORS 

struct sembuf sops(4); 

sops[O).sem_num = 1; 
sops[O).sem_op = -1; /* P (get) * / 
sops[O).sem_fIg = 0; 
sops[l ).sem_num = 2; 
sops[I).sem_op = 1; /* V (release) * / 
sops[l ).sem_fIg = 0; 

semop (mysemid, sops, 2); 

Semop will fail if one or more of the following are true for any of the semaphore operations 
specified by sops: 

[EINVAL] Semid is not a valid semaphore identifier. 

[EFBIG] 

[E2BIG] 

[EACCES] 

[EAGAIN] 

[ENOSPC] 

Sem_num is less than zero or greater than or equal to the number of sema­
phores in the set associated with semid. 

Nsops is greater than the system-imposed maximum. 

Operation permission is denied to the calling process (see the Glossary). 

The operation would result in suspension of the calling process but (sem_flg & 
IPC_NOWAIT) is "true". 

The limit on the number of individual processes requesting an SEM_UNDO 
would be exceeded. 

HP-UX Release 7.0: September 1989 -2- (Section 2) 131 



SEMOP(.2) 

[EINVALJ 

[ERANGEJ 

[ERANGE] 

[EFAULTJ 

SEMOP(2) 

The number of individual semaphores for which the calling process requests a 
SEM_UNDO would exceed the limit. 

An operation would cause a semval to overflow the system-imposed limit. 

An operation would cause a semadj value to overflow the system-imposed 
limit. 

Sops points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

Upon successful completion, the value of sempid for each semaphore specified in the array 
pointed to by sops is set equal to the process ID of the calling process. The value of sem_otime 
in the data structure associated with the semaphore identifier will be set to the current time. 

RETURN VALUE 
If semop returns due to the receipt of a signal, a value of -1 is returned to the calling process 
and errno is set to EINTR. If it returns due to the removal of a semid from the system, a value 
of -1 is returned and errno is set to EIDRM. 

Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

WARNINGS 
Check all references to signal(5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

SEE ALSO 
ipcs(l), exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C), signal(5). 

STANDARDS CONFORMANCE 
semop: SVID2, XPG2, XPG3 

132 (Section 2) -3- HP-UX Release 7.0: September 1989 



SETACL(2) SETACL(2) 

NAME 
setad, fsetad - set access control list (ACL) information 

SYNOPSIS 
#indude <unistd.h> 
#indude <sys/ad.h> 

int setad (path, nentries, ad) 
char *path; 
int nentries; 
struct ad_entry ad[); 

int fsetad (fildes, nentries, ad) 
int fildes; 
int nentries; 
struct ad_entry ad[)i 

Remarks: 
To ensure continued conformance with emerging industry standards, features described in this 
manual entry are likely to change in a future release. 

DESCRIPTION 
Setad sets an existing file's access control list (ACL) or deletes optional entries from it. Path 
points to a path name of a file. 

Similarly, fsetad sets an existing file's access control list for an open file known by the file 
descriptor fildes. 

The effective user ID of the process must match the owner of the file or be the superuser to set 
a file's ACL. 

A successful call to setad deletes all of a file's previous optional ACL entries (see explanation 
below), if any. The nentries parameter indicates how many valid entries are defined in the ad 
parameter. If it is zero or greater, the new ACL is applied to the file. If any of the file's base 
entries (see below) is not mentioned in the new ACL, it is retained but its access mode is set to 
zero (no access). Hence, routine calls of setad completely define the file's ACL. 

As a special case, if nentries is negative (that is, a value of ACL_DELOPT (defined in 
<sys/acl.h>)), the ad parameter is ignored, all of the file's optional entries, if any, are deleted, 
and its base entries are left unaltered. 

Some of the miscellaneous mode bits in the file's mode might be turned off as a consequence of 
calling setad. See chmod (2). 

Access Control Lists 
An ACL consists of a series of entries. Entries can be categorized in four levels of specificity: 

(u.g, mode) 
(u.%, mode) 
(%.g, mode) 
(%.%, mode) 

applies to user u in group g 
applies to user u in any group 
applies to any user in group g 
applies to any user in any group 

Entries in the ACL must be unique; no two entries can have the same user ID (uid) and group ID 
(gid) (see below). Entries can appear in any order. The system orders them as needed for 
access checking. 

The <sys/ad.h> header file defines ACL_NSUSER as the non-specific uid value and 
ACL_NSGROUP as the non-specific gid value represented by "%" above. If uid in an entry is 
ACL_NSUSER, it is a %.g entry. If gid in an entry is ACL_NSGROUP, it is a u. % entry. If both 
uid and gid are non-specific, the file's entry is %. %. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 133 



SETACL(2) SETACL(2) 

The <unistd.h> header file defines meanings of mode bits in ACL entries (R_OK, W_OK, and 
X_OK). Irrelevant bits in mode values must be zero. 

Every file's ACL has three base entries which cannot be added or deleted, but only modified. 
The base ACL entries are mapped directly from the file's permission bits. 

«file's owner> . ACL_NSGROUP, <file's owner mode bits» 
(ACL_NSUSER. <file's group>, <file's group mode bits» 
(ACL_NSUSER . ACL_NSGROUP, <file's other mode bits» 

In addition, up to 13 optional ACL entries can be set to restrict or grant access to a file. 

Altering a base ACL entry's modes with setad changes the file's corresponding permission bits. 
The permission bits can be altered also with chmod(2) and read with stat(2). 

The number of entries allowed per file (see NACLENTRIES in <sys/acl.h» is small for space 
and performance reasons. User groups should be created as needed for access control purposes. 
Since ordinary users cannot create groups, their ability to control file access with ACLs might be 
somewhat limited. 

RETURN VALUE 
Upon successful completion, setad and fsetad return a value of zero. If an error occurs, a value 
of -1 is returned and the file's ACL is not modified. The global variable errno is set to indicate 
the error. 

ERRORS 
Setad and fsetad fail if any of the following is true: 

[ENOTDIR] 

[ENOENT] 

[EBADF] 

[EACCES] 

[EPERM] 

[EROFS] 

[EFAULT] 

[EINVAL] 

[E2BIG] 

A component of the path prefix is not a directory. 

The named file does not exist (for example, path is null or a component of path 
does not exist). 

Fildes is not a valid file descriptor. 

A component of the path prefix denies search permission. 

The effective user ID does not match the owner of the file and the effective 
user ID is not superuser. 

The named file resides on a read-only file system. 

Path or ad points outside the allocated address space of the process, or ad is 
not as large as indicated by nentries. 

There is a redundant entry in the ACL, or ad contains an invalid uid, gid, or 
mode value. 

An attempt was made to set an ACL with more than NACLENTRIES entries. 

[EOPNOTSUPP] Setad is not supported on remote files by some networking services. 

[ENOSPC] Not enough space on the file system. 

[ENFILE] System file table is full. 

[ENAMETOOLONG] 

[ELOOP] 

EXAMPLES 

The length of path exceeds PATH_MAX bytes, or the length of a component of 
path exceeds NAME_MAX bytes while ]OSIX_NO_ TRUNC is in effect. 

Too many symbolic links were encountered in translating the path name. 

The following code fragment defines and sets an ACL on file " .. /shared" which allows the file's 
owner to read, write, and execute/search the file, and user 103, group 204 to read the file. 

134 (Section 2) -2- HP-UX Release 7.0: September 1989 



SETACL(2) 

#indude <unistd.h> 
#indude <sys/stat.h> 
#indude <sys/ad.h> 

char *filename = " .. /shared"; 
struct ad_entry ad [2]; 
struct stat statbuf; 

if (stat (filename, & statbuO < 0) 
error ( ... J; 

ad [0] . uid = statbuf . st_uid; /* file owner */ 
ad [0] . gid = ACL_NSGROUP; 
ad [0]. mode = R_OK I W_OK I X_OK; 

ad [1] . uid = 103; 
ad [1] . gid = 204; 
ad [1] . mode = R_ OK; 

if (setad (filename, 2, ad» 
error ( ... ); 

The following call deletes all optional ACL entries from "file1": 

setad (lfile1", ACL_DELOPT, (struct ad_entry *) 0); 

DEPENDENCIES 
RFA and NFS 

Setacl and fsetacl are not supported on remote files. 

AUTHOR 
Setacl and fsetacl were developed by HP. 

SEE ALSO 
access(2), chmod(2), getaccess(2), getacl(2), stat(2), unistd(5). 

HP-UX Release 7.0: September 1989 -3-

SETACL(2) 

(Section 2) 135 



SETAUDID(2) 

NAME 
setaudid - set the audit ID (aid) for the current process 

SYNOPSIS 
#include <sysJaudit.h> 

int setaudid (audid) 
aid_l audid; 

DESCRIPTION 

SETAUDID(2) 

Setaudid sets the audit ID (aid) for the current process. This call is restricted to the superuser. 

RETURN VALUE 
Upon successful completion, setaudid returns a value of 0; otherwise, a -1 is returned. 

ERRORS 
Setaudid fails if one of the following is true: 

[EPERM] 

[EINVAL] 

AUTHOR 

The caller is not a superuser. 

The audit ID (audid) is invalid. 

Setaudid was developed by HP. 

SEE ALSO 
getaudid(2). 

136 (Section 2) -1- HP-UX Release 7.0: September 1989 



SETAUDPROC(2) SET AUDPROC(2) 

NAME 
setaudproc - controls process level auditing for the current process and its decendents 

SYNOPSIS 
#inc1ude <sysjaudit.h> 

int setaudproc (aflag) 
int aflag; 

DESCRIPTION 
Setaudproc controls process level auditing for the current process and its decendents. It accom­
plishes this by setting or clearing the u_audproc flag in the u area of the calling process. When 
this flag is set, the system audits the process; when it is cleared, the process is not audited. 
This call is restricted to superusers. 

One of the following aflags must be used: 

AUD_PROC Audit the calling process and its decendents. 
AUD_CLEAR Do not audit the calling process and its decendents. 

The u_audproc flag is inherited by the descendents of a process. consequently, the effect of a 
call to setaudproc is not limited to the current process, but will propagate to all its decendents as 
well. For example, if setaudproc is called with the AUD_PROC flag, all subsequent audited sys­
tem calls in the current process and its decendents will be audited until setaudproc is called with 
the AUD_CLEAR flag. 

Further, setaudproc performs its action regardless of whether the user executing the process has 
been selected to be audited or not. For example, if setaudproc is called with the AUD_PROC (or 
the AUD_CLEAR) flag, all subsequent audited system calls will be audited (or not audited), 
regardless of whether the user executing the process has been selected for auditing or not. 

Due to these features, setaudproc should not be used in most self-auditing applications. 
Audswitch(2} should be used when the objective is to suspend auditing within a process without 
affecting its decendents or overriding the user selection aspect of the auditing system. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned; otherwise, -1 is returned. 

AUTHOR 
Setaudproc was developed by HP. 

SEE ALSO 
getaudproc(2}, audswitch(2}, audusr(1M}, audevent(1M}, audit(5}. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 137 



SETEVENT(2) SETEVENT(2) 

NAME 
setevent - set current events and system calls which are to be audited 

SYNOPSIS 
#inc1ude <sys/audit.h> 

int setevent (a_syseall, a_event> 
struet aud_type *a_syseall; 
struet aud_evenCtbl *a_event; 

DESCRIPTION 
Setevent sets the events and system calls to be audited. The event and system call settings in 
the tables pointed to by a_syscall and ajvent become the current settings. This call is restricted 
to the superuser. 

RETURN VALUE 
Upon successful completion, setevent returns a value of 0; otherwise, a -1 is returned. 

ERRORS 
Setevent fails if the following is true: 

[EPERM] 

AUTHOR 

The caller is not a superuser. 

Setevent was developed by HP. 

SEE ALSO 
getevent(2), audevent(lM). 

138 (Section 2) -1- HP-UX Release 7.0: September 1989 



SETGROUPS(2) SETGROUPS(2) 

NAME 
setgroups - set group access list 

SYNOPSIS 
#include <sys/param.h> 
#include <sys/types.h> 
setgroups(ngroups, gidset) 
int ngroups; 
gid_ t *gidset; 

DESCRIPTION 
Setgroups sets the group access list of the current user process according to the array gidset. The 
parameter ngroups indicates the number of entries in the array and must be no more than 
NGROUPS, as defined in <sys/param.h>. 

Only the superuser may set new groups by adding to the group access list of the current user 
process; any user may delete groups from it. 

RETURN VALUE 
A 0 value is returned on success, -1 on error, with an error code stored in errno. 

ERRORS 
The setgroups call will fail if: 

[EPERM] 

[EFAULT] 

[EINVAL] 

[EINVAL] 

AUTHOR 

The caller is not the superuser and has attempted to set new groups. 

The address specified for gidset is outside the process address space. The reli­
able detection of this error will be implementation dependent. 

Ngroups is greater than NGROUPS or not positive. 

An entry in gidset is not a valid group ID. 

Setgroups was developed by the University of California, Berkeley California, Computer Science 
Division, Department of Electrical Engineering and Computer Science. 

SEE ALSO 
getgroups(2), initgroups(3C) 

HP-UX Release 7.0: September 1989 -1- (Section 2) 139 



SETHOSTNAME(2) 

NAME 
sethostname - set name of host cpu 

SYNOPSIS 
sethostname(name, namelen) 
char *name; 
int namelen; 

DESCRIPTION 

SETHOSTNAME(2) 

This call sets the name of the host processor to name, which has a length of namelen characters. 
This is normally executed by /etc/rc when the system is bootstrapped. Host names are limited 
to MAXHOSTNAMELEN characters; MAXHOSTNAMELEN is defined in <sys/param.h>. 

ERRORS 
Sethostname fails and returns an error if: 

[EPERM] 

[EFAULT] 

AUTHOR 

It is not executed by the superuser. 

Name points to an illegal address. The reliable detection of this error is imple­
mentation dependent. 

Sethostname was developed by the University of California, Berkeley. 

SEE ALSO 
hostname(l), uname(l), gethostname(2), uname(2). 

140 (Section 2) -1- HP-UX Release 7.0: September 1989 



SETPGID(2) SETPGID(2) 

NAME 
setpgid, setpgrp2 - set process group ID for job control 

SYNOPSIS 
#inc1ude <sysjtypes.h> 

int setpgid( pid, pgid) 
pid_t pid, pgid; 

int se~grp2(pid;pgid) 
pid_t pid, pgid; 

DESCRIPTION 
Setpgid or setpgrp2 causes the process specified by pid to join an existing process group or create 
a new process group within the session of the calling process. The process group ID of the pro­
cess whose process ID is pid is set to pgid. If pid is zero, the process ID of the calling process is 
used. If pgid is zero, the process ID of the indicated process is used. The process group ID of a 
session leader does not change. 

Setpgrp2 is provided for backward compatibility only. 

ERRORS 
Setpgid or setpgrp2 fails and no change occurs if any of the following are true: 

[EACCES] 

[EINVAL] 

[EPERM] 

[EPERM] 

[EPERM] 

[ESRCH] 

RETURN VALUE 

The value of pid matches the process ID of a child process of the cal­
ling process and the child process has successfully executed one of the 
exec(2) functions. 

The value of pgid is less than zero or is outside the range of valid pro­
cess group ID values. 

The process indicated by pid is a session leader. 

The value of pid is valid but matches the process ID of a child process 
of the calling process, and the child process is not in the same session 
as the calling process. 

The value of pgid does not match the process ID of the process indi­
cated by pid and there is no process with a process group ID that 
matches the value of pgid in the same session as the calling process. 

The value of pid does not match the process ID of the calling process or 
of a child process of the calling process. 

Upon successful completion, setpgid or setpgrp2 returns zero. Otherwise, a value of -1 is 
returned and erma is set to indicate the error. 

AUTHOR 
Setpgid and setpgrp2 were developed by HP and the University of California, Berkeley. 

SEE ALSO 
bsdproc(2), exec(2), exit(2), fork(2), getpid(2), kill(2), setsid(2), signal(2), termio(7). 

STANDARDS CONFORMANCE 
setpgid: XPG3, POSIX.1, FIPS 151-1 

setpgrp 2: not applicable 

HP-UX Release 7.0: September 1989 -1- (Section 2) 141 



SETRESUID(2) SETRESUID(2) 

NAME 
setresuid, setresgid - set real, effective, and saved user and group IDs 

SYNOPSIS 
int setresuid (ruid, euid, suid) 
int ruid, euid, suid; 

int setresgid (rgid, egid, sgid) 
int rgid, egid, sgid; 

DESCRIPTION 
Setresuid sets the real, effective and/or saved user ID of the calling process. 

If the current real, effective or saved user ID is equal to the super-user's user ID, setresuid sets 
the real, effective and saved user IDs to ruid, euid and suid, respectively. Otherwise, setresuid 
will only set the real, effective and saved user IDs if ruid, euid and suid each match at least one 
of the current real, effective or saved user IDs. 

If ruid, euid or suid is -1, setresuid will leave the current real, effective or saved user ID 
unchanged. 

Setresgid sets the real, effective and/or saved group ID of the calling process. 

If the current real, effective or saved user ID is equal to the super-user's user ID, setresgid sets 
the real, effective and saved group IDs to rgid, egid and sgid, respectively. Otherwise, setresgid 
will only set the real, effective and saved group IDs if rgid, egid and sgid each match at least one 
of the current real, effective or saved group IDs. 

If rgid, egid or sgid is -I, setresgid will leave the current real, effective or saved group ID 
unchanged. 

ERRORS 
Setresuid and setresgid will fail and return -1 if: 

[EINVAL] Ruid, euid or suid (rgid,egid or sgid) is not a valid user (group) ID. 

[EPERM] None of the conditions above are met. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

AUTHOR 
Setresuid and setresgid were developed by HP. 

SEE ALSO 
exec(2), getuid(2), setuid(2). 

142 (Section 2) -1- HP-UXRelease 7.0: September 1989 



SETSID(2) SETSID(2) 

NAME 
setsid, setpgrp - create session and set process group ID 

SYNOPSIS 
#include <sys/types.h> 

pid_t setsidO 

pid_ t setpgrpO 

DESCRIPTION 
If the calling process is not a process group leader, setsid or setpgrp creates a new session. The 
calling process becomes the session leader of this new session, becomes the process group 
leader of a new process group, and has no controlling terminal. The process group ID of the 
calling process is set equal to the process ID of the calling process. The calling process is the 
only process in the new process group, and the only process in the new session. 

Setpgrp is provided for backward compatibility only. 

ERRORS 
No change occurs if any of the following conditions occur. In addition, setsid fails with the fol­
lowing errors: 

The calling process is already a process group leader. [EPERM] 

[EPERM] The process group ID of a process other than the calling process 
matches the process ID of the calling process. 

RETURN VALUE 
Setpgrp returns the value of the process group ID of the calling process. 

Upon successful completion, setsid returns the value of the new process group ID of the calling 
process. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

AUTHOR 
Setpgrp and setsid were developed by HP and AT&T. 

SEE ALSO 
exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), signal(2), termio(7). 

STANDARDS CONFORMANCE 
setpgrp: SVID2, XPG2 

setsid: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 143 



SETUID(2) SETUID(2) 

NAME 
setuid, setgid - set user and group IDs 

SYNOPSIS 
#include <sys/types.h> 
int setuid (uid) 
uid_t uid; 

int setgid (gid) 
gid_t gid; 

DESCRIPTION 
Setuid sets the real-user-ID (ruid), effective-user-ID (euid), and/or saved-user-ID (suid) of the cal­
ling process. The super-user's euid is zero. The following conditions govern setuid's behavior: 

If the euid is zero, setuid sets the ruid, euid, and suid to uid. 

If the euid is not zero, but the argument uid is equal to the ruid or the suid, setuid sets 
the euid to uid; the ruid and suid remain unchanged. (If a set-user-ID program is not 
running as super-user, it can change its euid to match its ruid and reset itself to the pre­
vious euid value.) 

If the euid is not zero, but the argument uid is equal to the euid, and the calling process 
is a member of a group that has the PRIV _SETRUGID privilege (see privgrp(4», setuid 
sets the ruid to uid; the euid and suid remain unchanged. 

Setgid sets the real-group-ID (rgid), effective-group-ID (egid), and/or saved-group-ID (sgid) of the 
calling process. The following conditions govern setgid's behavior: 

If the euid is zero, setgid sets the rgid and egid to gid. 

If the euid is not zero, but the rgid or sgid is equal to gid, and the calling process is a 
member of a group that has the PRIV _SETRUGID privilege (see privgrp(4», setgid sets 
the egid to gid; the rgid and sgid remain unchanged. 

If the euid is not zero, but the gid is equal to the egid, setgid sets the rgid to gid; the egid 
and sgid remain unchanged. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Setuid and setgid fail and return -1 if either of the following is true: 

[EPERM] 

[EINVAL] 

WARNINGS 

None of the conditions above are met. 

Uid (gid) is not a valid user (group) ID. 

It is recommended that the PRIV _SETRUGID capability be avoided, as it is provided for back­
ward compatibility. This feature may be modified or dropped from future HP-UX releases. 
When changing the real user ID and real group ID, use of setresuid(2) and setresgid(2) are 
recommended instead. 

AUTHOR 
Setuid was developed by AT&T, the University of California, Berkeley and HP. 

Setgid was developed by AT&T. 

SEE ALSO 
exec(2), getprivgrp(2), getuid(2), setresuid(2) privgrp( 4). 

144 (Section 2) -1- HP-UX Release 7.0: September 1989 



SETUID(2) SETUID(2) 

STANDARDS CONFORMANCE 
setuid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

setgid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -2- (Section 2) 145 



SHMCTL(2) SHMCTL(2) 

NAME 
shmctl - shared memory control operations 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <sys/ipe.h> 
#inc1ude <sys/shm.h> 

int shmetl (shmid, emd, buf) 
int shmid, emd; 
struet shmid_ds *buf; 

DESCRIPTION 
Shmctl provides a variety of shared memory control operations as specified by cmd. The follow­
ing cmds are available: 

Place the current value of each member of the data structure associated with 
shmid into the structure pointed to by buf. The contents of this structure are 
defined in the glossary. 

Set the value of the following members of the data structure associated with 
shmid to the corresponding value found in the structure pointed to by but: 
shm_perm.uid 
shm_perm.gid 
shm_perm.mode /* only low 9 bits */ 

This cmd can only be executed by a process that has an effective user ID equal to either that of 
super-user or to the value of either shm_perm.uid or shm_perm.euid in the data structure 
associated with shmid. 

IPC_RMID 
Remove the shared memory identifier specified by shmid from the system and destroy the 
shared memory segment and data structure associated with it. If the segment is attached to one 
or more processes, then the segment key is changed to IPC]RIV ATE and the segment is marked 
removed. The segment will disappear when the last attached process detaches it. This cmd can 
only be executed by a process that has an effective user ID equal to either that of super-user or 
to the value of either shm_perm.uid or shm_perm.euid in the data structure associated with 
shmid. 

SHM_LOCK 
Lock the shared memory segment specified by shmid in memory. This cmd can only be exe­
cuted by a process that either has an effective user ID equal to super-user or has an effective 
user ID equal to the value of either shm_perm.uid or shm_perm.euid in the data structure 
associated with shmid and has PRIV _MLOCK privilege (see setprivgrp on getprivgrp(2». 

SHM_UNLOCK 
Unlock the shared memory segment specified by shmid. This cmd can only be executed by a 
process that either has an effective user ID equal to super-user or has an effective user ID equal 
to the value of either shm_perm.uid or shm_perm.euid in the data structure associated with 
shmid and has PRIV _MLOCK privilege (see setprivgrp on getprivgrp(2». 

EXAMPLES 

146 

The following call to shmctl locks in memory the shared memory segment represented by mysh­
mid. This example assumes the process has a valid shmid, which can be obtained by calling 
shmget(2). 

(Section 2) -1- HP-UX Release 7.0: September 1989 



SHMCTL(2) SHMCTL(2) 

shmctl (myshmid, SHM_LOCK, 0); 

The following call to shmctl removes the shared memory segment represented by myshmid. 
This example assumes the process has a valid shmid, which can be obtained by calling 
shmget(2). 

shmctl (myshmid, IPC_RMID, 0); 

ERRORS 
Shmctl will fail if one or more of the following are true: 

[EINVALJ 

[EINVAL] 

[EACCES] 

[EPERM] 

[EPERM] 

[EINVALJ 

[EFAULT] 

[ENOMEM] 

RETURN VALUE 

Shmid is not a valid shared memory identifier. 

Cmd is not a valid command. 

Cmd is equal to IPC_ST A T and operation permission is denied to the calling 
process (see glossary). 

Cmd is equal to IPC_RMID, IPC_SET, SHM_LOCK, or SHM_UNLOCK and the 
effective user ID of the calling process is not equal to that of super-user and it 
is not equal to the value of either shm_perm.uid or shm_perm.cuid in the 
data structure associated with shmid. 

Cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user ID of the 
calling process is not equal to that of super-user and the calling process does 
not have PRIV _MLOCK privilege (see setprivgrp on getprivgrp(2». 

Cmd is equal to SHM_UNLOCK and the shared-memory segment specified by 
shmid is not locked in memory. 

But points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

Cmd is equal to SHM_LOCK and there is not sufficient lockable memory to fill 
the request. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

DEPENDENCIES 
Series 300 

[EACCES] Shmid is the id of a shared memory segment currently being used by the sys­
tem to implement other features (see graphics(7) and iomap(7». 

AUTHOR 
Shmctl was developed by AT&T and HP. 

SEE ALSO 
ipcrm(1), ipcs(1), shmget(2), shmop(2), stdipc(3C). 

STANDARDS CONFORMANCE 
shmctl: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 2) 147 



SHMGET(2) SHMGET(2) 

NAME 
shmget - get shared memory segment 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <sys/ipc.h> 
#inc1ude <sys/shm.h> 

int shmget (key, size, shmflg) 
key_t key; 
int size, shmflg; 

DESCRIPTION 
Shmget returns the shared memory identifier associated with key. 

A shared memory identifier and associated data structure and shared memory segment of size 
size bytes (see glossary) are created for key if one of the following is true: 

Key is equal to IPC_PRIV ATE. This call creates a new identifier, subject to available 
resources. The identifier will never be returned by another call to shmget until it has 
been released by a call to shmctl. The identifier should be used among the calling pro­
cess and its descendents; however, it is not a requirement. The resource can be 
accessed by any process having the proper permissions. 

Key does not already have a shared memory identifier associated with it, and (shmflg & 
IPC_CREAT) is "true". 

Upon creation, the data structure associated with the new shared memory identifier is initialized 
as follows: 

EXAMPLES 

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal to 
the effective user ID and effective group ID, respectively, of the calling process. 

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg. 
Shm_segsz is set equal to the value of size. 

Shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to O. 

Shm3time is set equal to the current time. 

The following call to shmget returns a unique shmid for the newly created shared memory seg­
ment of 4096 bytes: 

int myshmid; 

myshmid = shmget (IPC_PRIV ATE, 4096, 0600); 

ERRORS 
Shmget will fail if one or more of the following are true: 

[EINVAL] 

[EACCES] 

[EINVAL] 

[ENOENT] 

[ENOSPC] 

148 (Section 2) 

Size is less than the system-imposed minimum or greater than the system­
imposed maximum. 

A shared memory identifier exists for key but operation permission (see glos­
sary) as specified by the low-order 9 bits of shmflg would not be granted. 

A shared memory identifier exists for key but the size of the segment associated 
with it is less than size and size is not equal to zero. 

A shared memory identifier does not exist for key and (shmflg & IPCCREAT) is 
"false". 

A shared memory identifier is to be created but the system-imposed limit on 
the maximum number of allowed shared memory identifiers system wide 

-1- HP-UX Release 7.0: September 1989 



SHMGET(2) 

[ENOMEM] 

[EEXIST] 

RETURN VALUE 

SHMGET(2) 

would be exceeded. 

A shared memory identifier and associated shared memory segment are to be 
created but the amount of available physical memory is not sufficient to fill the 
request. 

A shared memory identifier exists for key but ( (shmflg & IPC_CREAT) && 
(shmflg & IPCEXCL) ) is "true". 

Upon successful completion, a non-negative integer, namely a shared memory identifier is 
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
ipcrm(1}, ipcs(l}, shmctl(2}, shmop(2}, stdipc(3C). 

STANDARDS CONFORMANCE 
shmget: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 2) 149 



SHMOP(2) SHMOP(2) 

NAME 
shmat, shmdt - shared memory operations 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sysjipc.h> 
#include <sysjshm.h> 

char *shmat (shmid, shmaddr, shmflg) 
int shmid; 
char *shmaddr 
int shmflg; 

int shmdt (shmaddr) 
char *shmaddr; 

DESCRIPTION 
Shmat attaches the shared memory segment associated with the shared memory identifier 
specified by shmid to the data segment of the calling process. 

On Series 800 systems, if the shared memory segment is not already attached, shmaddr must be 
specified as zero and the segment is attached at a location selected by the operating system. 
That location is identical in all processes accessing that shared memory object. 

If the shared memory segment is already attached, a non-zero value of shmaddr is accepted, 
provided the specified address is identical to the current attach address of the segment. 

On Series 300 systems, shmaddr can be specified as a non-zero value as a machine-dependent 
extension (see DEPENDENCIES below). However, those systems do not necessarily guarantee 
that a given shared memory object appears at the same address in all processes that access it, 
unless the user specifies an address. 

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true" otherwise it is 
attached for reading and writing It is not possible to attach a segment for write only. 

Shmdt detaches from the calling process's data segment the shared memory segment located at 
the address specified by shmaddr. 

RETURN VALUE 
Upon successful completion, the return value is as follows: 

Shmat returns the data segment start address of the attached shared memory segment. 

Shmdt returns a value of O. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 

150 

Shmat fails and does not attach the shared memory segment if one or more of the following is 
true: 

[EINVAL] 

[EACCES] 

[ENOMEM] 

[EINVAL] 

[EMFILE] 

(Section 2) 

Shmid is not a valid shared memory identifier. 

Operation permission is denied to the calling process. 

The available data space is not large enough to accommodate the shared 
memory segment. 

Shmaddr is not zero and the machine does not permit non-zero values or 
shmaddr is not equal to the current attach location for the shared memory seg­
ment. 

The number of shared memory segments attached to the calling process exceed 
the system-imposed limit. 

-1- HP-UX Release 7.0: September 1989 



SHMOP(2) SHMOP(2) 

Shmdt fails and returns -1 if the following is true: 

[EINVAL] Shmdt fails and does not detach the shared memory segment if shmaddr is not 
the data segment start address of a shared memory segment. 

EXAMPLES 
The following call to shmat attaches the shared memory segment to the process. This example 
assumes the process has a valid shmid, which can be obtained by calling shmget(2). 

char *shmptr, *shmatO; 
shmptr = shmat<myshmid, (char *)0, 0); 

The following call to shmdt then detaches the shared memory segment. 

shmdt (shmptr); 

DEPENDENCIES 
Series 300 

Shmaddr can be non-zero, and if it is, the segment is attached at the address specified by 
one of the following criteria: 

If shmaddr is equal to zero, the segment is attached at the first available address as 
selected by the system. The selected value varies for each process accessing that shared 
memory object. 

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "true", the segment is attached 
at the address given by (shmaddr - (shmaddr % SHMLBA». The character % is the C 
language modulus operator. 

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the segment is 
attached at the address given by shmaddr. 

This form of shmat fails and does not attach the shared memory segment if one or more of 
the following is true: 

[EACCES) 

[EINVAL] 

[EINVAL] 

[ENOMEM) 

Shmid is the ID of a shared memory segment currently being used by the 
system to implement other features (see graphics(7) and iomap(7)). 

Shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr % 
SHMLBA» is an illegal address. 

Shmaddr is not equal to zero, (shmflg & SHM_RND) is "false", and the 
value of shmaddr is an illegal address. 

The calling process is locked (see plock(2)) and there is not sufficient lock­
able memory to support the process-related data structure overhead. 

Series 800 
Shmat will fail and return -1 if the following is true: 

[EINVAL] The calling process is already attached to shmid. 

SEE ALSO 
ipcs(l), exec(2), exit(2), fork(2), shmctl(2), shmget(2), stdipc(3C). 

STANDARDS CONFORMANCE 
shmat: SVID2, XPG2, XPG3 

shmdt: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 2) 151 



SIGACTION(2) Series 300 Only SIGACTION(2) 

NAME 
sigaction - examine and change signal action 

SYNOPSIS 
#inc1ude <signal.h> 

int sigaction ( sig, act, oact ) 
int sig ; 
struct sigaction *act, *oact ; 

DESCRIPTION 
Sigaction allows the calling process to examine and specify the action to be taken on delivery of 
a specific signal. The argument sig specifies the signal; acceptable values are defined in 
<signal.h>. More details on the semantics of specific signals can be found on the signal(S) 
manual page. 

The sigaction structure and type sigset_t are defined in <signal.h>. 

Act and oact are pointers to sigaction structures that include the following elements: 

void (*sa_handler)O; 
sigset_t sa_mask; 
int sa_flags; 

Unless it is a null pointer, the argument act points to a structure specifying the action to be 
taken when delivering the specified signal. If the argument oact is not a null pointer, the action 
previously associated with the signal is stored in the location pointed to by oact. If the argument 
act is a null pointer, signal handling is unchanged; thus sigaction can be used to inquire about 
the current handling of a given signal. 

The sa_handler member of the sigaction structure is assigned one of three values: SIG_DFL, 
SIG_IGN, or a function address. The actions prescribed by these values are as follows: 

Execute default action for signal. 

Upon receipt of the signal sig, the default action (specified on signal(S)) is per­
formed. The default action for most signals is to terminate the process. 

A pending signal is discarded (whether or not it is blocked) if sigaction is set to 
SIG_DFL for a pending signal whose default action is to ignore the signal (as 
in the case of SIGCHLD). 

Ignore the signal. 

Setting a signal action to SIG_IGN causes a pending signal to be discarded, 
whether or not it is blocked. 

The SIGKILL and SIGSTOP signals cannot be ignored. 

function address Catch the signal. 

Upon receipt of the signal sig, the receIvmg process executes the signal­
catching function pointed to by sa_handler. The signal-catching function is 
entered as a C language function call. Details on the arguments passed to this 
function can be found on the signal (5) manual page. 

The signals SIGKILL and SIGSTOP cannot be caught. 

When a signal is caught by a signal-catching function installed by sigaction, a new mask is cal­
culated and installed for the duration of the signal-catching function, or until a call is made to 
sigprocmask(2) or sigsuspend(2). This mask is formed by taking the union of the current signal 
mask, the signal to be delivered, and unless the SA_RESETHAND flag is set (see below), the 
signal mask specified in the sa_mask field of the sigaction structure associated with the signal 

152 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGACTION(2) Series 300 Only SIGACTION(2) 

being delivered. If and when the signal-catching function returns normally, the original signal 
mask is restored. 

Once an action is installed for a specific signal, it remains installed until another action is expli­
citly requested, or until one of the exec(2) functions is called. 

If the previous action for sig was established by signal (2), the values of the fields returned in the 
structure pointed to by oact are unspecified; in particular, oact->sa_handler is not necessarily the 
same value passed to signal(2). However; if <I pointer to the same structure or a copy thereof is 
passed to a subsequent call to sigaction(2) via the act argument, handling of the signal is rein­
stated as if the original call to signal(2) were repeated. 

The set of signals specified by the sa_mask field of the sigaction structure pointed to by the act 
argument cannot block the SIGKILL or SIGSTOP signal. This is enforced by the system 
without causing an error to be indicated. 

The sa_flags field in the sigaction structure can be used to modify the behavior of the specified 
signal. The following flag bits, defined in the <signal.h> header, can be set in sa_flags: 

SA_NOCLDSTOP Do not generate SIGCHLD when untraced children stop (see ptrace(2)). 

SA_ONSTACK 

SA_RESETHAND 

Use the space reserved by sigspace(2) for signal processing. 

Use the semantics of signal(2). The signal mask specified by the sa_mask 
field is not used when setting up the effective signal mask for the signal 
handler. If the signal is not one of those marked "not reset when caught" 
(see signal(5)), the default action for the signal is reinstated when the sig­
nal is caught, prior to entering the signal-catching function. The "not 
reset when caught" distinction is insignificant when sigaction is called and 
SA_RESETHAND is not set. 

RETURN VALUE 
Upon successful completion, sigaction returns a value of O. Otherwise a value of -1 is returned 
and errno is set to indicate the error. 

ERRORS 
Sigaction fails and no new signal-catching function is installed if one of the following is true: 

[EINVAL] 

[EFAULT] 

AUTHOR 

The value of the sig argument is not a valid signal number, or an attempt is 
made to supply an action other than SIG_DFL for the SIGKILL or SIGSTOP sig­
nal. 

Act or oact points to an invalid address. The reliable detection of this error is 
implementation dependent. 

Sigaction was derived from the IEEE Standard POSIX 1003.1-1988. 

SEE ALSO 
ptrace(2), sigprocmask(2), sigpending(2), sigspace(2), sigsuspend(2), sigsetops(3C), signal(5). 

STANDARDS CONFORMANCE 
sigaction: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -2- (Section 2) 153 



SIGBLOCK(2) SIGBLOCK(2) 

NAME 
sigblock - block signals 

SYNOPSIS 
#inc1ude <signal.h> 

long sigblock(mask); 
long mask; 

DESCRIPTION 
Sigblock causes the signals specified in mask to be added to the set of signals currently being 
blocked from delivery. Signal i is blocked if the i-th bit in mask is 1, as specified with the 
macro sigmask(i). 

It is not possible to block signals that cannot be ignored, as documented in signal (5); this res­
triction is silently imposed by the system. 

Sigsetmask(2) can be used to set the mask absolutely. 

RETURN VALUE 
The previous set of masked signals is returned. 

EXAMPLES 
The following call to sigblock adds the SIGUSRI and SIGUSR2 signals to the mask of signals 
currently blocked for the process: 

long oldmask; 

oldmask = sigblock (sigmask (SIGUSR1) I sigmask (SIGUSR2»; 

WARNINGS 
Sigblock should not be used in conjunction with the facilities described under sigset(2V). 

AUTHOR 
Sigblock was developed by the University of California, Berkeley. 

SEE ALSO 
kill(2), sigprocmask(2), sigsetmask(2), sigvector(2). 

154 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGNAL(2) SIGNAL(2) 

NAME 
signal - specify what to do upon receipt of a signal 

SYNOPSIS 
#inc1ude <signal.h> 

void (*signal (sig, action»() 
int sig; 
void (*action)(); 

void action (sig [, code, scp ]) 
int sig, code; 
struct sigcontext * scp; 

DESCRIPTION 
Signal allows the calling process to choose one of three ways to handle the receipt of a specific 
signal. Sig specifies the signal and action specifies the choice. 

Acceptable values for sig are defined in <signal.h>. The specific signals are described in full on 
the signal(5) manual page. 

The value of the action argument specifies what to do upon the receipt of signal sig, and should 
be one of the following: 

SIG_DFL Execute the default action, which varies depending on the signal. The default 
action for most signals is to terminate the process (see signal (5». 

address 

A pending signal is discarded (whether or not it is blocked) if action is set to 
SIG_DFL but the default action of the pending signal is to ignore the signal (as 
in the case of SIGCLD). 

Ignore the signal. 
When signal is called with action set to SIG_IGN and an instance of the signal 
sig is pending, the pending signal is discarded, whether or not it is blocked. 

The SIGKILL and SIGSTOP signals cannot be ignored. 

Catch the signal. 
Upon receipt of the signal sig, reset the value of action for the caught signal to 
SIG_DFL (except signals marked with "not reset when caught"; see signal(5», 
call the signal-catching function to which address points, and resume executing 
the receiving process at the point it was interrupted. 

The signal-catching function is called with the following three parameters: 

sig The signal number. 

code A word of information usually provided by the hardware. 

scp A pointer to the machine-dependent structure sigcontext defined in 
<signal.h>. 

Depending on the value of sig, code can be zero and/or scp can be NULL. The meanings of 
code and scp and the conditions determining when they are other than zero or NULL are imple­
mentation dependent (see DEPENDENCIES below). It is possible for code to always be zero, 
and scp to always be NULL. 

The pointer scp is valid only during the context of the signal-catching function. 

The signals SIGKILL and SIGSTOP cannot be caught. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 155 



SIGNAL(2) SIGNAL(2) 

RETURN VALUE 
Upon successful completion, signal returns the previous value of action for the specified signal 
sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error. 

ERRORS 
Signal fails if the following is true: 

[EINVAL] Sig is an illegal signal number, or is equal to SIGKILL or SIGSTOP. 

EXAMPLES 
The following call to signal sets up a signal-catching function for the SIGINT signal: 

void myhandlerO; 

(void) signal(SIGINT, myhandler); 

WARNINGS 
Signal should not be used in conjunction with the facilities described under bsdproc(2), sigac­
tion(2), sigset(2V), or sigvector(2). 

The signal function does not detect an invalid value for the action argument, and if it does not 
equal SIG_DFL or SIG_IGN, or point to a valid function address, subsequent receipt of the sig­
nal sig causes undefined results. 

DEPENDENCIES 
Series 300 

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, 
code has the following values: 

o illegal instruction; 
6 check instruction; 
7 TRAPV; 
8 privilege violation. 

Refer to the MC6800xx processor documentation for more detailed information about 
the meaning of the SIGILL errors. 

For SIGFPE, code has the following values: 
o software floating point exception; 

Series 800 

5 integer divide-by-zero. 
Ox8xxxxxx 

any value with the high-order bit set indicates an exception while using the 
HP98248 floating point accelerator. The value of (code &- Ox8000000) is the 
value of the HP 98248 status register. Refer to the HP 98248 documentation for 
more detailed information. 

other 
any other value indicates an exception while using the MC68881 or MC68882 
floating point coprocessor. The value of code is the value of the MC68881 or 
MC68882 status register. Refer to the MC68881 documentation for more 
detailed information. 

The structure pointer scp is always defined. 

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code 
has the following values: 

8 illegal instruction trap; 
9 break instruction trap; 

10 privileged operation trap; 
11 privileged register trap. 

156 (Section 2) -2- HP-UX Release 7.0: September 1989 



SIGNAL(2) SIGNAL(2) 

For SIGFPE, code has the following values: 
12 overflow trap; 
13 conditional trap; 
14 assist exception trap; 
22 assist emulation trap. 

AUTHOR 
Si~nal was developed by HP, AT&T, and the University of California, Berkeley. 

SEE ALSO 
kill(I), init(IM), exit(2), kill(2), lseek(2), pause(2), sigaction(2), sigvector(2), wait(2), abort(3C), 
setjmp(3C), signal(5). 

STANDARDS CONFORMANCE 
signal: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -3- (Section 2) 157 



SIGPAUSE(2) SIGPAUSE(2) 

NAME 
sigpause - atomically release blocked signals and wait for interrupt 

SYNOPSIS 
#include <signal.h> 

long sigpause(mask) 
long maski 

DESCRIPTION 
Sigpause blocks signals according to the value of mask in the same manner as sigsetmask(2), then 
atomically waits for an unmasked signal to arrive. On return sigpause restores the current signal 
mask to the value that existed before the sigpause call. When no signals are to be blocked, a 
value of OL is used for mask. 

In normal usage, a signal is blocked using sigblock(2). To begin a critical section variables 
modified on the occurrence of the signal are examined to determine that there is no work to be 
done, and the process pauses, awaiting work by using sigpause with the mask returned by sig­
block. 

RETURN VALUE 
Sigpause will terminate when it is interrupted by a signal. When sigpause terminates, it will 
return -1 and set errno to EINTR. 

EXAMPLES 
The following call to sigpause waits until the calling process receives a signal: 

sigpause (OL)i 

The following example blocks the SIGIO signal until sigpause is called. When a signal is 
received at the sigpause statement, the signal mask is restored to its value before sigpause was 
called: 

WARNINGS 

long savemaski 
savemask = sigblock (sigmask (SIGIO))i 
j'" critical section'" j 
sigpause (savemask)i 

Check all references to signal(5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

Sigpause should not be used in conjunction with the facilities described under sigset(2V). 

AUTHOR 
Sigpause was developed by the University of California, Berkeley. 

SEE ALSO 
sigblock(2), sigsetmask(2), sigsuspend(2), sigvector(2). 

158 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGPENDING(2) 

NAME 
sigpending - examine pending signals 

SYNOPSIS 
#inc1ude <signal.h> 

int sigpending ( set ) 
sigseC t *set i 

DESCRIPTION 

SIGPENDING(2) 

Sigpending stores sets of signals that are blocked from delivery and are pending to the calling 
process, at the location pointed to by set. 

RETURN VALUE 
Upon successful completion, sigpending returns a value of o. Otherwise a value of -1 is 
returned and errno is set to indicate the error. 

ERRORS 
Sigpending fails if the following is true: 

[EFAULT] Set points to an invalid address. The reliable detection of this error is imple­
mentation dependent. 

AUTHOR 
Sigpending was derived from the IEEE Standard POSIX 1003.1-1988. 

SEE ALSO 
sigaction(2), sigsuspend(2), sigprocmask(2), sigsetops(3C), signal(5). 

STANDARDS CONFORMANCE 
sigpending: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 159 



SIGPROCMASK (2) SIGPROCMASK(2) 

NAME 
sigprocmask - examine and change blocked signals 

SYNOPSIS 
#include <signal.h> 

int sigprocmask ( how, set, oset ) 
int how; 
sigseCt *set, *oset ; 

DESCRIPTION 
Sigprocmask allows the calling process to examine and/or change its signal mask. 

Unless it is a null pointer, the argument set points to a set of signals to be used to change the 
currently blocked set. 

The argument how indicates how the set is changed, and consists of one of the following values 
(see <signal.h»: 

SIG_BLOCK The resulting set is the union of the current set and the signal set pointed 
to by set. 

The resulting set is the intersection of the current set and the complement 
of the signal set pointed to by set. 

The resulting set is the signal set pointed to by set. 

If the argument oset is not a null pointer, the previous signal mask is stored in the location 
pointed to by oset. If set is a null pointer, the value of the argument how is insignificant and the 
process's signal mask is unchanged; thus the call can be used to inquire about currently blocked 
signals. 

If any pending unblocked signals remain after the call to sigprocmask, at least one of those sig­
nals is delivered before the call to sigprocmask returns. 

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system 
without causing an error to be indicated. 

The process's signal mask is not changed if sigprocmask fails for any reason. 

RETURN VALUE 
Upon successful completion, sigprocmask returns a value of O. Otherwise a value of -1 is 
returned and errno is set to indicate the error. 

ERRORS 
Sigprocmask fails if one or more of the following is true: 

[EINVAL] 

[EFAULT] 

AUTHOR 

The value of the how argument is not equal to one of the defined values. 

Set or oset points to an invalid address. The reliable detection of this error is 
implementation dependent. 

Sigprocmask was derived from the IEEE Standard POSIX 1003.1-1988. 

SEE ALSO 
sigaction(2), sigsuspend(2), sigpending(2), sigsetops(3C), signal(5). 

ST ANDARDS CONFORMANCE 
sigprocmask: XPG3, POSIX.1, FIPS 151-1 

160 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGSET(2V) SIGSET(2V) 

NAME 
sigset, sighold, sigrelse, sigignore, sigpause - signal management 

SYNOPSIS 
#inc1ude <signa1.h> 

void (* sigset ( sig, func »() 
int sig; 
int (* func )(); 

int sighold (sig) 
int sig; 

int sigrelse (sig) 
int sig; 

int sigignore (sig) 
int sig; 

int sigpause (sig) 
int sig; 

DESCRIPTION 
The system defines a set of signals that can be delivered to a process. The set of signals is 
defined in signa/(5), along with the meaning and side effects of each signal. An alternate 
mechanism for handling these signals is defined here. The facilities described here should not 
be used in conjunction with the other facilities described under signa/(2), sigvector(2), sig­
b/ock(2), sigsetmask(2), sigpause(2) and sigspace(2). 

Sigset allows the calling process to choose one of four ways to handle the receipt of a specific 
signal. Sig specifies the signal and func specifies the choice. 

Sig can be anyone of the signals described under signa/(5) except SIGKILL or SIGSTOP. 

Func is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD or a function address. The 
actions prescribed by SIG_DFL and SIG_IGN are described under signa/(5). The action 
prescribed by SIG_HOLD and function address are described below: 

SIG_HOLD Hold signal. 
The signal sig is held upon receipt. Any pending signal of this signal type 
remains held. Only one signal of each type is held. 
Note: the signals SIGKILL, SIGCONT and SIGSTOP cannot be held. 

function address Catch signal. 
Func must be a pointer to a function, the signal-catching handler, that is called 
when signal sig occurs. Sigset specifies that the process calls this function upon 
receipt of signal sig. Any pending signal of this type is released. This handler 
address is retained across calls to the other signal management functions listed 
here. Upon receipt of the signal sig, the receiving process executes the signal­
catching function pointed to by func as described under signa/(5) with the fol­
lowing differences: 
Before calling the signal-catching handler, the system signal action of sig is set 
to SIG_HOLD. During a normal return from the signal-catching handler, the 
system signal action is restored to func and any held signal of this type is 
released. If a non-local goto (longjmp(3C» is taken, sigre/se must be called to 
restore the system signal action to func and release any held signal of this type. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 161 



SIGSET(2V) SIGSET(2V) 

Sighold(2) holds the signal sig. Sigrelse(2) restores the system signal action of sig to that 
specified previously by sigset. Sighold and sigrelse are used to establish critical regions of code. 
Sighold is analogous to raising the priority level and deferring or holding a signal until the prior­
ity is lowered by sigrelse. 

Sigignore sets the action for signal sig to SIG_IGN. (See signai(5». 

Sigpause suspends the calling process until it receives an unblocked signal. If the signal sig is 
held, it is released before the process pauses. Sigpause is useful for testing variables that are 
changed when a signal occurs. For example, sighold should be used to block the signal first, 
then test the variables. If they have not changed, call sigpause to wait for the signal. 

These functions can be linked into a program by giving the -IV3 option to /d(l). 

RETURN VALUE 
Upon successful completion, sigset returns the previous value of the system signal action for the 
specified signal sig. Otherwise, a value of SIC_ERR is returned and errno is set to indicate the 
error. SIC_ERR is defined in <signal.h>. 

For the other functions, a 0 value indicates that the call succeeded. A -1 return value indicates 
an error occurred and errno is set to indicate the reason. 

ERRORS 
The sigset function fails and the system signal action for sig is not changed if the following 
occurs: 

[EFAULT] The Junc argument points to memory that is not a valid part of the process 
address space. The reliable detection of this error is implementation depen-
dent. 

The sigset, sighold, sigrelse, sigignore, and sigpause functions fail and the system signal action for 
sig is not changed if one of the following occurs: 

[EINVAL] Sig is not a valid signal number. 

[EINVAL] An attempt is made to ignore, hold, or supply a handler for a signal that can­
not be ignored, held, or caught; see signal(5). 

The sigpause function returns when the following occurs: 

[EINTR] A signal was caught. 

WARNINGS 
These signal facilities should not be used in conjunction with bsdproc(2), signal(2), sigvector(2), 
sigblock(2), sigsetmask(2), sigpause(2) and sigspace(2). 

SEE ALSO 
kill(l), kill(2), signal(2), pause(2), wait(2), abort(3C), setjmp(3C), signal(5). 

162 (Section 2) -2- HP-UX Release 7.0: September 1989 



SIGSETMASK(2) 

NAME 
sigsetmask - set current signal mask 

SYNOPSIS 
#inc1ude <signal.h> 

long sigsetmask(mask); 
long mask; 

DESCRIPTIOI'J 

SIGSETMASK(2) 

Sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signal i is 
blocked if the i-th bit in mask, as specified with the macro sigmask(i), is a 1. 

It is not possible to mask signals that cannot be ignored, as documented in signal(5); this restric­
tion is silently imposed by the system. 

Sigblock(2) can be used to add elements to the set of blocked signals. 

RETURN VALUE 
The previous set of masked signals is returned. 

EXAMPLES 
The following call to sigsetmask causes only the SIGUSR1 and SIGUSR2 signals to be blocked: 

long oldmask; 

oldmask = sigsetmask (sigmask (SIGUSR1) I sigmask (SIGUSR2»; 

WARNINGS 
Sigsetmask should not be used in conjunction with the facilities described under sigset(2V). 

AUTHOR 
Sigsetmask was developed by the University of California, Berkeley. 

SEE ALSO 
kill(2), sigblock(2), sigpause(2), sigprocmask(2), sigvector(2). 

HP-UX Release 7.0: September 1989 -1- (Section 2) 163 



SIGSPACE(2) SIGSPACE(2) 

NAME 
sigspace - assure sufficient signal stack space 

SYNOPSIS 
#inc1ude <sysjtypes.h> 

size_t sigspace(stacksize) 
size_t stacksize; 

DESCRIPTION 
Sigspace requests additional stack space that is guaranteed to be available for processing signals 
received by the calling process. 

If the value of stacksize is positive, it specifies the size of a space, in bytes, which the system 
guarantees to be available when processing a signal. If the value of stacksize is zero, any 
guarantee of space is removed. If the value is negative, the guarantee is left unchanged; this 
can be used to interrogate the current guaranteed value. 

When a signal's action indicates that its handler should use the guaranteed space (specified with 
a sigaction(2), sigvector(2) or sigvec (on bsdproc(2)) call), the system checks to see if the process 
is currently using that space. If the process is not currently using that space, the system 
arranges for that space to be available for the duration of the signal handler's execution. If that 
space has already been made available (due to a previous signal) no change is made. The nor­
mal stack discipline is resumed when the signal handler first using the guaranteed space is 
exited. 

The guaranteed space is inherited by child processes resulting from a successful fork(2) system 
call, but the guarantee of space is removed after any exec(2) system call. 

The guaranteed space cannot be increased in size automatically, as is done for the normal stack. 
If the stack overflows the guaranteed space, the resulting behavior of the process is undefined. 

Guaranteeing space for a stack can interfere with other memory allocation routines, in an 
implementation-dependent manner. 

During normal execution of the program the system checks for possible overflow of the stack. 
Guaranteeing space might cause the space available for normal execution to be reduced. 

Leaving the context of a service routine abnormally, such as by longjmp on setjmp(3C), removes 
the guarantee that the ordinary execution of the program will not extend into the guaranteed 
space. It might also cause the program to lose forever its ability to automatically increase the 
stack size, causing the program to be limited to the guaranteed space. 

RETURN VALUE 
Upon successful completion, the size of the former guaranteed space is returned. Otherwise, a 
value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Sigspace fails and the guaranteed amount of space remains unchanged if the following occurs: 

[ENOMEM) 

WARNINGS 

The requested space cannot be guaranteed either because of hardware limita­
tions or because some software-imposed limit would be exceeded. 

The guaranteed space is allocated using malloc(3C). This use might interfere with other heap 
management mechanisms. 

Methods for calculating the required size are not well developed. 

Sigspace should not be used in conjunction with the facilities described under sigset(2V). 

Sigspace should not be used in conjunction with sigstack(2). 

164 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGSPACE(2) SIGSPACE(2) 

DEPENDENCIES 
Series 300 

The kernel overhead taken in the reserved space is 608 bytes on Series 300. This over­
head must be included in the requested amount. These values are subject to change in 
future releases. 

AUTHOR 
Sigspace was developed by HP. 

SEE ALSO 
sigaction(2), sigstack(2), sigvector(2), malloc(3C), setjmp(3C). 

HP-UX Release 7.0: September 1989 -2- (Section 2) 165 



SIGSTACK(2) SIGSTACK(2) 

NAME 
sigstack - set and/or get signal stack context 

SYNOPSIS 
#inc1ude <signal.h> 

int sigstack (ss, oss) 
struct sigstack *ss, *ossi 

DESCRIPTION 
Sigstack allows the calling process to indicate to the system an area of its address space to be 
used for processing signals received by the process. 

The correct use of sigstack(2) is hardware dependent, and therefore is not portable between 
different implementations of HP-UX (see DEPENDENCIES below). Sigspace(2) is portable 
between different implementations of HP-UX and it should be used when the application does 
not need to know where the signal stack is located. Sigstack is provided for compatability with 
other systems that provide this functionality. Users should note that there is no guarantee that 
functionality similar to this is even possible on some architectures. 

If the value of the ss argument is not a null pointer, it is assumed to point to a struct sigstack 
structure, which includes the following members: 

int ss_onstacki non-zero when signal stack is in use 
void *SS_SPi signal stack pointer 

The value of the ss_onstack member indicates whether the process wants the system to use a 
signal stack when delivering signals; the value of the ss_sp member indicates the desired loca­
tion (see DEPENDENCIES) of the signal stack area in the process's virtual address space. 

If the ss argument is a null pointer, the current signal stack context is not changed. 

If the oss argument is not a null pointer, it should point to a variable of type struct sigstack; the 
current signal stack context is returned in that variable. The value stored in the ss_onstack 
member tells whether the process is currently using a signal stack, and if so, the value stored in 
the ss_sp member is the current stack pointer for the stack in use. 

If the oss argument is a null pointer, the current signal stack context is not returned. 

When a signal's action indicates its handler should execute on the signal stack (specified by cal­
ling sigaction(2), sigvector(2), or sigvec (on bsdproc(2»), the system checks to see if the process is 
currently executing on that stack. If the process is not currently executing on the signal stack, 
the system arranges a switch to the signal stack for the duration of the signal handler's execu­
tion. 

The signal stack context is inherited by child processes resulting from a successful fork(2) system 
call, but the context is removed after an exec(2) system call. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Sigstack fails and the signal stack context remains unchanged if the following is true: 

[EFAULT] 

WARNINGS 

Either of ss or oss is not a null pointer and points outside the allocated address 
space of the process. The reliable detection of this error is implementation 
dependent. 

Sigstack(2) should not be used in conjunction with sigspace(2). 

166 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGST ACK(2) SIGSTACK(2) 

User-defined signal stacks do not grow automatically, as does the normal process stack. If a 
signal stack overflows, the resulting behavior of the process is undefined. 

Methods for calculating the required stack size are not well developed. 

Leaving the context of a service routine abnormally, such as by longjmp (on setjmp(3C), might 
remove the guarantee that the ordinary execution of the program does not extend into the 
guaranteed space. It might also cause the program to lose forever its ability to automatically 
increase the stack size, causing the program to be limited to the guaranteed space. 

DEPENDENCIES 
Series 300 

Stack addresses grow from high addresses to low addresses; therefore the signal stack 
address provided to sigstack(2) should point to the end of the space to be used for the sig­
nal stack. This address should be aligned to a four-byte boundary. 

Series 800 

AUTHOR 

Stack addresses grow from low addresses to high addresses; therefore the signal stack 
address provided to sigstack(2) should point to the beginning of the space to be used for 
the signal stack. This address should be aligned to an eight-byte boundary. 

Sigstack was developed by HP and the University of California, Berkeley. 

SEE ALSO 
sigspace(2), setjmp(3C). 

HP-UX Release 7.0: September 1989 -2- (Section 2) 167 



SIGSUSPEND(2) Series 300 Only SIGSUSPEND(2) 

NAME 
sigsuspend - wait for a signal 

SYNOPSIS 
#inc1ude <signal.h> 

int sigsuspend (sigmask) 
sigseCt *sigmask ; 

DESCRIPTION 
Sigsuspend replaces the process's current signal mask with the set of signals pointed to by sig­
mask, and then suspends the process until delivery of a signal that either executes a signal 
handler or terminates the process. 

If the signal terminates the process, sigsuspend never returns. If the signal executes a signal 
handler, sigsuspend returns after the signal handler returns, and restores the signal mask to the 
set that existed prior to the sigsuspend call. 

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system 
without causing an error to be indicated. 

RETURN VALUE 
Since sigsuspend suspends a process indefinitely, there is no successful completion return value. 
If a return occurs, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Sigsuspend fails if one or more of the following is true: 

[EINTR] 

[EFAULT] 

AUTHOR 

Sigsuspend was interrupted by receipt of a signal. 

Sigmask points to an invalid address. The reliable detection of this error is 
implementation dependent. 

Sigsuspend was derived from the IEEE Standard POSIX 1003.1-1988. 

SEE ALSO 
sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3C), signal(5). 

STANDARDS CONFORMANCE 
sigsuspend: XPG3, POSIX.1, FIPS 151-1 

168 (Section 2) -1- HP-UX Release 7.0: September 1989 



SIGVECTOR(2) SIGVECTOR(2) 

NAME 
sigvector - software signal facilities 

SYNOPSIS 
#include <signal.h> 

sigvector(sig, vec, ovec) 
int sig; 
struct sigvec *vec, *ovec; 

DESCRIPTION 
The system defines a set of signals that can be delivered to a process. The set of signals is 
defined in signal(5), along with the meaning and side effects of each signal. This manual page, 
along with those for sighlock(2), sigsetmask(2), sigpause(2), and sigspace(2), defines an alternate 
mechanism for handling these signals that assures the delivery of signals and integrity of signal 
handling procedures. The facilities described here should not be used in the same program as 
signal(2). 

With the sigvector interface, signal delivery resembles the occurrence of a hardware interrupt: 
the signal is blocked from further occurrence, the current process context is saved, and a new 
one is built. A process can specify a handler function to be invoked when a signal is delivered, 
or specify that a signal should be blocked or ignored. A process can also specify that a default 
action should be taken by the system when a signal occurs. It is possible to ensure a minimum 
amount of stack space for processing signals using the sigspace(2) call. 

All signals have the same priority. Signal routines execute with the signal that causes their 
invocation to be blocked, although other signals can yet occur. A global signal mask defines 
the set of signals currently blocked from delivery to a process. The signal mask for a process is 
initialized from that of its parent (normally 0). It can be changed with a sighlock(2), sigset­
mask(2), or sigpause(2) call, or when a signal is delivered to the process. 

A signal mask is represented as a long, with one bit representing each signal being blocked. 
The following macro defined in <signal.h> is used to convert a signal number to its 
corresponding bit in the mask: 

#define sigmask(signo) (IL < < (signo-l)) 

When a signal condition arises for a process, the signal is added to a set of signals pending for 
the process. If the signal is not currently blocked by the process, it is delivered to the process. 
When a signal is delivered, the current state of the process is saved, a new signal mask is calcu­
lated (as described below), and the signal handler is invoked. The call to the handler is 
arranged so that if the signal handling routine returns normally, the process resumes execution 
in the same context as before the signal's delivery. If the process wishes to resume in a 
different context, it must arrange to restore the previous context itself. 

When a signal is delivered to a process, a new signal mask is installed for the duration of the 
process' signal handler (or until a sighlock(2) or sigsetmask(2) call is made). This mask is formed 
by taking the current signal mask, computing the bitwise inclusive OR with the value of 
vec .sv _mask (see below) from the most recent call to sigvector for the signal to be delivered, and, 
unless the SV _RESETHAND flag is set (see below), setting the bit corresponding to the signal 
being delivered. When the user's signal handler returns normally, the original mask is restored. 

Sigvector assigns a handler for the signal specified by sig. Vec and ovec are pointers to sigvec 
structures that include the following elements: 

void (*sv _handler)O; 
long sv _mask; 
long sv _flags; 

HP-UX Release 7.0: September 1989 -1- (Section 2) 169 



SIGVECTOR(2) SIGVECTOR(2) 

If vee is non-zero, it specifies a handler routine (sv_handler), a mask (sv_mask) that the system 
should use when delivering the specified signal, and a set of flags (sv _flags) that modify the 
delivery of the signal. If ovee is non-zero, the previous handling information for the signal is 
returned to the user. If vee is zero, signal handling is unchanged: thus, the call can be used to 
enquire about the current handling of a given signaL If vee and ovec peint to the same struc­
ture, the value of vee is read prior to being overwritten. 

The sv _flags field can be used to modify the receipt of signals. The following flag bits are 
defined: 

SV_ONSTACK 
SV_BSDSIC 
SV _RESETHAND 

Use the sigspaee allocated space 
Use the Berkeley signal semantics 
Use the semantics of signal(2) 

If SV _ONSTACK is set, the system uses, or permits the use of, the space reserved for signal 
processing in the sigspaee(2) system call. 

If SV _BSDSIC is set, the signal is given the Berkeley semantics. The following signal is affected 
by this flag: 

SICCLD In addition to being sent when a child process dies, the signal is also sent 
when any child's status changes from running to stopped. This would nor­
mally be used by a program such as esh(1) when maintaining process groups 
under Berkeley job control. 

If SV _RESETHAND is set, the signal handler will be installed with the same semantics as a 
handler installed with signal (2). This affects the signal mask set up during the signal handler 
(see above) and whether the handler is reset after a signal is caught (see below). 

If SV _RESETHAND is not set, once a signal handler is installed, it remains installed until 
another sigveetor call is made or an exee(2) system call is performed. If SV _RESETHAND is set 
and the signal is not one of those marked "not reset when caught" under signal(5), the default 
action is reinstated when the signal is caught, prior to entering the signal-catching function. 
The "not reset when caught" distinction is not significant when sigveetor is called and 
SV _RESETHAND is not set. 

The default action for a signal can be reinstated by setting sv _handler to SIC_DFL; this default 
usually results in termination of the process. If sv _handler is SIC_ICN the signal is usually sub­
sequently ignored, and pending instances of the signal are discarded. The exact meaning of 
SIC_DFL and SIC_ICN for each signal is discussed in signal(5). 

Certain system calls can be interrupted by a signal; all other system calls complete before the 
signal is serviced. The sep pointer described in signal(5) is never null if sigveetor is supported. 
Sep points to a machine-dependent sigeontext structure. All implementations of this structure 
include the fields: 

int scsyscall; 
char sc_syscaILaction; 

The value SYS_NOTSYSCALL for the scsyseall field indicates that the signal is not interrupting 
a system call; any other value indicates which system call it is interrupting. 

If a signal that is being caught occurs during a system call that can be interrupted, the signal 
handler is immediately invoked. If the signal handler exits normally, the value of the 
se_syseall_aetion field is inspected; if the value is SIC_RETURN, the system call is aborted and 
the interrupted program continues past the call. The result of the interrupted call is -1 and 
errno is set to EINTR. If the value of the se_sysealCaetion field is SIC_RESTART, the call is 
restarted. A call is restarted if, in the case of a read(2) or write(2) system call, it had transferred 
no data. If some data had been transferred, the operation is considered to have completed with 
a partial transfer, and the scsyseall value is SYS_NOTSYSCALL. Other values are undefined 

170 (Section 2) -2- HP-UX Release 7.0: September 1989 



SIGVECTOR(2) SIGVECTOR(2) 

and reserved for future use. 

Exiting the handler abnormally (such as with longjmp on setjmp(3C)) aborts the call, leaving the 
user responsible for the context of further execution. The value of scp->sc_syscalCaction is 
ignored when the value of scp->sc_syscall is SYS_NOTSYSCALL. Scp->sc_syscall_action is 
always initialized to SIG_RETURN before invocation of a signal handler. When an system call 
that can be interrupted is interrupted by multiple signals, if any signal handler returns a value 
of SIG_RETURN in scp->sc_syscalCaction, all subsequent signal handlers are passed a value of 
SYS_NOTSYSCALL in scp->sc_syscaii. 

Note that calls to read(2), write(2) or ioctl(2) on fast devices (disks) cannot be interrupted, but 
I/O to a slow device (teletype) can be interrupted. Other system calls, such as those used for 
networking, also can be interrupted on some implementations. In these cases additional values 
can be specified for scp->sc_syscall. Programs that look at the values of scp->scsyscall always 
should compare them to these symbolic constants; the numerical values represented by these 
constants might vary among implementations. System calls that can be interrupted and their 
corresponding values for scp->sc_syscall are listed below: 

Call sc_syscall value 

read (slow devices) SYS_READ 
readv (slow devices) SYS_READV 
write (slow devices) SYS_ WRITE 
writev (slow devices) SYS_ WRITE V 
open (slow devices) SYS_OPEN 
ioctl (slow requests) SYS_IOCTL 
wait SYS_WAIT 
select SYS_SELECT 
pause SYS_PAUSE 
sigpause SYS_SIGPAUSE 
semop SYS_SEMOP 
msgsnd SYS_MSGSND 
msgrcv SYS_MSGRCV 

These system calls are not defined if the preprocessor macro XPG2 is defined when 
<signal.h> is included. This is because Issue 2 of the X/Open Portability Guide specifies a 
different meaning for the symbol SYS_OPEN (see limits(5)). 

After a fork(2) or vfork(2) system call, the child inherits all signals, the signal mask, and the 
reserved signal stack space. 

Exec(2) resets all caught signals to the default action; ignored signals remain ignored, the signal 
mask remains unchanged, and the reserved signal stack space is released. 

The mask specified in vec is not allowed to block Signals that cannot be ignored, as defined in 
signal (5). This is enforced silently by the system. 

If sigvector is called to catch SIGCLD in a process that currently has terminated (zombie) chil­
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is 
unblocked if it is currently blocked. Thus, in a process that spawns multiple children and 
catches SIGCLD, it is sometimes advisable to reinstall the handler for SIGCLD after each invo­
cation in case there are multiple zombies present. This is true even though the handling of the 
signal is not reset by the system, as with signal (2), because deaths of multiple processes while 
SIGCLD is blocked in the handler result in delivery of only a single signal. Note that the func­
tion must reinstall itself after it has called wait(2) or wait3(2). Otherwise the presence of the 
child that caused the original signal always causes another signal to be delivered. 

HP-UX Release 7.0: September 1989 -3- (Section 2) 171 



SIGVECTOR(2) SIGVECTOR(2) 

RETURN VALUE 
A 0 value indicates that the call succeeded. A -1 return value indicates an error occurred and 
errno is set to indicate the reason. 

ERRORS 
Sigvector fails and no new signal handler is installed if one of the following occurs: 

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process ad­
dress space. The reliable detection of this error is implementation dependent. 

[EINVAL] 

[EINVAL] 

WARNINGS 

Sig is not a valid signal number. 

An attempt is made to ignore or supply a handler for a signal that cannot be 
caught or ignored; see signal(5). 

Restarting a select(2) call can sometimes cause unexpected results. If the select call has a 
timeout specified, the timeout is restarted with the call, ignoring any portion that had elapsed 
prior to interruption by the signal. Normally this simply extends the timeout and is not a prob­
lem. However, if a handler repeatedly catches signals and the timeout specified to select is 
longer than the time between those signals, restarting the select call effectively renders the 
timeout infinite. 

Sigvector should not be used in conjunction with the facilities described under sigset(2V). 

AUTHOR 
Sigvector was developed by HP and the University of California, Berkeley. 

SEE ALSO 
kil1(I), kil1(2), ptrace(2), sigblock(2), signal(2), sigpause(2), sigsetmask(2), sigspace(2), 
setjmp(3C), signal(5), termio(7). 

172 (Section 2) -4- HP-UX Release 7.0: September 1989 



STAT(2) STAT(2) 

NAME 
stat, lstat, fstat - get file status 

SYNOPSIS 
#indude <sys/types.h> 
#indude <sys/stat.h> 

int stat (path, but) 
char *path; 
struct stat *buf; 

int 1st at (path, but) 
char *path; 
struct stat *buf; 

int fstat (fildes, but) 
int BIdes; 
struct stat *buf; 

DESCRIPTION 
Stat obtains information about the named file. 

Path points to a path name naming a file. Read, write, or execute permission of the named file 
is not required, but all directories listed in the path name leading to the file must be searchable. 

Similarly, fstat obtains information about an open file known by the file descriptor fildes, 
obtained from a successful open(2), creat(2), dup(2), fcntl (2), or pipe (2) system call. 

Lstat is similar to stat except when the named file is a symbolic link, in which case lstat returns 
the information about the link, while stat returns information about the file to which the link 
points. 

Buf is a pointer to a stat structure into which information is placed concerning the file. 

The contents of the structure stat pointed to by buf include the following members. Note that 
there is no necessary correlation between the placement in this list and the order in the struc­
ture. 

dev_t sLdev; /* ID of device containing a * / 
/* directory entry for this file * / 

ino_t st_ino; /* Inode number * / 
ushort st_fstype; /* Type of filesystem this file * / 

/* is in; see vfsmount(OS) * / 
ushort st_mode; /* File type, attributes, and * / 

/* access control summary * / 
ushort st_basemode /* Permission bits (see chmod(I» * / 
ushort sLnlink; /* Number of links * / 
uid_t st_uid; /* User ID of file owner * / 
gid_t st_gid; /* Group ID of file group * / 
dev_t st_rdev; /* Device ID; this entry defined * / 

/* only for char or blk spec files * / 
ofLt st_size; /* File size (bytes) * / 
time_t st_atime; /* Time of last access * / 
time_t st_mtime; /* Last modification time * / 
time_t st_ctime; /* Last file status change time * / 

/* Measured in secs since * / 
/* 00:00:00 GMT, Jan 1, 1970 * / 

uint sLacl:1; /* Set if the file has optional * / 
/* access control list entries * / 

HP-UX Release 7.0: September 1989 -1- (Section 2) 173 



STAT(2) 

sCmtime 

sCctime 

STAT(2) 

Field indicating when file data was last accessed. Changed by the fol­
lowing system calls: creat(2), mknod(2), pipe(2), read(2), readv (on 
read(2», and utime(2). 

Field indicating when data was last modified. Changed by the follow­
ing system calls: creat(2), truncate(2), [truncate (on truncate (2», 
mknod(2), pipe(2), prealloc(2), utime(2), write(2), and writev (on 
write(2». Also changed by close(2) when the reference count reaches 
zero on a named pipe (FIFO special) file that contains data. 

Field indicating when file status was last changed. Changed by the fol­
lowing system calls: chmod(2), chown(2), creat(2), [chmod(2), [chown(2), 
truncate(2), [truncate (on truncate(2», link(2), mknod(2), pipe(2), prea1-
10c(2), rename(2), setacl(2), unlink(2), utime(2), write(2), and writev (on 
write(2». 

The touch(l) command can be used to explicitly control the times of a 
file. 

The value returned in this field is the bitwise inclusive OR of a value 
indicating the file's type, attribute bits, and a value summarizing its 
access permission. See mknod(2). 

For ordinary users, the least significant nine bits consist of the file's 
permission bits modified to reflect the access granted or denied to the 
caller by optional entries in the file's access control list. 

For superusers, the least significant nine bits are the file's access per­
mission bits. In addition, the S_IXUSR (execute by owner) mode bit is 
set if the following conditions are met: 

-- the file is a regular file, 
-- no permission execute bits are set, and 
-- an execute bit is set in one or more of the file's optional 
access control list entries. 

The write bit is not cleared for a file on a read-only file system or a 
shared-text program file that is being executed. However, getaccess(2) 
clears this bit under these conditions. 

NETWORKING FEATURES 
RFA 

The contents of the structure stat pointed to by but also include the following members: 

uint st_remote:1; j* Set if file is remote * j 
j* ID of device containing * j 
j* network special file * j 
j* Inode number of network special file * j 

sCremote Field indicating whether the file is on a remote node. A zero value 
indicates that the file is on the local node; non-zero indicates that the 
file is on a remote node, and accessed through remote file access (RFA). 
Not all HP-UX systems support RFA; st_remote is always zero on non­
RFA supported systems. 

st_netdev, scnetino All remote file access takes place through a special file in the local file 
system known as a network special file. Each network special file 
identifies a particular remote node. When sCremote is non-zero, 
sCnetdev and st_netino identify the appropriate network special file; 

174 (Section 2) -2- HP-UX Release 7.0: September 1989 



STAT(2) STAT(2) 

otherwise these fields are zero. 

RETURN VALUE 
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indi­
cate the error. 

ERRORS 
Stat or lstat fails if any of the following is true: 

[ENOTDIR] 

[ENOENT] 

[EACCES] 

[EFAULT] 

[ELOOP] 

J.A~ component of the path prefix is not a directory. 

The named file does not exist (for example, path is null or a component 
of path does not exist). 

Search permission is denied for a component of the path prefix. 

But or path points to an invalid address. The reliable detection of this 
error is implementation dependent. 

Too many symbolic links were encountered in translating the path 
name. 

[ENAMETOOLONG] 
The length of the specified path name exceeds PATH_MAX bytes, or the 
length of a component of the path name exceeds NAME_MAX bytes 
while _POSIX_NO_ TRUNC is in effect. 

Fstat fails if any of the following is true: 

[EBADF] 

[EFAULT] 

DEPENDENCIES 

Fildes is not a valid open file descriptor. 

But points to an invalid address. The reliable detection of this error is 
implementation dependent. 

HP Clustered Environment 
The contents of the stat structure include the following additional members: 

cnode_t st_cnode; /* Cnode ID of machine * / 
/* where the inode lives * / 

cnode_t st_rcnode /* Cnode ID where this * / 
/* device file can be used * / 

dev _t st_realdev; /* Real device number of device * / 

sLdev 

CD-ROM 

/* containing the inode for this file * / 

The ID number for the volume on which the inode exists. This 
number mayor may not be the device number for the device con­
taining the volume. Device numbers are not unique throughout a 
cluster, but the value of st_dev is guaranteed to be unique among 
all volumes currently mounted in the file system. The device 
number for the volume can always be found in the field 
sLrealdev, which together with sLcnode fully specifies the dev­
ice containing the volume. 

The sLuid and sLgid fields are set to -1 if they are not specified on the disk for a given 
file. 

RFA and NFS 
The sCbasemode and scacl fields are zero on files accessed remotely. 

HP-UX Release 7.0: September 1989 -3- (Section 2) 175 



STAT(2) STAT(2) 

AUTHOR 
Stat and fstat were developed by AT&T. Lstat was developed by the University of California, 
Berkeley. 

SEE ALSO 
touch(l), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2), 
time(2), truncate(2), unlink(2), utime(2), write(2), acl(5), stat(5). 

STANDARDS CONFORMANCE 
stat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

fstat: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

176 (Section 2) -4- HP-UX Release 7.0: September 1989 



STATFS(2) STATFS(2) 

NAME 
statfs, fstatfs - get file system statistics 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <sys/vfs.h> 

int statfs(path, buf) 
char *path; 
struct statfs *buf; 

int fstatfs(fildes, buf) 
int fildes; 
struct statfs *buf; 

DESCRIPTION 
Statfs returns information about a mounted file system. Path is the path name of any file within 
the mounted file system. 

Buf is a pointer to a statfs structure into which information is placed concerning the file system. 
The contents of the structure pointed to by buf include the following members: 

long 
long 
long 
long 
long 
long 
long 
fsid_t 

Lbavail; 
Lbfree; 
Lblocks; 
Lbsize; 
Lffree; 
Lfiles; 
Ltype; 
Lfsid; 

/* free blocks available to non-superuser *1 
1* free blocks *1 
1* total blocks in file system *1 
1* fundamental file system block size in bytes *1 
1* free file nodes in file system *1 
1* total file nodes in file system *1 
/* type of info, zero for now *1 
1* file system ID *1 

A file node is a structure in the file system hierarchy that describes a file. For mounted HP-UX 
volumes, file node is an HP-UX inode. For other types of mounts, file node is defined by the 
system embodying the file pointed to by path. 

Fields that are undefined for a particular file system are set to -1. 

Fstatfs returns the same information about an open file referred to by file descriptor fildes. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global 
variable errno is set to indicate the error. 

ERRORS 
Statfs fails if one or more of the following is true: 

[EACCES] 

[EFAULT] 

[ElO] 

[ELOOP] 

[ENAMETOOLONG] 

[ENOENT] 

[ENOTDIR] 

Search permission is denied for a component of the path prefix. 

Buf or path points to an invalid address. 

An 1/0 error occurred while reading from or writing to the file system. 

Too many symbolic links are encountered in translating the path name. 

A component of path exceeds NAME_MAX bytes while 
_POSlX_NO_TRUNC is in effect, or path exceeds PATH_MAX bytes. 

The named file does not exist. 

A component of the path prefix is not a directory. 

Fstatfs fails if one or more of the following is true: 

HP-UX Release 7.0: September 1989 -1- (Section 2) 177 



STATFS(2) STATFS(2) 

[EBADF] 
Fildes is not a valid open file descriptor. 

[EFAULT] 
But points to an invalid address. 

[EIO] An I/O error occurs while reading from or writing to the file system. 

AUTHOR 
Statts and tstatts were developed by Sun Microsystems, Inc. 

SEE ALSO 
df(lM), stat(2), ustat(2). 

178 (Section 2) -2- HP-UX Release 7.0: September 1989 



STlME(2) 

NAME 
stime - set time and date 

SYNOPSIS 
int stime (tp) 
long *tp; 

DESCRIPTION 

STlME(2) 

Stime sets the system's idea of the time and date. Tp points to the value of time as measured in 
seconds from 00:00:00 GMT January 1, 1970. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
[EPERM] Stime will fail if the effective user ID of the calling process is not super-user. 

DEPENDENCIES 
HP Clustered Environment 

On systems that are members of a cluster, setting the time sets the time and date on all 
systems in the cluster. 

SEE ALSO 
date(I), gettimeofday(2), time(2). 

STANDARDS CONFORMANCE 
stime: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 2) 179 



STTY(2) STTY(2) 

NAME 
stty, gtty - control device 

SYNOPSIS 
#include <sgtty.h> 

stty(fildes,argp) 
int fildes; 
struct sgttyb *argp; 

gtty(fildes,argp) 
int fildes; 
struct sgttyb * argp; 

REMARKS 
These system calls are preserved for backward compatibility with Bell Version 6. They provide 
as close an approximation as possible to the old Version 6 functions. All new code should use 
the TCSETA/TCGETA ioctl calls described in termio(7). 

DESCRIPTION 
For certain status setting and status inquiries about terminal devices, the functions stty and gtty 
are equivalent to 

ioctl(fildes, TIOCSETP, argp) 
ioctl(fildes, TIOCGETP, argp) 

respectively; see termio(7). 

RETURNS 
Zero is returned if the call was successful; -1 if the file descriptor does not refer to the kind of 
file for which it was intended. 

SEE ALSO 
stty(1), exec(2), sttyV6(7), tty(7), termio(7). 

180 (Section 2) -1- HP-UX Release 7.0: September 1989 



SWAPON(2) SWAPON(2) 

NAME 
swapon - add swap space for interleaved paging/swapping 

SYNOPSIS 
swapon (special) I (directory, [min, limit, reserve, priority) 
char * special, directory; 
int min, limit, reserve, priority; 

DESCRIPTION 
Swapon makes the block device special available to the system for allocation for paging and 
swapping. The names of potentially available devices are known to the system and defined at 
system configuration time. See the appropriate system administrator's manual for information 
on how the size of the swap area is calculated. 

Swapon can also make the blocks on the file system specified by directory available for paging 
and swapping. 

The min limit reserve and priority parameters default to zero and only have meaning if the first 
parameter passed to swap on is a directory. 

min indicates the number of file system blocks to take from the file system at the time that 
swaponO is called. 

limit indicates the maximum number of file system blocks the swap system is allowed to take 
from the file system. 

reserve indicates the number of file system blocks that are saved for file system use only. 

priority indicates the order in which space is taken from the file systems used for swap. Space 
is taken from the lower priority systems first. 

File systems used for swapping do not have to be configured into the system. 

Swapon may be invoked only by the super-user. 

ERRORS 
Swapon will fail if one or more of the following are true: 

[ENOTBLK] Special is not the name of a block special file. 

[ENXIO] The device associated with special could not be opened. 

[EBUSY] 

[ENODEV] 

[EPERM] 

[ELOOP] 

[ENOENT] 

[ENOSPC] 

[EINVAL] 

The device associated with special is already in use. 

The device associated with special does not exist. 

The effective user ID is not super-user. 

Too many symbolic links were encountered in translating the path name. 

The swap space requested is not a block special file or a directory 

There is is not enough available space on the file system specified to allocate 
the amount requested in the min parameter. 

The system imposed limit on the number of swap file entries has been reached. 

[ENAMETOOLONG] 

WARNINGS 

The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_ TRUNC is in effect. 

There is no way to stop swapping on a disk so that the pack may be dismounted. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 181 



SWAPON(2) SWAPON(2) 

The system will allocate no less than the amount specified in "min", however, to make the 
most efficient use of space, more than the amount requested might be taken from the file sys­
tem. The actual amount taken will not exceed the number of file system blocks indicated in 
"reserve". 

Swapping to the file system can be slower than swapping to a device. 

AUTHOR 
Swapon was developed by the University of California, Berkeley. 

SEE ALSO 
swapon(lM). 

182 (Section 2) -2- HP-UX Release 7.0: September 1989 



SYMLINK(2) SYMLINK(2) 

NAME 
symlink - make symbolic link to a file 

SYNOPSIS 
symlink(name1, name2) 
char *name1, *name2; 

DESCRIPTION 
Symlink creates a file name2, which is a symbolic link to namel. Either name may be an arbi­
trary path name. The files need not be on the same file system. 

RETURN VALUE 
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored 
in errno and a -1 value is returned. 

ERRORS 
The symbolic link is made unless one or more of the following are true: 

[ENOTDIR] A component of the name2 prefix is not a directory. 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EEXIST] 

[EIO] 

[EROFS] 

[ENOSPC] 

[ENOSPC] 

[ENOSPC] 

[EIO] 

[EFAULT] 

AUTHOR 

A component of either path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect, or the entire length of either path name 
exceeds PATH_MAX bytes. 

The named file does not exist. 

A component of the name2 path prefix denies search permission. 

Too many symbolic links were encountered in translating the path name. 

Name2 already exists. 

An 1j0 error occurred while making the directory entry for name2, allocating 
the inode for name2, or writing out the link contents of name2. 

The file name2 resides on a read-only file system. 

The directory in which the entry for the new symbolic link is being placed can­
not be extended because there is no space left on the file system containing the 
directory. 

The new symbolic link cannot be created because there there is no space left 
on the file system that will contain the symbolic link. 

There are no free in odes on the file system on which the symbolic link is being 
created. 

An I/O error occurred while making the directory entry or allocating the inode. 

Namel or name2 points outside the process' allocated address space. The reli­
able detection of this error is implementation dependent. 

Symlink was developed by the University of California, Berkeley California, Computer Science 
Division, Department of Electrical Engineering and Computer Science. 

SEE ALSO 
symlink(4), readlink(2), link(2), cp(l), unlink(2). 

HP-UX Release 7.0: September 1989 -1- (Section 2) 183 



SYNC(2) SYNC(2) 

NAME 
sync, lsync - update super-block 

SYNOPSIS 
void sync ( ) 

void lsync ( ) 

DESCRIPTION 
Sync causes all information in memory that should be on disk to be written out. This includes 
modified super blocks, modified inodes, and delayed block I/O. 

It should be used by programs which examine a file system, for example fsck, df, etc. It is man­
datory before a shutdown. 

The writing, although scheduled, is not necessarily complete upon return from sync. 

In some HP-UX systems, sync may be reduced to a no-op. This is permissible on a system 
which does not cache buffers, or in a system that in some way ensures that the disks are always 
in a consistent state. 

In the HP Clustered Environment, sync causes updates of all file systems in the cluster to be 
written out, while lsync performs only a local sync; that is, local buffers are flushed to disk and 
to remote nodes of the cluster, but remote nodes do not flush their own pages. 

AUTHOR 
Sync was developed by HP and AT&T Bell Laboratories. Lsync was developed by HP. 

SEE ALSO 
sync(IM). 

STANDARDS CONFORMANCE 
sync: SVID2, XPG2 

184 (Section 2) -1- HP-UX Release 7.0: September 1989 



SYSCONF(2) SYSCONF(2) 

NAME 
sysconf - get configurable system variables 

SYNOPSIS 
#include <unistd.h> 

long sysconf(name) 
int name; 

DE5CRIPTIOl'J 
The sysconf function enables applications to determine the current value of a configurable limit 
or variable. 

The name argument represents the system variable being queried. 

The following table lists the configuration variables whose values can be determined by calling 
sysconf, and for each variable, the associated value of the name argument and function return: 

Variable Value of name Value Returned ---------------------------------------------------------------

CHILD_MAX 

CLK_TCK 

Maximum length of the argu­
ments for exec(2) in bytes, 
including environment data 

Maximum number of simul­
taneous processes per user ID 

Number of clock intervals per 
second 

_SCNGROUPS_MAX Maximum number of simul­
taneous supplementary group 
IDs per process 

Maximum number of files that 
one process can have open at 
one time 

Maximum number of significant 
characters in a password 

_POSIX_JOB_CONTROL _SC_JOB_CONTROL Non-zero if the system sup­
ports POSIX job control; -1 
otherwise 

HP-UX Release 7.0: September 1989 -1-

Non-zero if each process has a 
saved set-user-ID and a saved 
set-group-ID; -1 otherwise 

(Section 2) 185 



SYSCONF(2) 

_SCVERSION 

SYSCONF(2) 

Version of the POSIX Standard 
(such as 198808L) to which the 
system conforms. This value 
will change with each pub­
lished revision of the standard, 
to indicate the year (first four 
digits) and month (next two 
digits) that the standard was 
approved by the IEEE Stan­
dards Board. If the system does 
not conform to any version, -1 
is returned. 

The variables in the table are defined as constants in <limits.h> (see limits(5». The associated 
values of the name argument are defined in <unistd.h>. 

RETURN VALUE 
If the value of name is not valid, sysconf returns -1 and sets errno to indicate the error. If the 
variable corresponding to name is not defined, sysconf returns -1; however, errno will not be 
changed. 

Upon any successful completion, sysconf returns the value of the named variable, as described 
above. These values do not change during the lifetime of the calling process. 

ERRORS 
Sysconf fails if the following condition is true: 

[EINVAL] 

EXAMPLES 

The value of name is not valid. 

The following example determines the number of times the system clock ticks each second: 

AUTHOR 

#include <unistd.h> 
long hz; 

Sysconf was developed by HP and POSIX. 

SEE ALSO 
pathconf(2), unistd(5), limits(5). 

STANDARDS CONFORMANCE 
sysconf: XPG3, POSIX.1, FIPS 151-1 

186 (Section 2) -2- HP-UX Release 7.0: September 1989 



TIME(2) 

NAME 
time - get time 

SYNOPSIS 
#indude <time.h> 

time_t time (tloc) 
time_t *tloc; 

DESCRiPTION 
Time returns the value of time in seconds since the Epoch. 

TIME(2) 

If tlac is not a null pointer, the return value is also assigned to the object to which it points. 

ERRORS 
[EFAULT] Time will fail if tlac points to an illegal address. The reliable detection of this 

error will be implementation dependent. 

RETURN VALUE 
Upon successful completion, time returns the value of time. Otherwise, a value of (time_t)-l is 
returned and errno is set to indicate the error. 

SEE ALSO 
date(l), gettimeofday(2), stime(2), ctime(3C), strftime(3C). 

STANDARDS CONFORMANCE 
time: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -1- (Section 2) 187 



TIMES (2) TIMES(2) 

NAME 
times - get process and child process times 

SYNOPSIS 
#inc1ude <sys/times.h> 

c1oek_t times (buffer) 
struet tms *buffer; 

DESCRIPTION 
Times fills the structure pointed to by buffer with time-accounting information. The structure 
defined in sys/times.h is as follows: 

struct tms { 

}; 

clock_t tms_utime; 
clock_t tms_stime; 
clock_t tms_cutime; 
clock_t tms_cstime; 

/* user time * / 
/* system time * / 
/* user time, children * / 
/* system time, children * / 

This information comes from the calling process and each of its terminated child processes for 
which it has executed await, wait3, or waitpid. The times are in units of 1/ CLK_ TCK seconds, 
where CLK_ TCK is processor dependent The value of CLK_ TCK can be queried using the sys­
conf(2) call. 

Tms_utime is the CPU time used while executing instructions in the user space of the calling 
process. 

Tms_stime is the CPU time used by the system on behalf of the calling process. 

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes. 

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes. 

ERRORS 
[EFAULT] Times will fail if buffer points to an illegal address. The reliable detection of 

this error will be implementation dependent. 

RETURN VALUE 
Upon successful completion, times returns the elapsed real time, in units of 1 / CLK_ TCK of a 
second, since an arbitrary point in the past (e.g., system start-up time). This point does not 
change from one invocation of times to another. If times fails, a -1 is returned and errno is set 
to indicate the error. 

SEE ALSO 

BUGS 

time(l), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2). 

Not all CPU time expended by system processes on behalf oh(user process is counted in the 
system CPU time for that process. 

STANDARDS CONFORMANCE 
times: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

188 (Section 2) -1- HP-UX Release 7.0: September 1989 



TRUNCATE(2) TRUNCATE (2) 

NAME 
truncate, ftruncate - truncate a file to a specified length 

SYNOPSIS 
truncate(path, length) 
char *path; 
unsigned long length; 

ftruncate(fd, length) 
int fd; 
unsigned long length; 

DESCRIPTION 
Truncate causes the file named by path or referenced by fd to be truncated to at most length 
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun­
cate, the file must be open for writing; for truncate the user must have write permission for the 
file. 

RETURN VALUES 
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global 
variable errno specifies the error. 

ERRORS 
Truncate succeeds unless: 

[ENOTDIR] 

[EACCES] 

[EACCES] 

[EISDIR] 

[EROFS] 

[ETXTBSY] 

[EFAULT] 

[ELOOP] 

A component of the path prefix of path is not a directory. 

A component of the path prefix denies search permission. 

Write permission is denied on the file. 

The named file is a directory. 

The named file resides on a read-only file system. 

The file is a pure procedure (shared text) file that is being executed. 

Path points outside the process's allocated address space. The reliable detec­
tion of this error will be implementation dependent. 

Too many symbolic links were encountered in translating the path name. 

[ENAMETOOLONG] 
The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_ TRUNC is in effect. 

Ftruncate succeeds unless: 

[EBADF] 

[EINVAL] 

AUTHOR 

The fd is not a valid descriptor. 

The fd references a file that was opened without write permission. 

Truncate was developed by the University of California, Berkeley California, Computer Science 
Division, Department of Electrical Engineering and Computer Science. 

SEE ALSO 
open(2). 

HP-UX Release 7.0: September 1989 -1- (Section 2) 189 



ULIMIT(2) ULIMIT(2) 

NAME 
ulimit - get and set user limits 

SYNOPSIS 
#include <ulimit.h> 

long ulimit (cmd, ... ) 
int cmd; 

DESCRIPTION 
This function provides for control over process limits. The cmd values available are: 

UL_GETFSIZE Get the file size limit of the process. The limit is in units of 512-byte 
blocks and is inherited by child processes. Files of any size can be read. 

Set the file size limit of the process to the value of the optional second 
argument. Any process may decrease this limit, but only a process with 
an effective user ID of super-user may increase the limit. Note that the 
limit must be specified in units of 512-byte blocks. 

UL_ GETMAXBRK Get the maximum possible break value. See brk(2). Depending on sys­
tem resources such as swap space, this maximum may not be attainable 
at a given time. 

ERRORS 
Ulimit will fail if one or more of the following conditions is true. 

[EINVAL] 

[EPERM] 

RETURN VALUE 

cmd is not in the correct range. 

Ulimit will fail and the limit will be unchanged if a process with an effective 
user ID other than super-user attempts to increase its file size limit. 

Upon successful completion, a non-negative value is returned. Errors return a -I, with errno 
set appropriately. 

SEE ALSO 
brk(2), write(2). 

STANDARDS CONFORMANCE 
ulimit: SVID2, XPG2, XPG3 

190 (Section 2) -1- HP-UX Release 7.0: September 1989 



UMASK(2) UMASK(2) 

NAME 
umask - set and get file creation mask 

SYNOPSIS 
#include <sysjtypes.h> 
#include <sysjstat.h> 

mode_t umask (cmask) 
mode_t cmask; 

DESCRIPTION 
Umask sets the process's file mode creation mask to cmask and returns the previous value of the 
mask. Only the file access permission bits of the masks are used. 

The bits set in cmask specify which permission bits to turn off in the mode of the created file, 
and should be specified using the symbolic values defined in stat(5). 

EXAMPLES 
The following creates a file named path in the current directory with permIsSIons 
S_IRWXU I S_IRGRP I S_IXGRP, so that the file can be written only by its owner, and can be 
read or executed only by the owner or processes with group permission, even though group 
write permission and all permissions for others are passed in to creat. 

#indude <sysjtypes.h> 
#indude <sysjstat.h> 

int fildes; 

(void) umask(S_IWGRP I S_IRWXO); 
fildes = creat("path", S_IRWXU I S_IRWXG I S_IRWXO); 

RETURN VALUE 
The previous value of the file mode creation mask is returned. 

SEE ALSO 
mkdir(l), sh(l), mknod(lM), chmod(2), creat(2), mknod(2), open(2). 

ST ANDARDS CONFORMANCE 
umask: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 2) 191 



UMOUNT(2) UMOUNT(2) 

NAME 
umount - unmount a file system 

SYNOPSIS 
int umount (name) 
char *namei 

DESCRIPTION 
Umount requests that a previously mounted file system contained on the block special device 
identified by name be unmounted. Name is a pointer to a path name. After unmounting the 
file system, the directory upon which the file system was mounted reverts to its ordinary 
interpretation. 

Umount can also request that a file system mounted previously on the directory identified by 
name be unmounted. After unmounting the file system, name reverts to its ordinary interpreta­
tion. 

Umount can be invoked only by the superuser. 

NETWORKING FEATURES 
NFS 

Path must indicate a directory name when unmounting an NFS file system. 

RETURN VALUE 
If successful, umount returns a value of O. Otherwise, it returns a value of -1 and sets errno to 
indicate the error. 

ERRORS 
Umount fails if one or more of the following are true: 

[EPERM] 

[ENOENT] 

[ENOTBLK] 

[EINVAL] 

[EBUSY] 

[EFAULT] 

[ENXIO] 

[ENOTDIR] 

[ENOENT] 

The effective user ID of the process is not that of the superuser. 

Name does not exist. 

Name is not a block special device. 

Name is not mounted. 

A file on name is busy. 

Name points outside the allocated address space of the process. Reliable detec­
tion of this error is implementation dependent. 

The device associated with name does not exist. 

A component of name is not a directory. 

Name is null. 

[ENAMETOOLONG] 

[EACCES] 

[ELOOP] 

WARNINGS 

Name exceeds PATH_MAX bytes, or a component of name exceeds NAME_MAX 
bytes while _POSIX_NO_TRUNC is in effect. 

A component of the path prefix of name denies search permission. 

Too many symbolic links were encountered in translating the path name. 

If umount is called from the program level (that is, not from the mount(lM) level), the table of 
mounted devices contained in jetcjmnttab is not updated automatically. 

DEPENDENCIES 
HP Clustered Environment: 

When umount is called from a diskless node and path refers to a block-special file, path is 
interpreted from the root server. This behavior is subject to change in future releases, and 

192 (Section 2) -1- HP-UX Release 7.0: September 1989 



UMOUNT(2) 

SEE ALSO 

UMOUNT(2) 

its use in applications is not recommended. 

When umount is called from a diskless node and path refers to a directory on which is 
mounted a UFS file system (as opposed to an NFS file system; see vfsmount(2», an EINVAL 
error is returned. This behavior is subject to change in future releases, and its use in 
applications is not recommended. 

mount(lM), mount(2), vfsmount(2). 

STANDARDS CONFORMANCE 
umount: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -2- (Section 2) 193 



UNAME(2) UNAME(2) 

NAME 
"marne, setuname - get/set name of current HP-UX system 

SYNOPSIS 
#include <sys/utsname.h> 

int uname (name) 
struct utsname *namei 

int setuname(name, namelen) 
char *namei 
int nameleni 

DESCRIPTION 
Uname stores information identifying the current HP-UX system in the structure pointed to by 
name. 

Uname uses the structure defined in <sys/utsname.h> whose members are: 

#define UTSLEN 
#define SNLEN 

9 
15 

char 
char 
char 
char 
char 
char 

sysname[UTSLEN); 
nodename[UTSLEN); 
release[UTSLEN); 
version[UTSLEN); 
machine[UTSLEN); 
idnumber[SNLEN); 

Uname returns a null-terminated string in each field. The sysname field contains "HP-UX". 
Similarly, the nodename field contains the name by which the system is known on a communi­
cations network. The release field contains the release number of the operating system, such as 
"1.0" or "3.0.1". The version field contains additional information about the operating system. 
The first character of the version field is set to: 

Character I Series 800 I Series 300 ---------1----------------------1--------------------
A I single user system I two-user system 
B I 16-user system I unlimited-users system 
C I 32-user system I 
D I 64-user system I 
U I unlimited-users system I 

(Note that the contents of the version field might change on future releases, as AT&T license 
agreement restrictions change.) The machine field contains a standard name that identifies the 
hardware on which the UNIX system is running. The idnumber is a unique identification 
number within that class of hardware, possibly a hardware or software serial number. This 
field returns the null string to indicate the lack of an identification number. 

Setuname sets the nodename field in the utsname structure to name, which has a length of 
namelen characters. This is usually executed by /etc/rc when the system is bootstrapped. 
Names are limited to UTSLEN - 1 characters; UTSLEN is defined in <sys/utsname.h>. 

ERRORS 
[EPERM] 

[EFAULT] 

RETURN VALUE 

Setuname is not executed by the superuser. 

Name points to an illegal address. The reliable detection of this error is imple­
mentation dependent. 

Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and 

194 (Section 2) -1- HP-UX Release 7.0: September 1989 



UNAME(2) UNAME(2) 

errno is set to indicate the error. 

AUTHOR 
Uname was developed by AT&T Bell Laboratories and the Hewlett-Packard Company. 

SEE ALSO 
hostname(1), uname(1), gethostname(2), sethostname(2). 

ST ANDARDS CONFORMANCE 
uname: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -2- (Section 2) 195 



UNLINK (2) UNLINK(2) 

NAME 
unlink - remove directory entry; delete file 

SYNOPSIS 
int unlink (path) 
char *pathi 

DESCRIPTION 
Unlink removes the directory entry named by the path name pointed to by path. 

When all links to a file have been removed and no process has the file open, the space occupied 
by the file is freed and the file ceases to exist. If one or more processes have the file open when 
the last link is removed, the removal is postponed until all references to the file have been 
closed. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
The named file is unlinked unless one or more of the following are true: 

[ENOTDIR] 

[ENOENT] 

[EACCES] 

[EACCES] 

[EPERM] 

[EBUSY] 

[ETXTBSY] 

[EROFS] 

[EFAULT] 

A component of the path prefix is not a directory. 

The named file does not exist (for example, path is null or a component of path 
does not exist). 

Search permission is denied for a component of the path prefix. 

Write permission is denied on the directory containing the link to be removed. 

The named file is a directory and the effective user ID of the process is not 
super-user. 

The entry to be unlinked is the mount point for a mounted file system. 

The entry to be unlinked is the last link to a pure procedure (shared text) file 
that is being executed. 

The directory entry to be unlinked is part of a read-only file system. 

Path points outside the process's allocated address space. The reliable detec­
tion of this error will be implementation dependent. 

[ENAMETOOLONG] 

[ELOOP] 

SEE ALSO 

The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
]OSIX_NO_TRUNC is in effect. 

Too many symbolic links were encountered in translating the path name. 

rm(1), close(2), link(2), open(2). 

STANDARDS CONFORMANCE 
unlink: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

196 (Section 2) -1- HP-UX Release 7.0: September 1989 



USTAT(2) 

NAME 
ustat - get file system statistics 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <ustat.h> 

int ustat (dev, buf) 
dev_i dev; 
strud ustat *bufi 

DESCRIPTION 

USTAT(2) 

Ustat returns information about a mounted file system. Dev is a device number identifying a 
device containing a mounted file system. But is a pointer to a ustat structure (defined in 
ustat.h) that includes the following elements: 

daddct Ltfree; /* Total free blocks */ 
ino_t Ltinode; /* Number of free in odes */ 
char Lfname[6]; /* Filsys name */ 
char Lfpack[6]; /* Filsys pack name */ 
int Lblksize; /* Block size */ 

The values of the Ltfree and Lblksize fields are reported in fragment size units. 

ERRORS 
Ustat will fail if one or more of the following are true: 

[EINVAL] 

[EFAULT] 

Dev is not the device number of a device containing a mounted file system. 

But points outside the process's allocated address space. The reliable detection 
of this error will be implementation dependent. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

AUTHOR 
Ustat was developed by AT&T Bell Laboratories and the Hewlett-Packard Company. 

SEE ALSO 
touch(l), stat(2), fs(4). 

STANDARDS CONFORMANCE 
ustat: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 2) 197 



UTIME(2) UTIME(2) 

NAME 
utime - set file access and modification times 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <utime.h> 

int utime (path, times) 
char *pathi 
struct utimbuf *timesi 

DESCRIPTION 
Utime sets the access and modification times of the file to which the path argument refers. 

If times is a null pointer, the access and modification times of the file are set to the current time. 
A process must be the owner of the file or have write permission on the file to use utime in this 
manner. 

If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the 
access and modification times are set to the values contained in the designated structure. Only 
the owner of the file or the superuser can use utime this way. 

The following times in the <utimbuf> structure, defined in <unistd.h>, are measured in 
seconds since 00:00:00 GMT, Jan. 1, 1970. 

time_t actime; 
time_t modtime; 

/ * access time * / 
/ * modification time * / 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Utime fails if one or more of the following is true: 

[ENOENT] 

[ENOTDIR] 

[EACCES] 

[EPERM] 

[EACCES] 

[EROFS] 

[EFAULT] 

[EFAULT] 

The named file does not exist. 

A component of the path prefix is not a directory. 

Search permission is denied by a component of the path prefix. 

The effective user ID is not superuser and not the owner of the file, and times is 
not a null pointer. 

The effective user ID is not superuser and not the owner of the file, and times is 
a null pointer and write access is denied. 

The file system containing the file is mounted read-only. 

Times is not a null pointer, and points outside the process's allocated address 
space. The reliable detection of this error is implementation dependent. 

Path points outside the process's allocated address space. The reliable detec­
tion of this error is implementation dependent. 

[ENAMETOOLONG] 

SEE ALSO 

The length of the specified path name exceeds PATH_MAX bytes, or the length 
of a component of the path name exceeds NAME_MAX bytes while 
]OSIX_NO_TRUNC is in effect. 

touch(I), stat(2), unistd(5). 

STANDARDS CONFORMANCE 
utime: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1 

198 (Section 2) -1- HP-UX Release 7.0: September 1989 



VFORK(2) VFORK(2) 

NAME 
vfork - spawn new process in a virtual memory efficient way 

SYNOPSIS 
int vforkO 

REMARKS 
Vfork is provided as a higher performance version of fork on those systems which choose to pro­
vide it and for which there is a performance advantage. 

Vfork differs from fork only in that the child process may share code and data with the calling 
process (parent process). This speeds the cloning activity significantly at a risk to the integrity 
of the parent process if vfork is misused. 

The use of vfork for any purpose except as a prelude to an immediate exec or exit is not sup­
ported. Any program which relies upon the differences between fork and vfork is not portable 
across HP-UX systems. 

All implementations of HP-UX must provide the entry vfork, but it is permissible for them to 
treat it identically to fork. Some implementations may not choose to distinguish the two 
because their implementation of fork is as efficient as possible, and others may not wish to 
carry the added overhead of two similar calls. 

DESCRIPTION 
Vfork can be used to create new processes without fully copying the address space of the old 
process. If a forked process is simply going to do an exec(2}, the data space copied from the 
parent to the child by fork(2) is not used. This is particularly inefficient in a paged environ­
ment. Vfork is useful in this case. Depending upon the size of the parent's data space, it can 
give a significant performance improvement over fork. 

Vfork differs from fork in that the child borrows the parent's memory and thread of control until 
a call to exec or an exit (either by a call to exit(2) or abnormally.} The parent process is 
suspended while the child is using its resources. 

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's context. 

Vfork can normally be used just like fork. It does not work, however, to return while running in 
the child's context from the procedure which called vfork since the eventual return from vfork 
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather than 
exit if you cannot exec, since exit will flush and close standard I/O channels, and thereby mess 
up the parent process's standard I/O data structures. (Even with fork it is wrong to call exit 
since buffered data would then be flushed twice.) 

The [vfork,exec] window begins at the vfork call and ends when the child completes its exec call. 

RETURN VALUE 
Upon successful completion, vfork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the 
parent, no child process is created, and errno is set to indicate the error. 

ERRORS 
Vfork fails and no child process are created if one or more of the following is true: 

[EAGAIN] 

[EAGAIN] 

DEPENDENCIES 
Series 800 

The system-wide limit on the total number of processes under execution would 
be exceeded. 

The system-imposed limit on the total number of processes under execution by 
a single user would be exceeded. 

Process times for the parent and child processes within the [vfork,exec] window may be 

HP-UX Release 7.0: September 1989 -1- (Section 2) 199 



VFORK(2) 

AUTHOR 

VFORK(2) 

inaccurate. 

The parent and child processes share the same stack space within the [vfork,exec] window. 
If the size of the stack has been changed within this window by the child process (return 
from or call to a function, for example), it is likely that the parent and child processes will 
be killed with signal SIGSEGV or SIGBUS. 

In the [vfork,exec] window, a call to signal(2) that installs a catching function can affect 
handling of the signal by the parent. The parent is not affected if the handling is being 
set to SIG_DFL or SIG_IGN, or if either sigaction(2) or sigvector(2) is used. 

Vfork was developed by the University of California, Berkeley. 

SEE ALSO 
exec(2), exit(2), fork(2), wait(2). 

200 (Section 2) -2- HP-UX Release 7.0: September 1989 



VFSMOUNT(2) VFSMOUNT(2) 

NAME 
vfsmount - mount a file system 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/mount.h> 

int vfsmount(type, dir, flags, data) 
int type; 
char' *diri 
int flagsi 
caddr_t datai 

DESCRIPTION 
Vfsmount attaches a file system to a directory. After a successful return, references to directory 
dir will refer to the root directory of the newly mounted file system. Dir is a pointer to a null­
terminated string containing a path name. Dir must exist already, and must be a directory. Its 
old contents are inaccessible while the file system is mounted. Vfsmount differs from mount(2) 
in its ability to mount other than just a local file system. 

Type indicates the type of the file system. It must be one of the types described below. 

The flags argument determines whether the file system can be written on (functionally identical 
to the rwflag argument in mount(2) in this regard). It also controls whether programs from the 
mounted file system are allowed to have set-uid execution. Physically write-protected and mag­
netic tape file systems must be mounted read-only. Failure to do so will result in a return of -1 
by vfsmount and a value of EIO in errno. The following values for the flags argument are 
defined in <sys/mount.h>: 

M_RDONLY 

M_NOSUID 

Mount done as read-only. 

Execution of set-uid programs not permitted. 

Data is a pointer to a structure that contains arguments specific to the value contained in type. 
The following values for types are defined in <sys/mount.h>: 

MOUNT_UFS Mount a local HFS file system. Data points to a structure of the 
following format: 

struct ufs_args { 
char *fspeci 

}i 

Fspec points to the name of the block special file that is to be mounted. This is identical in use 
and function to the first argument for mount(2). 

MOUNT_CDFS Mount a local CD-ROM file system. Data points to a structure of 
the following format: 

struct cdfs_args { 
char *fspeci 

}i 

Fspec points to the name of the block special file that is to be mounted. 

NETWORKING FEATURES 
NFS 

An additional value for the type argument is supported. 

MOUNT _NFS Mount an NFS file system. Data points to a structure of the following 
format: 

HP-UX Release 7.0: September 1989 -1- (Section 2) 201 



VFSMOUNT(2) 

#include 
#include 

<nfs/nfs.h> 
<netinet/in.h> 

struct nfs_args { 
stri.i~t suckaddi_in 
fhandle_t *fh; 
int flags; 
int wsize; 
int rsize; 
int timeo; 
int retrans; 
char *hostname; 

}; 

*-~~-. a.u.ul.i 

VFSMOUNT(2) 

Addr points to a local socket address structure (see inet(7», which is 
used by the system to communicate with the remote file server. 

Fh points to a structure containing a file handle '. an abstract data type 
that is used by the remote file server in serving an NFS request. 

Flags is a bit map that sets options and indicates which of the follow­
ing fields contain valid information. The following values of the bits 
are defined in <nfs/nfs.h>: 

NFSMNT _SOFT Specify whether the mount is a soft mount or a hard mount. If set, the 
mount is soft and will cause requests to be retried retrans number of 
times. Otherwise, the mount is hard and requests will be tried forever. 

NFSMNT _ WSIZE 
Set the write size. 

NFSMNT _RSIZE 
Set the read size. 

NFSMNT _ TIMEO 

Set the initial timeout value. 

NFSMNT _RETRANS 
Set the number of request retries. 

NFSMNT _HOSTNAME 
Set a hostname. 

NFSMNT _INT Set the option to have interruptible I/O to the mounted file system. 

NFSMNT _NODEVS 
Set the option to deny access to local devices via NFS device files. By 
default, access to local devices via NFS device files is allowed. 

Wsize can be used to advise the system on the maximum number of data bytes to use for a sin­
gle outgoing protocol (such as UDP) message. This value must be greater than O. Default 
wsize is 8192. 

Rsize can be used to advise the system on the maximum number of data bytes to use for a sin­
gle incoming protocol (such as UDP) message. This value must be greater than O. Default 
rsize is 8192. 

Timeo can be used to advise the system on the time to wait between NFS request retries. This 
is in units of 0.1 seconds. This value must be greater than O. Default timeD is 7. 

Retrans can be used to advise the system on the number of times the system will resend a 
request. This value must be 0 or greater. Default retrans is 4. 

202 (Section 2) -2- HP-UX Release 7.0: September 1989 



VFSMOUNT(2) VFSMOUNT(2) 

Hostname is a name for the file server that can be used when any messages are given concern­
ing the server. The string can be of length from 0 to 32 characters. 

RETURN VALUE 
Upon successful completion, vfsmount returns a value of O. Otherwise, no file system is 
mounted, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Vfsmount \-viII fail ,·vhen one of the fcllo\A.ring occurs: 

[EBUSY] 

[EBUSY] 

[EBUSY] 

[EBUSY] 

[EFAULT] 

[EIO] 

[ELOOP] 

Dir is not a directory, or another process currently holds a reference to it. 

No space remains in the mount table. 

The super block for the file system had a bad magic number or an out-of-range 
block size. 

Not enough memory was available to read the cylinder group information for 
the file system. 

Data or dir points outside the allocated address space of the process. 

An I/O error occurred while reading from or writing to the file system. 

Too many symbolic links were encountered in translating the path name of file 
system referred to by data or dir. 

[ENAMETOOLONG] 

[ENOENT] 

[ENOENT] 

[ENOTBLK] 

[ENOTDIR] 

[ENOTDIR] 

[ENXIO] 

[EPERM] 

DEPENDENCIES 

The path name of the file system referred to by data or dir PATH_MAX bytes, or 
the length of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_TRUNC is in effect. 

The file system referred to by data or dir does not exist. 

The file system referred to by data does not exist. 

The file system referred to by data is not a block device. This is for a local 
mount. 

A component of the path prefix in dir is not a directory. 

A component of the path prefix of the file system referred to by data or dir is 
not a directory. 

The major device number of the file system referred to by data is out of range 
(this indicates no device driver exists for the associated hardware). 

The caller is not the super-user. 

NFS: Vfsmount fails when one of the following occurs, and returns the error indicated: 

[EFAULT] 

[EINVAL] 

[ERE MOTE] 

A pointer in the data structure points outside the process's allocated 
address space. 

A value in a field of data is out of proper range. 

An attempt was made to remotely mount a file system that was already 
mounted from another remote node. 

See getfh(2), inet(7), and mountd(lM) for more information. 

HP Clustered Environment: 
Vfsmount of a local file system (MOUNT_UFS) is not supported from a cluster client. Such 
a call returns an EINV AL error. 

HP-UX Release 7.0: September 1989 -3- (Section 2) 203 



VFSMOUNT(2) VFSMOUNT(2) 

WARNINGS 
Use of mount(1M) is preferred over vfsmount because mount(1M) supports all mounting options 
that are available from vfsmount directly, plus mount(1M) also maintains the /etc/mnttab file 
which lists what file systems are mounted. 

AUTHOR 
Vfsmount was developed by HP and Sun Microsystems, Inc. 

SEE ALSO 
mount(2), umount(2), mount(1M). 

204 (Section 2) -4- HP-UX Release 7.0: September 1989 



WAIT(2) WAIT(2) 

NAME 
wait, waitpid, wait3 - wait for child or traced process to stop or terminate 

SYNOPSIS 
#inc1ude <sysjtypes.h> 
#inc1ude <sysjwait.h> 
pid_t wait (staCloc) 
int *stat_Ioc; 

pid_t wait «int *)0) 

pid_t waitpid (pid, stat_Ioc, options) 
pid_t pid; 
int *staCloc; 
int options; 

pid_t wait3 (stat_Ioc, options, (int *)0) 
int *staCloc; 
int options; 

DESCRIPTION 
Wait suspends the calling process until one of the immediate children terminates or until a pro­
cess being traced stops, because that traced process has hit a break point. A process being 
traced can be either a child or a process attached by the ptrace(2) request PT_ATTACH (see 
ptrace(2». The wait system call returns prematurely if a signal is received. If a child or traced 
process stops or terminates prior to the call on wait, return is immediate. 

If stat_lac is not a null pointer, status information is stored in the location pointed to by stat_lac. 
The status can be used to differentiate between stopped and terminated processes. If the pro­
cess terminates, the status identifies the cause of termination and passes useful information to 
the calling process. This is accomplished using the following macros defined in <wait.h>, with 
the status value stored at *stat_Ioc as an argument: 

WIFEXITED(staCval) If the process terminated because of an exit(2) or jxit sys­
tem call, this macro evaluates to a non-zero value. 

WEXITST A TUS (staC val) 

WIFSIGNALED(stat_val) 

WTERMSIG (stat_val) 

we ORE DUMP (stat_val) 

WIFSTOPPED(stat_val) 

If the value of WIFEXITED(stat_val) is non-zero, this macro 
evaluates to the low-order 8 bits of the argument that the 
process passed to exit or jxit (see exit(2». 

If the process terminated due to the default action of a sig­
nal (see signal (5», this macro evaluates to a non-zero value. 

If the value of WIFSIGNALED(stat_val) is non-zero, this 
macro evaluates to the number of the signal that caused the 
termination. 

If the value of WIFSIGNALED(stacval) is non-zero, this 
macro evaluates to a non-zero value if a "core image" was 
produced (see signal(5». 

If the process is stopped, this macro evaluates to a non-zero 
value. 

WSTOPSIG(stat_val) If the value of WIFSTOPPED(stat_val) is non-zero, this macro 
evaluates to the number of the signal that caused the pro­
cess to stop. 

As a single special case, the value stored in *stat_Ioc is zero if and only if status is being 
returned from a terminated process that called exit or _exit with a value of zero. 

HP-UX Release 7.0: September 1989 -1- (Section 2) 205 



WAIT(2) WAIT(2) 

If the information stored at the location pointed to by stat_Ioc was stored there by a call to one 
of the wait functions, exactly one of the macros WIFEXITED(*stat_Ioc), WIFSIGNALED(*stat_Ioc), 
and WIFSTOPPED(*stat_Ioc) evaluates to a non-zero value. 

The waitpid function behaves identically to wait if pid has a value of -1 and options has a value 
of zero. Otherwise its behavior is modified by the vaiues of the pid and options arguments. 

The pid argument specifies the set of processes for which status is requested. The waitpid func­
tion returns only the status of a child process from this set. 

If pid is equal to -I, status is requested for any child process or attached process. In 
this respect, waitpid is then equivalent to wait. 

If pid is greater than zero, it specifies the process ID of a single child or attached pro­
cess for which status is requested. 

If pid is equal to zero, status is requested for any child or attached process whose 
process group ID is equal to that of the calling process. 

If pid is less than -I, status is requested for any child or attached process whose 
process group ID is equal to the absolute value of pid. 

The options argument is constructed from the bitwise inclusive OR of zero or more of the fol­
lowing flags: 

WNOHANG If this flag is set, waitpid or wait3 is prevented from suspending the cal­
ling process. A value of zero is returned indicating that no child or 
traced processes have stopped or died. 

WUNTRACED If and only if this flag is set, waitpid or wait3 returns information on 
child or attached processes that are stopped but not traced (with 
ptrace(2» because they received a SIGTTIN, SIGTTOU, SIGTSTP, or SIG­
STOP signal, and whose status has not yet been reported. Regardless 
of this flag, status is returned for child or attached processes that have 
terminated or are stopped and traced and whose status has not yet 
been reported. 

Calling wait3 is equivalent to calling waitpid with the value of pid equal to zero. The third 
parameter to wait3 is currently unused and must always be a null pointer. 

If a parent process terminates without waiting for its child processes to terminate, the parent 
process ID of each child process is set to 1. This means the initialization process inherits the 
child processes. 

Notes 
Earlier HP-UX versions documented the bit encodings of the status returned by wait rather than 
the macros WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, 
and WSTOPSIG. Applications using those bit encodings will continue to work correctly. How­
ever, new applications should use the macros for maximum portability. 

In earlier HP-UX versions, the macros WIFSTOPPED, WIFSIGNALED and WIFEXITED have the 
same definitions as the corrspondingly named macros in the BSD 4.3 and earlier systems. Exist­
ing applications that depend on these definitions will continue to work correctly. However, if 
the application is recompiled, the feature test macro _BSD must be turned on for the compila­
tion so that the old definitions of these macros are obtained. New definitions of these macros 
are in effect by default. The only difference between the old and new definitions is the type of 
the argument. Type union wait is used in the BSD definitions while type int is used in the 
default definitions. 

ERRORS 

206 I(Section 2) -2- HP-UX Release 7.0: September 1989 



WAIT(2) WAIT(2) 

Wait fails if one or more of the following is true: 

[ECHILD] 

[ECHILD] 

[EFAULT] 

[EINVAL] 

[EINVAL] 

[EINTR] 

RETURN VALUE 

The calling process to wait or wait3 has no existing child or traced 
processes, or the calling process to waitpid has no existing unwaited-for 
child or traced processes that match the pid argument. 

For waitpid, the process or process group specified by pid does not exist 
or is not a child of the calling process. 

Stat_Ioc points to an illegal address. The reliable detection of this error 
is implementation dependent. 

The options argument to waitpid or wait3 is invalid. 

Wait3 was passed a non-null pointer value for its third argument. 

The function was interrupted by a signal. The value of the location 
pointed to by stat_Ioc is undefined. 

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and 
errno is set to EINTR. If wait returns due to a stopped or terminated child or traced process, the 
process ID of that process is returned to the calling process. If waitpid or wait3 is called, the 
WNOHANG option is used, and there are no stopped or terminated child or traced processes (as 
specified by pid in the case of waitpid), a value of zero is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

WARNINGS 
The behavior of wait, waitpid, and wait3 is affected by setting the SIGCLD signal to SIG_IGN. 
See WARNINGS section of signal(5). Signal handlers that cause system calls to be restarted can 
affect the EINTR condition described above (see sigaction(2), sigvector(2), and bsdproc(2». 

AUTHOR 
Wait, waitpid, and wait3 were developed by HP, AT&T, and the University of California, Berke­
ley. 

SEE ALSO 
Exit conditions ($?) in sh(l), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5). 

STANDARDS CONFORMANCE 
wait: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

waitpid: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -3- (Section 2) 207 



WRITE (2) WRITE (2) 

NAME 
write, writev - write on a file 

SYNOPSIS 
int write (fildes, buf, nbyte) 
int Hides; 
char *buf; 
unsigned nbyte; 

#include <sys/types.h> 
#include <sys/uio.h> 

int writev (fildes, iov, iovcnt) 
int fildes; 
struct iovec *iov; 
int iovcnt; 

DESCRIPTION 
Write attempts to write nbyte bytes from the buffer pointed to by but to the file associated with 
the file descriptor fildes. Writev performs the same action, but gathers the output data from the 
iovlen buffers specified by the elements of the iovec array: iov[O], iov[1], ... , RI iov[ iovcnt - 1]. 

The iovec structure for writev is defined as follows: 

struct iovec { 
caddct 
int 

}; 

iov_base; 
iov_len; 

Each iovec entry specifies the base address and length of an area in memory from which data 
should be copied. The iovec array may be at most MAXIOV long. 

On devices capable of seeking, the actual writing of data proceeds from the position in the file 
indicated by the file offset. Upon return from write, the file offset is incremented by the 
number of bytes actually written. 

On devices incapable of seeking, writing always takes place starting at the device's current posi­
tion. The value of a file offset associated with such a device is undefined. 

If the O_APPEND file status flag is set, the file offset is set to the end of the file prior to each 
write. 

For ordinary files, if the O_SYNC flag of the file status flags is set, the write does not return until 
both the file data and the file status are physically updated. For block special files, if O_SYNC is 
set, the write does not return until the data is physically updated. How the data reaches the 
physical media is implementation and hardware dependent. 

If the number of bytes requested by write exceeds the allotted capacity (see ulimit(2» or the 
physical end of a medium, only the allotted number of bytes are actually written. For example, 
suppose there is space for 20 bytes more in a file before reaching a limit. A write of 512 bytes 
will return 20. The next write of a non-zero number of bytes fails (except as noted below). 

A write to an ordinary file is prevented if enforcement-mode file and record locking is set, and 
another process owns a lock on the segment of the file being written: 

If O_NDELAY or O_NONBLOCK is set, the write returns -1 and sets errno to EAGAIN. 

If O_NDELAY and O_NONBLOCK are clear, the write does not complete until the block­
ing record lock is removed. 

If the file being written is a pipe (or FIFO), the system-dependent maximum number of bytes 
that it can store is given by PIPSIZ (defined in <sys/inode.h». The minimum value of PIPSIZ 

208 (Section 2) -1- HP-UX Release 7.0: September 1989 



WRITE(2) WRITE(2) 

on any HP-UX system is 8192. When writing a pipe, the following conditions apply: 

If the O_NDELAY or O_NONBLOCK file status flag is set: 

If nbyte is less than or equal to PIPSIZ and sufficient room exists in the pipe or 
FIFO, the write succeeds and returns the number of bytes written; 

If nbyte is less than or equal to PIPSIZ but insufficient room exists in the pipe or 
FIFO, the write returns having written nothing. If O_NONBLOCK is set, -1 is 
returned and errno is set to E,A.Gp).If'J. If O_r--JDEL.A.Y is set, 0 is returned. 

If nbyte is greater than PIPSIZ and the pipe or FIFO is full, the write returns hav­
ing written nothing. If O_NONBLOCK is set, -1 is returned and errno is set to 
EAGAIN. If O_NDELAY is set, 0 is returned. 

If nbyte is greater than PIPSIZ, and some room exists in the pipe or FIFO, as 
much data as fits in the pipe or FIFO is written, and write returns the number of 
bytes actually written, an amount less than the number of bytes requested. 

If the O_NDELAY and O_NONBLOCK file status flags are clear: 

RETURN VALUE 

The write always executes correctly (blocking as necessary), and returns the 
number of bytes written. 

Upon successful completion, the number of bytes actually written is returned. Otherwise, -1 is 
returned and errno is set to indicate the error. 

ERRORS 
Write fails and the file offset remains unchanged if any of the following conditions is true: 

[EBADF] Fildes is not a valid file descriptor open for writing. 

[EPIPE and SIGPIPE signal] 

[EINTR] 

[EDEADLK] 

[EAGAIN] 

[ENOLCK] 

[EIO] 

[ENOSPC] 

An attempt is made to write to a pipe that is not open for reading by any pro­
cess. 

A signal was caught during the write system call. 

A resource deadlock would occur as a result of this operation (see lockf(2) and 
fcntl(2». 

Enforcement-mode file and record locking was set, O_NDELAY was set, and 
there was a blocking record lock. 

The system record lock table is full, preventing the write from sleeping until 
the blocking record lock is removed. 

The process is in a background process group and is attempting to write to its 
controlling terminal, TOSTOP is set, the process is neither ignoring or blocking 
the SIGTTOU signal, and the process group of the process is orphaned. 

Not enough space on the file system. 

In addition, writev might return one of the following errors: 

[EFAULT] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

Iov_base or iov points outside of the allocated address space. The reliable 
detection of this error is implementation dependent. 

Iovcnt is less than or equal to 0, or greater than MAXIOV. 

One of the iov_len values in the iov array was negative. 

The sum of iov_len values in the iov array overflowed a 32-bit integer. 

HP-UX Release 7.0: September 1989 -2- (Section 2) 209 



WRITE(2) WRITE(2) 

Write or writev fails, the file offset is updated to reflect the amount of data transferred, and 
errno is set accordingly if one of the following conditions is true: 

[EFBIG] An attempt was made to write a file that exceeds the process's file size limit or 
the maximum file size. See ulimit(2). 

[EFAULT] Buf points outside the process's allocated address space. The reliable detection 
of this error is implementation dependent. 

EXAMPLES 
Assuming a process opened a file for writing, the following call to write(2) attempts to write 
mybufsize bytes to the file from the buffer to which mybuf points. 

WARNINGS 

#include <string.h> 

int mybufsize, nbytes, fildes; 
char *mybuf = "aeiou and sometimes y"; 
mybufsize = strlen (mybuf); 
nbytes = write (fildes, mybuf, mybufsize); 

Check all references to signal(5) for appropriateness on systems that support sigvector(2). 
Sigvector(2) can affect the behavior described on this page. 

Character special devices, and raw disks in particular, apply constraints on how write can be 
used. See specific Section (7) manual entries for details on particular devices. 

AUTHOR 
Write was developed by HP, AT&T, and the University of California, Berkeley. 

SEE ALSO 
creat(2), dup(2), lockf(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2). 

STANDARDS CONFORMANCE 
write: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

210 (Section 2) -3- HP-UX Release 7.0: September 1989 



Section 3: 
Subroutine Libraries 





INTRO(3) INTRO(3) 

NAME 
intro - introduction to subroutines and libraries 

SYNOPSIS 
#include <stdio.h> 

#include <math.h> 

DESCRIPTION 
This section describes functions found in various libraries, other than those functions that 
directly invoke HP-UX system primitives, which are described in Section (2) of this volume. 
Certain major collections are identified by a letter after the section identifier (3): 

(3C) 

(3G) 

(31) 

(3M) 

(3N) 

(3S) 

(3X) 

Definitions 

These functions, together with the Operating System Calls and those marked 
(3S), constitute the Standard C Library, which is automatically loaded by the C 
compiler, cc(l). The link editor ld(l) searches this library under the -Ic 
option. Declarations for some of these functions may be . obtained from 
#include files indicated on the appropriate pages. 

These functions constitute the graphics library, and are documented in separate 
manuals. 

These functions constitute the instrument support library. 

These functions constitute the Math Library. They are automatically loaded as 
needed by the FORTRAN compiler [77(1). They are not automatically loaded 
by the C compiler, cc(l); however, the link editor searches this library under 
the -1m option. Declarations for these functions may be obtained from the 
#include file <math.h>. Several generally useful mathematical constants are 
also defined there (see math(5». 

These functions are applicable to the Internet network, and are part of the 
standard C library, libc.a. Section 3N manual entries are contained in the Net­
working Reference. 

These functions constitute the "standard I/O package" (see stdio(3S». These 
functions are in the library libc, already mentioned. Declarations for these 
functions may be obtained from the #include file <stdio.h>. 

Various specialized libraries. The files in which these libraries are found are 
given on the appropriate pages. 

A character is any bit pattern able to fit into a byte on the machine. The null character is a 
character with value 0, represented in the C language as \0. A character array is a sequence of 
characters. A null-terminated character array is a sequence of characters, the last of which is the 
null character. A string is a designation for a null-terminated character array. The null string is a 
character array containing only the null character. A NULL pointer is the value that is obtained 
by casting 0 into a pointer. The C language guarantees that this value will not match that of 
any legitimate pointer, so many functions that return pointers return it to indicate an error. 
NULL is defined as 0 in <stdio.h>; the user can include an appropriate definition if not using 
<stdio.h>. 

Many groups of FORTRAN intrinsic functions have generic function names that do not require 
explicit or implicit type declaration. The type of the function will be determined by the type of 
its argument(s). For example, the generic function max will return an integer value if given 
integer arguments (maxO), a real value if given real arguments (amaxl), or a double-precision 
value if given double-precision arguments (dmaxl). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 211 



INTRO(3) INTRO(3) 

DIAGNOSTICS 
Functions in the C and Math Libraries, (3C) and (3M), may return the conventional values 0 or 
±HUGE (the largest-magnitude single-precision floating-point numbers; HUGE is defined in the 
<math.h> header file) when the function is undefined for the given arguments or when the 
value is not representable. In these cases, the external variable errno (see errno(2» is set to the 
value EDOM or ERANGE. As many of the FORTRAN intrinsic functions use the routines found 
in the Math Library, the same conventions apply. 

WARNINGS 

FILES 

Library routines in libc.a and libm.a often call other routines in these libraries. Prior to HP-UX 
release 7.0, a user could define a function having the same name as one of these library rou­
tines, and this function would be linked in instead of the library version. In this way, a user 
could effectively replace a library routine with his own (see matherr(3M) for a supported exam­
ple of this). More often, this type of linkage would occur unintentionally, causing unexpected 
behavior which was difficult to debug. 

Starting at Release 7.0, object names in libraries have been modified such that they are much 
less likely to collide with user names. Therefore, calls to library routines from within other 
library routines are much more likely to call the actual library routine. (Matherr(3M) is the only 
exception to this.) 

In spite of these changes, it is still remotely possible for name conflicts to occur. The lint(1) 
program checker reports name conflicts of this kind as "multiple declarations" of the names in 
question. Definitions for the Sections (2), (3C), and (3S) are checked automatically. Other 
definitions can be included by using the -1 option (for example, -1m includes definitions for 
the Math Library, (3M». Use of lint(1) is highly recommended. 

/lib /libc.a 
/lib/libm.a 
/usr /lib /libF77.a 

SEE ALSO 
intro(2), stdio(3S), math(5), hier(5), ar(1), cc(1), f77(1), Id(1), lint(1), nm(1). 

The introduction to this manual. 

Device I/O Library, manual in HP-UX Concepts and Tutorials: Device I/O and User Interfacing. 

212 (Section 3) -2- HP-UX Release 7.0: September 1989 



A64L(3C) A64L(3C) 

NAME 
a64l, 164a - convert between long integer and base-64 ASCII string 

SYNOPSIS 
long a641 (s) 
char *s; 

char *I64a (1) 
long 1; 

DESCRIPTION 

BUGS 

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a 
notation by which long integers can be represented by up to six characters; each character 
represents a "digit" in a radix-64 notation. 

The characters used to represent IIdigitsli are. for 0, / for I, 0 through 9 for 2-11, A through Z 
for 12-37, and a through z for 38-63. 

The leftmost character is the least significant digit. For example, 
aO = (38 x 64°) + (2 x 641

) = 166 

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding 
long value. If the string pointed to by s contains more than six characters, a641 will use the 
first six. 

L64a takes a long argument and returns a pointer to the corresponding base-64 representation. 
If the argument is 0, 164a returns a pointer to a null string. 

The value returned by 164a is a pointer into a static buffer, the contents of which are overwrit­
ten by each call. 

STANDARDS CONFORMANCE 
a641: SVID2 

164a: SVID2 

HP-UX Release 7.0: September 1989 -1- (Section 3) 213 



ABORT(3C) 

NAME 
abort - generate a software abort fault 

SYNOPSIS 
#include <stdlib.h> 

void abort(); 

DESCRIPTION 

ABORT(3C) 

The abort function first closes all open files, streams, directory streams, and message catalogue 
descriptors,' if possible, then causes the signal SIGABRT to be sent to the calling process. This 
may cause a core dump to be generated (see signal(2». 

If the signal SIGABRT is caught, the handling function is executed. If the handling function 
returns, the action for SIGABRT is then reset to SIG_DFL, and the signal SIGABRT is sent again to 
the process to ensure that it terminates. 

RETURN VALUE 
The abort function does not return. 

ERRORS 
No errors are defined. 

APPLICA TION USAGE 
SIGABRT is not intended to be caught. 

DIAGNOSTICS 
If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump is 
produced and the message "abort - core dumped" is written by the shell. 

SEE ALSO 
adb(l), exit(2), kill(2), raise(2), signal(2). signal(5). 

ST ANDARDS CONFORMANCE 
abort: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C 

214 (Section 3) -1- HP-UX Release 7.0: September 1989 



ABS(3C) 

NAME 
abs, labs - return integer absolute value 

SYNOPSIS 
#inc1ude <stdlib.h> 

int abs (i) 
int i; 

long int labs (i) 
long int i; 

DESCRIPTION 
Abs returns the absolute value of its integer operand. 

ABS(3C) 

The labs function is similar to the abs function, except that the argument and the returned value 
each have type long into 

The largest negative integer returns itself. 

WARNINGS 
In two's-complement representation, the absolute value of the negative integer with largest 
magnitude is undefined. Some implementations trap this error, but others simply ignore it. 

SEE ALSO 
floor(3M). 

STANDARDS CONFORMANCE 
abs: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

labs: XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 3) 215 



ACLTOSTR(3C) ACLTOSTR(3C) 

NAME 
acltostr - convert access control list (ACL) structure to string form 

SYNOPSIS 
#indude <aellib.h> 

ehar * adtostr (nentries, ad, form) 
int nentries; 
struct ad_entry ad[]; 
int form; 

Remarks: 
To ensure continued conformance with emerging industry standards, features described in this 
manual entry are likely to change in a future release. 

DESCRIPTION 
Acltostr converts an access control list from structure form to string representation. Acltostr 
takes a pointer to the first element of an array of ACL entries (acl), containing the indicated 
number (nentries) of valid entries (zero or more), and the output form desired (FORM_SHORT or 
FORM_LONG). It returns a pointer to a static string (overwritten by the next call), which is a 
symbolic representation of the ACL, ending in a null character. The output forms are described 
in acl (5). In long form, the string returned contains newline characters. 

A user ID of ACL_NSUSER and a group ID of ACL_NSGROUP are both represented by %. Like 
1s(1), if an entry contains any other user ID or group ID value not listed in /ete/passwd or 
fete/group, acltostr returns a string equivalent of the ID number instead. 

Like routines that manage the /ete/passwd file, acltostr truncates user and group names to 
eight characters. 

Note: acltostr is complementary in function to strtoacl. 

RETURN VALUE 
If acltostr succeeds, it returns a pointer to a null-terminated string. If nentries is zero or less, the 
string is of zero length. If nentries is greater than NACLENTRIES (defined in <sys/ad.h», or if 
form is an invalid value, the call returns (char *) NULL. 

EXAMPLES 
The following code fragment reads the ACL on file "jusers/ggdjtest" and prints its short form 
representation. 

#indude <stdio.h> 
#indude <aellib.h> 

int nentries; 
struct ad_entry ad [NACLENTRIES]; 

if «nentries = get ad ("/users/ggd/test", NACLENTRIES, ad» < 0) 
error ( ... ); 

£puts (adtostr (nentries, ad, FORM_SHORT), stdout); 

AUTHOR 

FILES 

Acltostr was developed by HP. 

jetcjpasswd 
jetcjgroup 

SEE ALSO 
getacl(2), setacl(2), cpacl(3C), chownacl(3C), setaclentry(3C), strtoacl(3C), acl(5). 

216 (Section 3) -1- HP-UX Release 7.0: September 1989 



ALMANAC(3X) ALMANAC(3X) 

NAME 
almanac - return numeric date information in MPE format 

SYNOPSIS 
void almanac (date, err, pyear, pmonth, pday, pweekday) 
unsigned short date, err[2J; 
short *pyear, *pmonth, *pday, *pweekday; 

DESCRIPTION 
Almanac returns numeric date information for a date in the packed date format returned by the 
calendar(3X) routine. The returned information is: 

year of the century 
month of the year 
day of the month 
day of the week 

The arguments to almanac are used as follows: 

date An unsigned short containing the date about which information is to be 
returned. The year of the century is packed into bits 0 through 6, and the day 
of the year is packed into bits 7 through 15. The packed date format is: 

err 

pyear 

pmonth 

pday 

pweekday 

WARNINGS 

Bits 0 6 7 15 

The first element of this array contains the error number. The second element 
is always zero. If the call is successful, both elements contain zero. 

Error # Meaning 

1 No parameters are present in which to return values: pday, 
pmonth, pyear, and pweek all point to zero. 

2 Day of the year is out of range. 
3 Year of the century is out of range. 

A pointer to a short in which the year of the century is returned. 

A pointer to a short in which the month of the year is returned (for example, 
January is represented by 1 and December is represented by 12). 

A pointer to a short in which the day of the month is returned. 

A pointer to a short in which the weekday is returned. Note that 1 will be 
returned for Sunday and 7 for Saturday. 

This routine is provided for compatibility with MPE, another HP operating system. See 
portnls(5) for more information on the use of this routine. Use the Native Language Support 
routines for C programmers described on hpnls(5) for HP-UX NLS support. 

AUTHOR 
Almanac was developed by HP. 

SEE ALSO 
calendar(3X), nlfmtdate(3X), ctime(3C), portnls(5). 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 217 



ASSERT(3X) ASSERT (3X) 

NAME 
assert - verify program assertion 

SYNOPSIS 
#include <assert.h> 

assert (expression) 
int expression; 

DESCRIPTION 
This macro is useful for putting diagnostics into programs. When it is executed, if expression is 
false (zero), assert prints 

"Assertion failed: expression, file xyz, line nnn" 

on the standard error output and aborts. In the error message, xyz is the name of the source 
file and nnn the source line number of the assert statement. 

Compiling with the preprocessor option -DNDEBUG (see cpp(l», or with the preprocessor con­
trol statement "#define NDEBUG" ahead of the "#include <assert.h>" statement, stops asser­
tions from being compiled into the program. 

WARNINGS 
The expression argument used by assert in compatibility mode cannot contain string literals or 
double quotes without escapes. 

SEE ALSO 
cpp(l), abort(3C). 

STANDARDS CONFORMANCE 
assert: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

218 (Section 3) -1- HP-UX Release 7.0: September 1989 



BESSEL(3M) BESSEL(3M) 

NAME 
jO, p, jn, yO, y1, yn - Bessel functions 

SYNOPSIS 
#include <math.h> 

double jO (x) 
double x; 

doubie jl (x) 
double x; 

double jn (n, x) 
int n; 
double x; 

double yO (x) 
double x; 

double y1 (x) 
double x; 

double yn (n, x) 
int n; 
double x; 

DESCRIPTION 
fO and jl return Bessel functions of x of the first kind of orders 0 and 1 respectively. fn returns 
the Bessel function of x of the first kind of order n. 

YO and yl return the Bessel functions of x of the second kind of orders 0 and 1 respectively. Yn 
returns the Bessel function of x of the second kind of order n. The value of x must be positive. 

ERRORS 
Series 300 

Non-positive arguments cause yO, yl and yn to return the value - HUGE_ VAL and to set 
errno to EDOM. They also cause a message indicating DOMAIN error to be printed on the 
standard error output. 

Arguments too large in magnitude cause jO, jl, jn, yO, yl , and yn to return 0.0 and set 
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the stan­
dard error output. 

Series 800 Vlib jlibm.a) 
Non-positive arguments cause yO, yl, and yn to return the value -HUGE_VAL and to set 
errno to EDOM. They also cause a message indicating DOMAIN error to be printed on the 
standard error output. 

Arguments too large in magnitude cause jO, jl, jn, yO, yl , and yn to return 0.0 and set 
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the stan­
dard error output. 

jO, jl, jn, yO, yl , and yn return NaN and set errno to EDOM when x is NaN or ±INFIN­
lTY. In addition, a message indicating DOMAIN error is printed on the standard error out­
put. 

Series 800 (ANSI C jlib jlibM.a) 
No error messages are printed on the standard error output. 

Non-positive arguments cause yO, yl, and yn to return the value NaN and to set errno to 
EDOM. IP Arguments too large in magnitude cause jO, jl, jn, yO, yl, and yn to return 0.0 
and set errno to ERANGE. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 219 



BESSEL(3M) BESSEL(3M) 

jO, jl, jn, yO, yl , and yn return NaN and set errno to EDOM when x is NaN or ±INFIN­
ITY. 

These error-handling procedures can be changed with the function matherr(3M). 

SEE ALSO 
isinf(3M), isnan(3M), matherr(3M). 

STANDARDS CONFORMANCE 
jO: SVID2, XPG2, XPG3 

jl: SVID2, XPG2, XPG3 

jn: SVID2, XPG2, XPG3 

yO: SVID2, XPG2, XPG3 

yl: SVID2, XPG2, XPG3 

yn: SVID2, XPG2, XPG3 

220 (Section 3) -2- HP-UX Release 7.0: September 1989 



BLMODE(3C) Series 800 Only BLMODE(3C) 

NAME 
blmode - terminal block mode library interface 

SYNOPSIS 
#inc1ude <sys/blmodeio.h> 

int bfdes; 

bfdes = blopen(fildes) 
ini fildes; 

int blc10se (bfdes) 
int bfdes; 

int blread (bfdes, buf, nbyte) 
int bfdes; 
char *buf; 
unsigned nbyte; 

int blget (bfdes, arg) 
int bfdes; 
struct blmodeio *arg; 

int blset (bfdes, arg) 
int bfdes; 
struct blmodeio * arg; 

DESCRIPTION 
This terminal library interface allows support of block mode transfers with HP terminals. Block 
mode only affects input processing. Therefore, data is written with the standard write(2) inter­
face. 

In character mode the terminal sends each character to the system as it is typed. However, in 
block mode data is buffered and possibly edited locally in the terminal memory as it is typed, 
then sent as a block of data when the <ENTER> key is pressed on the terminal. During block 
mode data transmissions, the incoming data is not echoed by the interface and no special char­
acter processing is performed, other than recognizing a data block terminator character. For 
subsequent character mode transmissions, the existing termio state (see termio(7» will continue 
to determine echo and character processing. 

There are two parts of the block mode protocol, the block mode handshake and the block mode 
transmission. 

Block mode handshake 
At the beginning of a read, a trigger character is sent to the terminal to notify it that the system 
wants a block of data. (The trigger character, if defined, is sent at the beginning of all reads, 
character or block mode. It is necessary for block mode reads to work correctly.) 

After receiving the trigger character, and when the user has typed all the data into the 
terminal's memory and pressed the <ENTER> key, the terminal will send an alert character to 
the system to notify it that the terminal has a block of data to send. 

The system may then send user-definable cursor positioning or other data sequences, such as 
for home cursor or lock keyboard, to the terminal. 

The system will then send a second trigger character to the terminal. The terminal will then 
transmit the data block as described in the Block mode transmission section. 

Block mode transmission 
The second part of the block mode protocol is the block mode transmission. After the block 

HP-UX Release 7.0: September 1989 -1- (Section 3) 221 



BLMODE(3C) Series 800 Only BLMODE(3C) 

mode handshake has successfully completed, the terminal will transmit the data block to the 
system. During this transmission of data, the incoming data is not echoed by the system and 
no special character processing is performed, other than recognizing the data block termination 
character. It is possible to bypass the block mode handshake and have the block mode 
transmission occur after only the first irigger character is sent, see CB_BMTRANS below. 

It is possible to intermix both character mode and block mode data transmissions. If 
CB_BMTRANS (see below) is set, all transfers will be block mode transfers. When CB_BMTRANS 
is not set, character mode transmissions will be processed as described in termio(7). In this 
case, if an alert character is received anywhere in the input data, the transmission mode will be 
switched to block mode automatically for a single transmission. Any data received before the 
alert will be discarded. The alert character may be escaped with a backslash ("\ ") character. 

XON/XOFF flow control 
To prevent data loss, XONjXOFF flow control should be used between the system and the ter­
minal. The IXOFF bit (see termio(7» should be set and the terminal strapped appropriately. If 
flow control is not used, it is possible for incoming data to overflow and be lost. (Note: some 
older terminals do not support this flow control.) 

Read requests 
Read requests that receive data from block mode transmissions will not return until the 
transmission is complete (the terminal has transmitted all characters). If the read is satisfied by 
byte count or if a data transmission error occurs, all subsequent data will be discarded until the 
transmission is complete. The read will wait until a terminator character is seen, or a time 
interval specified by the system has passed that is longer than necessary for the number of 
characters specified. 

The data block terminator character will be included in the data returned to the user, and is 
included in the byte count. If the number of bytes transferred by the terminal in a block mode 
transfer exceeds the number of bytes requested by the user, the read will return the requested 
number of bytes and the remaining bytes will be discarded. The user can determine if data was 
discarded by checking the last character of the returned data. If the last character is not the ter­
minator character, then more data was received than was requested and data was discarded. 

The EIO error can be caused by several events, including errors in transmission, framing, parity, 
break, and overrun, or if the internal timer expires. The internal timer starts when the second 
trigger character is sent by the computer, and ends when the terminating character is received 
by the computer. The length of this timer is determined by the number of bytes requested in 
the read and the current baud rate, plus an additional ten seconds. 

User control of handshaking 
If desired, the application program can provide its own handshake mechanism in response to 
the alert character by selecting the OWNTERM mode, see CB_OWNTERM below. With this mode 
selected, the driver will complete a read request when the alert character is received. No data 
will be discarded before the alert, and the alert will be returned in the data read. The alert 
character may be escaped with a backslash ("\") character. The second trigger will be sent 
when the application issues the next read. 

Blmode control calls 
First, the standard open(2) call to a tty device must be made to obtain a file descriptor for the 
subsequent block mode control calls (an open(2) will be done automatically by the system for 
stdin on the terminal). 

int bfdes; 

bfdes = blopen (fildes) 
int fildes; 

222 (Section 3) -2- HP-UX Release 7.0: September 1989 



BLMODE(3C) Series 800 Only BLMODE(3C) 

A call to b/open must be made before any block mode access is allowed on the 
specified file descriptor. B/open will initialize the block mode parameters as 
described below. The return value from b/open is a block mode file descriptor 
that must be passed to all subsequent block mode control calls. 

int blclose (bfdes) 
int bfdes; 

A call to blclose must be issued before the standard close(2) to ensure proper 
closure of the device. Otherwise unpredictable results m~y- occur. The- argu­
ment bfdes is the file descriptor returned from a previous blopen system call. 

int blread (bfdes, buf, nbyte) 
int bfdes; 
char *buf; 
unsigned nbyte; 

The blread routine has the same parameters as the read(2) sytem call. At the 
beginning of a read, the cb_triglc character (if defined) is sent to the device. If 
CB_BMTRANS is not set, and no cb_alertc character is received, the read data 
will be processed according to termio(7). If CB_BMTRANS is set, or if a non­
escaped cb_alertc character is received, echo will be turned off for the duration 
of the transfer, and no further special character processing will be done other 
than that required for the termination character. The argument bfdes is the file 
descriptor returned from a previous blopen system call. 

int blget (bfdes, arg) 
int bfdes; 
struct blmodeio * arg; 

A call to blget will return the current values of the blmodeio structure (see 
below). The argument bfdes is the file descriptor returned from a previous blo­
pen system call. 

int blset (bfdes, arg) 
int bfdes; 
struct blmodeio * arg; 

A call to blset will set the block mode values from the structure whose address 
is argo The argument bfdes is the file descriptor returned from a previous blopen 
system call. 

Blmode structure 
The two block mode control calls, blget and blset, use the following structure, defined in 
<sys/blmodeio.h>: 

#define NBREPL Y 64 

struct blmodeio 

}; 

unsigned long 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
char 

{ 
cb_flags; 
cb_trig1c; 
cb_trig2c; 
cb_alertc; 
cb_termc; 
cb_replen; 
cb _reply[NBREPL Y]; 

The cb_flags field controls the basic block mode protocol: 

HP-UX Release 7.0: September 1989 -3-

/* Modes */ 
/ * First trigger * / 
/ * Second trigger * / 
/ * Alert character * / 
/* Terminating char */ 
/* cb_reply length */ 
/* optional reply */ 

(Section 3) 223 



BLMODE(3C) 

CB_BMTRANS 
CB_OWNTERM 

0000001 
0000002 

Series 800 Only 

Enable mandatory block mode transmission. 
Enable user control of handshake. 

BLMODE(3C) 

If CB_BMTRANS is set, all transmissions are processed as block mode transmissions. 
The block mode handshake is not required and data read is processed as block mode 
transfer data. The block mode handshake may still be invoked by receipt of an alert 
character as the first character seen. A blread issued with the CB_BMTRANS bit set will 
cause any existing input buffer data to be flushed. 

If CB_BMTRANS is not set, and if the alert character is defined and is detected anywhere 
in the input stream, the input buffer will be flushed and the block mode handshake will 
be invoked. The system will then send the cb_trig2c character to the terminal, and a 
block mode transfer will follow. The alert character can be escaped by preceding it 
with a backslash ("\ "). 

If CB_OWNTERM is set, reads will be terminated upon receipt of a non-escaped alert 
character. No input buffer flushing is performed, and the alert character is returned in 
the data read. This allows application code to perform its own block mode handshak­
ing. If the bit is clear, a non-escaped alert character will cause normal block mode 
handshaking to be used. 

The initial cb_flags value is all-bits-cleared. 

There are several special characters (both input and output) that are used with block mode. 
These characters and the initial values for these characters are described below. Any of these 
characters may be undefined by setting its value to 0377. 

cb_triglc is the initial trigger character sent. to the terminal at the beginning of a read 
request. 

is the secondary trigger character sent to the terminal after the alert character 
has been seen. 

is the alert character sent by the terminal in response to the first trigger charac­
ter. It signifies that the terminal is ready to send the data block. The alert 
character can be escaped by preceding it with a backslash ("\"). 

cb_termc is sent by the terminal after the block mode transfer has completed. It signifies 
the end of the data block to the computer. 

The cbJeplen field specifies the length in bytes of the cbJeply field. If set to zero, the cbJeply 
string will not be used. The cbJeplen field is initially set to zero. 

The cbJeply array contains a string to be sent out after receipt of the alert character, but before 
the second trigger character is sent by the computer. Any character may be included in the 
reply string. The number of characters sent is specified by cb_replen. The initial value of all 
characters in the cbJeply array is NULL. 

RETURNS 
If an error occurs, all calls will return a value of -1 and errno will be set to indicate the error. If 
no error is detected, blread will return the number of characters read. All other calls will return 
o upon successful completion. 

During a read, it is possible for the user's buffer to be altered even if an error value is returned. 
The data in the user's buffer should be ignored as it will not be complete. The following errors 
may be returned by various library calls described in this document. 

blopen 
[ENOTTY] The file descriptor specified is not related to a terminal device. 

blclose 

224 (Section 3) -4- HP-UX Release 7.0: September 1989 



BLMODE(3C) 

blread 

blget 

blset 

WARNINGS 

[ENOTTY] 

[EDEADLK] 

[EFAULT] 

[EINTR] 

[EIO] 

[ENOTTY] 

[ENOTTY] 

[EINVAL] 

[ENOTTY] 

Series 800 Only BLMODE(3C) 

No previous blopen has been issued for the specified file descriptor. 

A resource deadlock would occur as a result of this operation (see 
lockf(2». 

Buf points outside the allocated address space. The reliable detection of 
this error will be implementation dependent. 

A signal was caught during the read system call. 

An I/O error occured during block mode data transmissions. 

No previous blopen has been issued for the specified file descriptor. 

No previous blopen has been issued for the specified file descriptor. 

An illegal value was specified in the structure passed to the system. 

No previous blopen has been issued for the specified file descriptor. 

Once blopen has been called with a file descriptor and returned successfully, that file descriptor 
should not subsequently be used as a parameter to the following system calls: close(2), dup(2), 
dup2(2), fcntl(2), ioctl(2), read(2), or select(2) until a blclose is called with the same file descrip­
tor as its parameter. Additionally, scanf(libc), fscanf(libc), getc(libc), getchar(libc), fgetc(libc) and 
fgetw(libc) should not be called for a stream associated with a file descriptor that has been used 
in a blopen call but has not been used in a blclose call. These functions call read(2) and calling 
these routines will result in unpredictable behavior. 

AUTHOR 
Blmode was developed by HP. 

SEE ALSO 
termio(7). 

HP-UX Release 7.0: September 1989 -5- (Section 3) 225 



BSEARCH(3C) BSEARCH(3C) 

NAME 
bsearch - binary search a sorted table 

SYNOPSIS 
#include <stdlib.h> 

void *bsearch (key, base, nel, size, compar) 
const void *key; 
const void *base; 
size_t nel; 
size_t size; 
int (*compar)( ); 

DESCRIPTION 
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a 
pointer into a table indicating where a datum may be found. The table must be previously 
sorted in increasing order according to a provided comparison function. Key points to a datum 
instance to be sought in the table. Base points to the element at the base of the table. NeZ is 
the number of elements in the table. Size is the size of each element in the table. Campar is 
the name of the comparison function, which is called with two arguments that point to the ele­
ments being compared. The function must return an integer less than, equal to, or greater than 
zero as accordingly the first argument is to be considered less than, equal to, or greater than the 
second. 

EXAMPLE 
The example below searches a table containing pointers to nodes consisting of a string and its 
length. The table is ordered alphabetically on the string in the node pointed to by each entry. 

This code fragment reads in strings and either finds the corresponding node and prints out the 
string and its length, or prints an error message. 

#include <stdio.h> 

#define T ABSIZE 1000 

struct node { /* these are stored in the table */ 
char *string; 
int length; 

}; 
struct node table[T ABSIZE]; / * table to be searched * / 

226 (Section 3) 

struct node *node_ptr, node; 
int node_compare(); / * routine to compare 2 nodes * / 
char stcspace[20]; /* space to read string into */ 

node. string = stcspace; 
while (scanf("%s", node. string) != EOF) { 

node_ptr = (struct node *)bsearch«void *)(&node), 
(void *)table, TAB SIZE, 
sizeof(struct node), node_compare); 

if (node_ptr != NULL) { 

-1- HP-UX Release 7.0: September 1989 



BSEARCH(3C) BSEARCH(3C) 

NOTES 

(void)printf(IIstring = %20s, length = %d\n", 
node_ptr- > string, node_ptr-> length); 

else { 
(void)printf(IInot found: %s\n", node. string); 

/* This routine compares two nodes based on an 
alphabetical ordering of the string field. * / 

int 
node_compare(node1, node2) 
struct node *node1, *node2; 
{ 

return strcmp(node 1-> string, node2 - >string); 

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-void. 
The comparison function need not compare every byte, so arbitrary data may be contained in 
the elements in addition to the values being compared. 
Although declared as type pointer-to-void, the value returned should be cast into type pointer­
to-element. 

SEE ALSO 
hsearch(3C), Isearch(3C), qsort(3C), tsearch(3C). 

DIAGNOSTICS 
A NULL pointer is returned if the key cannot be found in the table. 

WARNINGS 
If the table being searched contains two or more entries that match the selection criteria, a ran­
dom entry is returned by bsearch as determined by the search algorithm. 

STANDARDS CONFORMANCE 
bsearch: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -2- (Section 3) 227 



CALENDAR(3X) CALENDAR(3X) 

NAME 
calendar - return the MPE calendar date 

SYNOPSIS 
unsigned short calendarO 

DESCRIPTION 
This routine returns the calendar date in the format: 

Bits 0 6 7 15 

RETURN VALUE 
An unsigned short integer containing the calendar format. 

WARNINGS 
This routine is provided for compatibility with MPE, another HP operating system. See 
portnls(5) for more information on the use of this routine. Use the Native Language Support 
routines for C programmers described on hpnls(5) for HP-UX NLS support. 

AUTHOR 
Calendar was developed by HP. 

SEE ALSO 
portnls(5). 

228 (Section 3) -1- HP-UX Release 7.0: September 1989 



CATGETMSG(3C) 

NAME 
catgetmsg - get message from a message catalog 

SYNOPSIS 
#include <nLtypes.h> 

char *catgetmsg (catd, set_num, msg_num, buf, buflen) 
nLcatd catd; 
int set_num, msg_num, buflen; 
char *buf; 

DESCRIPTION 

CATGETMSG(3C) 

Catgetmsg reads message msg_num in set set_num from the message catalog indentified by catd, 
a catalog descriptor returned from a previous call to catopen(3C). The return message is stored 
in but, a buffer of length buflen bytes. 

A message longer than buflen -1 bytes is silently truncated. The return message is always ter­
minated with a null byte. 

RETURN VALUE 
If successful, catgetmsg returns a pointer to the message in buf. Otherwise, catgetmsg returns a 
pointer to an empty (null) string and sets errno to indicate the error. If buflen is greater than 
zero, the pointer returned is buf. 

ERRORS 
Catgetmsg fails and errno is set if one of the following conditions is true: 

Catd is not a valid catalog descriptor. 

Buflen is less than 1. 

Set_num and/or msg_num are not in the message catalog. 

The message catalog identified by catd is corrupted. 

A signal was caught during the read(2) system call. 

[EBADF] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EINTR] 

[EFAULT] But points outside the allocated address space. The reliable detection of this 
error is implementation dependent. 

[ERANGE] 

AUTHOR 

A message longer than buflen -1 bytes was truncated. 

Catgetmsg was developed by HP. 

SEE ALSO 
catopen(3C), catgets(3C), read(2). 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

STANDARDS CONFORMANCE 
catgetmsg: XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 3) 229 



CATGETS(3C) 

NAME 
catgets - get a program message 

SYNOPSIS 
#include <nLtypes.h> 

char *catgets (catd, set_num, msg_num, deLstr) 
nLcatd catd; 
int set_num, msg_num; 
char *deLstr; 

DESCRIPTION 

CATGETS(3C) 

Catgets reads message msg_num in set set_num from the message catalog identified by catd, a 
catalog descriptor returned from a previous call to catopen(3C). Def_str points to a default mes­
sage string returned by catgets if the call fails. 

A message longer than NLTEXTMAX bytes is silently truncated. The returned message string is 
always terminated with a null byte. NLTEXTMAX is defined in <limits.h>. 

RETURN VALUE 
If the call is successful, catgets returns a pointer to an internal buffer area containing the null­
terminated message string. If the call is unsuccessful catgets returns a pointer to def_str. 

WARNINGS 
Catgets returns a pointer to a static area that is overwritten on each call. 

AUTHOR 
Catgets was developed by HP. 

SEE ALSO 
catopen(3C), catgetmsg(3C). 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

ST ANDARDS CONFORMANCE 
catgets: XPG2, XPG3 

230 (Section 3) -1- HP-UX Release 7.0: September 1989 



CATOPEN(3C) CATOPEN(3C) 

NAME 
catopen, catclose - open and close a message catalog for reading 

SYNOPSIS 
#inc1ude <nCtypes.h> 

nCcatd catopen (name, oflag) 
char *name; 
int oflag; 

int catc10se (catd) 
nCcatd catd; 

DESCRIPTION 
Catopen opens a message catalog and returns a catalog descriptor. Name specifies the name of 
the message catalog being opened. A name containing a / (slash) specifies a path name for the 
message catalog. Otherwise, the environment variable NLSP ATH is used, see environ (5). If 
NLSP A TH specifies more than one path, catopen returns the catalog descriptor for the first path 
on which it is able to successfully open the specified message catalog. If NLSP ATH does not 
exist in the environment or if a message catalog cannot be opened for any NLSPATH-specified 
path, catopen uses a systemwide default path. Name must not contain" %N". 

Oflag is reserved for future use and should be set to 0 (zero). The results of setting this field to 
any other value are undefined. 

Catclose closes the message catalog catd, a message catalog descriptor returned from an earlier 
successful call of catopen. 

RETURN VALUE 
Catopen returns a message catalog descriptor if successful. Otherwise, a value of (nCcatd) -1 is 
returned and errno is set to indicate the error. 

Catclose returns 0 if successful. Otherwise, a value of -1 is returned and ermo is set to indicate 
the error. 

ERRORS 
Catopen fails, no message catalog is opened, and ermo is set for the last path attempted if any 
of the following conditions is true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENOENT] The named catalog does not exist. 

[ENOENT] The path is null. 

[EACCES] A component of the path prefix denies search permission. 

[EACCES] Read permission is denied for the named file. 

[EMFILE] The maximum number of file descriptors allowed are currently open. 

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the 
length of a component of the path name exceeds NAME_MAX bytes while 
]OSIX_NO_TRUNC is in effect. 

[EINV AL] The name argument contains "%N". 

Catclose fails if the following is true: 

[EBADF] 

WARNINGS 

Catd is not a valid open message-catalog descriptor. 

When using NLSPATH, catopen does not provide a default value for LANG. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 231 



CATOPEN(3C) CATOPEN(3C) 

NOTES 
Catgets(3C) can be used to provide default messages when called following a failed catopen. 
Catgets will return its del_str parameter if it is passed an invalid catalog descriptor. 

AUTHOR 
Catopen was developed by HP. 

FILES 
/usr/lib/nls Message catalog default path. 

SEE ALSO 
catgetmsg(3C), catgets(3C), environ(5). 

STANDARDS CONFORMANCE 
catopen: XPG2, XPG3 

catclose: XPG2, XPG3 

232 (Section 3) -2- HP-UX Release 7.0: September 1989 



CATREAD(3C) CATREAD(3C) 

NAME 
catread - MPE/RTE-style message catalog support 

SYNOPSIS 
int catread (fd, set_num, msg_num, msg_buf, buflen [,arg) ... ) 
int fd, seCnum, msg_num, buflen; 
char *msg_buf, *arg; 

DESCRIPTION 
Catread reads message number msg_num of set set_num in the message catalog identified by fd, 
a file descriptor returned from a previous call to open(2). The return message is stored in buf, a 
buffer of length buflen bytes. 

The message read from the catalog can have embedded formatting information in the form 
![digit]. Exclamation marks must be all numbered or all unnumbered. If exclamation marks are 
numbered, an exclamation mark followed by digit n is replaced by the nth argo If exclamation 
marks are unnumbered, they are replaced by the args in serial order. If there are fewer args 
than exclamation marks, the results are undefined. If there are more args than exclamation 
marks, the excess args are ignored. 

A character in a message may be quoted (that is, made to stand for itself) by preceding it with a 
tilde C). To use the special characters! or - in a message, preceed the special character with -. 

A message longer than buflen-l bytes is silently truncated. The return message is always ter­
minated with a null byte. 

Catread is provided to support message catalog applications from MPE/RTE. (MPE and RTE 
are HP operating systems.) 

RETURN VALUE 
If successful, catread returns the length, in bytes, of the formatted message in msg_buf. Other­
wise, if set_num or msg_num is not found in the catalog, catread returns a negative integer. 

ERRORS 
Catread succeeds, but sets errno if the following condition is true: 

[ERANGE] Formatted message exceeds bUflen-l bytes. 

AUTHOR 
Catread was developed by HP. 

SEE ALSO 
gencat(1), getmsg(3C), hpnls(S). 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 233 



CFSPEED(3C) CFSPEED(3C) 

NAME 
cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed - tty baud rate functions 

SYNOPSIS 
#include <termios.h> 

speed_t cfgetospeed (termios_p) 
struct termios *termios_p; 

int cfsetospeed (termios_p, speed) 
struct termios *termios_p; 
speed_t speed; 

speed_t cfgetispeed (termios_p) 
struct termios *termios_p; 

int cfsetispeed (termios_p, speed) 
struct termios *termios_p; 
speed_t speed; 

DESCRIPTION 
These functions set and get the input and output speed codes in the termios structure referenced 
by termios_p. The termios structure contains these speed codes representing input and output 
baud rates as well as other terminal related parameters. Setting the parameters on a terminal 
file do not become effective until tcsetattr is successfully called. 

Cfgetospeed returns the output speed code from the termios structure referenced by termios_p. 

Cfsetospeed sets the output speed code in the termios structure referenced by termios_p to speed. 
The speed code for a baud rate of zero, BO, is used to terminate the connection. If BO is 
specified, the modem control lines will no longer be asserted. Normally, this will disconnect 
the line. 

Cfgetispeed returns the input speed code from the termios structure referenced by termios_p. 

Cfsetispeed sets the input speed code in the termios structure referenced by termios_p to speed. 

RETURN VALUE 
Cfgetospeed returns the output speed code from the termios structure referenced by termios_p. 

Cfgetispeed returns the input speed code from the termios structure referenced by termios_p. 

Upon successful completion, cfsetispeed and cfsetospeed return zero. Otherwise, a value of -1 is 
returned and ermo is set to indicate the error. 

ERRORS 
Cfsetispeed and cfsetospeed will fail when the following is true: 

[EINVAL] The value of speed is outside the range of possible speed codes as specified in 
termios.h. 

WARNINGS 
Cfsetispeed and cfsetospeed can be used to set speed codes in the termios structure that are not 
supported by the terminal hardware. 

SEE ALSO 
tcattribute(3C), termio(7). 

STANDARDS CONFORMANCE 
cfgetispeed: XPG3, POSIX.1, FIPS 151-1 

cfgetospeed: XPG3, POSIX.1, FIPS 151-1 

cfsetispeed: XPG3, POSIX.1, FIPS 151-1 

234 (Section 3) -1- HP-UX Release 7.0: September 1989 



CFSPEED(3C) CFSPEED(3C) 

cfsetospeed: XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -2- (Section 3) 235 



CHOWNACL(3C) CHOWNACL(3C) 

NAME 
chownacl - change owner and/or group represented in a file's access control list (ACL) 

SYNOPSIS 
#indude <sysjad.h> 

void chownad (nentries, ad, olduid, oldgid, newuid, newgid) 
int nentries; 
struct ad_entry ad[]; 
int olduid, oldgid; 
int newuid, newgid; 

Remarks: 
To ensure continued conformance with emerging industry standards, features described in this 
manual entry are likely to change in a future release. 

DESCRIPTION 
This routine alters an access control list (ACL) to reflect the change in a file's owner or group ID 
when an old file is copied to a new file and the ACL is also copied. Chownacl transfers owner­
ship (that is, it modifies base ACL entries) like chown(2). The algorithm is described below and 
also in acl(5). 

The nentries parameter is the current number of ACL entries in the acl[] array (zero or more; a 
negative value is treated as zero). The olduid and oldgid values are the user and group IDs of 
the original file's owner, typically the st_uid and st_gid values from stat(2). The newuid and 
newgid values are the user and group IDs of the new file's owner, typically the return values 
from geteuid(2) and getegid(2). 

If an ACL entry in acl[] has a uid of olduid and a gid of ACL_NSGROUP (that is, an owner base 
ACL entry), chownacl changes uid to newuid (with exceptions, see below). If an entry has a uid 
of ACL_NSUSER and a gid of oldgid (that is, a group base ACL entry), chownacl changes gid to 
newgid. In either case, only the last matching ACL entry is altered; a valid ACL can have only 
one of each type. 

Like chown(2), if the new user or group already has an ACL entry (that is, a uid of newuid and 
a gid of ACL_NSGROUP, or a uid of ACLNSUSER and a gid of newgid), chownacl does not 
change the old user or group base ACL entry; both the old and new ACL entries are preserved. 

As a special case, if olduid (oldgid) is equal to newuid (newgid), chownacl does not search acl[] 
for an old user (group) base ACL entry to change. Calling it with both olduid equal to newuid 
and oldgid equal to newgid causes chownacl(3C) to do nothing. 

Suggested Use 
This routine is useful in a program that creates a new or replacement copy of a file whose origi­
nal was (or possibly was) owned by a different user or group, and that copies the old file's ACL 
to the new file. Copying another user's and/or group's file is equivalent to having the original 
file's owner and/or group copy and then transfer a file to a new owner and/or group using 
chown(2). This routine is not needed for merely changing a file's ownership; chown(2) modifies 
the ACL appropriately in that case. 

If a program also copies file miscellaneous mode bits from an old file to a new one, it must use 
chmod(2). However, since chmod deletes optional ACL entries, it must be called before setacl(2). 
Furthermore, to avoid leaving a new file temporarily unprotected, the chmod call should set 
only the file miscellanous mode bits, with all access permission mode bits set to zero (that is, 
mask the mode with 07000). The cpacl(3C) library call encapsulates this operation, and handles 
remote files appropriately too. 

EXAMPLES 
The following code fragment gets stat information and the ACL from oldfile, transfers 

236 (Section 3) -1- HP-UX Release 7.0: September 1989 



CHOWNACL(3C) 

ownership of newfile to the caller, and sets the revised ACL to newfile. 

#indude <sys/types.h> 

AUTHOR 

#indude <sys/stat.h> 
#indude <sys/ad.h> 

int nentries; 
struct ad_entry ad [NACLENTRIES); 
struct stat statbuf; 

if (stat (lioldfile ll , & statbuf) < 0) 
error ( ... ); 

if «nentries = getad ("oldfile", NACLENTRIES, ad» < 0) 
error ( ... ); 

chownad (nentries, ad, statbuf.sCuid, statbuf.sCgid, 
geteuid(), getegid(»; 

if (set ad ("newfile", nentries, ad» 
error ( ... ); 

Chownacl was developed by HP. 

SEE ALSO 

CHOWNACL(3C) 

chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2), acltostr(3C), cpacl(3C), 
setaclentry(3C), strtoacl(3C), acl(S). 

HP-UX Release 7.0: September 1989 -2- (Section 3) 237 



CLOCK(3C) CLOCK(3C) 

NAME 
clock - report CPU time used 

SYNOPSIS 
#include <time.h> 

clock_l clock ( ) 

DESCRIPTION 
Clock returns the amount of CPU time (in microseconds) used since the first call to clock. The 
time reported is the sum of the user and system times of the calling process and its terminated 
child processes for which it has executed wait(2) or system (3S). To determine the time in 
seconds, the value returned by the clock function should be divided by the value of the macro 
CLOCKS_PER_SEC. 

The resolution of the clock varies, depending on the hardware and on the software 
configuration. 

If the processor time used is not available or its value cannot be represented, the function 
returns the value (clock_t)-l. 

WARNINGS 
The value returned by clock is defined in microseconds for compatibility with systems that have 
CPU clocks with much higher resolution. Because of this, the value returned will wrap around 
after accumulating only 2147 seconds of CPU time (about 36 minutes). 

DEPENDENCIES 
Series 300 

The clock resolution is 20 milliseconds. 

Series 800 
The default clock resolution is 10 milliseconds. 

SEE ALSO 
times(2), wait(2), system(3S). 

ST ANDARDS CONFORMANCE 
clock: SVID2, XPG2, XPG3, ANSI C 

238 (Section 3) -1- HP-UX Release 7.0: September 1989 



CLOCK(3X) CLOCK(3X) 

NAME 
clock - return the MPE clock value 

SYNOPSIS 
unsigned int clockO 

DESCRIPTION 
This routine returns the clock value in the MPE format. 

RETURN VALUE 
The function returns an unsigned int in the format: 

Bits 0 7 8 15 

Bits 16 23 24 31 

WARNINGS 
This routine is provided for compatibility with MPE, another HP operating system. See 
portnls(5) for more information on the use of this routine. Use the Native Language Support 
routines for C programmers described on hpnls(5) for HP-UX NLS support. 

AUTHOR 
clock was developed by HP. 

SEE ALSO 
n1convclock(3X), nlfmtclock(3X), portnls(5). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 239 



CONV(3C) CONV(3C) 

NAME 
toupper, tolower, _toupper, _tolower, toascii - translate characters 

SYNOPSIS 
#inc1ude <ctype.h> 

int toupper (c) 
int Ci 

int tolower (c) 
int Ci 

int _toupper (c) 
int Ci 

int _tolower (c) 
int c; 

int toascii (c) 
int ci 

DESCRIPTION 
Toupper and to lower have as domain the range of getc(3S): the integers from -1 through 255. 
If the argument of toupper represents a lowercase letter, the result is the corresponding upper­
case letter. If the argument of tolower represents an uppercase letter, the result is the 
corresponding lowercase letter. All other arguments in the domain are returned unchanged. 
Arguments outside the domain cause undefined results. 

The macros _toupper and _tolower perform the same translations as toupper and tolower, but 
have restricted domains and are faster. The domains of _toupper and _tolower are the integers 
from 0 through 255. Arguments outside of the domain cause undefined results. 

Toascii yields its argument with all bits turned off that are not part of a standard 7-bit ASCII 
character; it is intended for compatibility with other systems. 

WARNING 

240 

The toascii routine is supplied both as a library function and as a macro defined in the 
<ctype.h> header. Normally, the macro version will be used. To obtain the library function 
either use a #undef to remove the macro definition or, if compiling in ANSI C mode, enclose 
the function name in parenthesis or take its address. The following examples will use the 
library function for toascii: 

or 

#include <ctype.h> 
#undef toascii 

mainO 
{ 

c1 = toascii( c); 

#include <ctype.h> 

mainO 
{ 

int (*conv _func)O; 

(Section 3) -1- HP-UX Release 7.0: September 1989 



CONV(3C) 

c1 = (toascii)(c); 

cony _func = toascii; 

EXTERNAL INFLUENCES 
Locale 

The LC_CTYPE category determines the translations to be done. 

International Code Set Support 
Single-byte character code sets are supported. 

AUTHOR 
Conv(3C) was developed by AT&T and HP. 

SEE ALSO 
ctype(3C), getc(3S), setlocale(3C), LANG(5). 

STANDARDS CONFORMANCE 
_tolower: SVID2, XPG2, XPG3 

_toupper: SVID2, XPG2, XPG3 

toascii: SVID2, XPG2, XPG3 

. tolower: SVID2, XPG2, XPG3, POSIX.1, FlPS lSI-I, ANSI C 

toupper: SVID2, XPG2, XPG3, POSIX.1, FlPS lSI-I, ANSI C 

HP-UX Release 7.0: September 1989 -2-

CONV(3C) 

(Section 3) 241 



CPACL(3C) CPACL(3C) 

NAME 
cpacl, fcpacl - copy the access control list (ACL) and mode bits from one file to another 

SYNOPSIS 
int cpad (fromfile, tofile, frommode, fromuid, fromgid, touid, togid) 
char *fromfile, *tofile; 
int frommode; 
int fromuid, touid; 
int fromgid, togid; 

int fcpad (fromfd, tofd, frommode, fromuid, fromgid, touid, togid) 
int fromfd, tofd; 
int frommode; 
int fromuid, touid; 
int fromgid, togid; 

Remarks: 
To ensure continued conformance with emerging industry standards, features described in this 
manual entry are likely to change in a future release. 

DESCRIPTION 
Both cpacl and fcpacl copy the access control list and mode bits (that is, file access permission 
bits and miscellaneous mode bits; see chmod(2)) from one file to another, and transfer owner­
ship much like chown(2). Cpacl and fcpacl take the following parameters: 

Path names ([romfile and tofile) or open file descriptors ([romfd and tofd). 

A mode value ([rommode, typically the st_mode value returned by stat(2)) containing file 
miscellaneous mode bits, which are always copied, and file access permission bits, which 
are copied instead of the access control list if either file is remote. 

User ID and group ID of the file ([romuid, touid and fromgid, togid) for transferring owner­
ship. (Typically fromuid and fromgid are the st_uid and st_gid values returned by stat, and 
touid and togid are the return values from geteuid(2) and getegid(2).) 

When both files are local, the cpacl routines copy the access control list and call chownacl (3C) to 
transfer ownership from the fromfile to the tofile, if necessary. 

Cpacl ([cpacl) handles remote copying (via RFA or NFS) after recognizing failures of getacl(2) 
([getacl) or setacl(2) ([setacl). When copying the mode from fromfile ([romfd) to tofile (tofd), cpacl 
copies the entire frommode (that is, the file miscellaneous mode bits and the file access permis­
sion bits) to tofile (tofd) using chmod(2) ([chmod(2)). Some of the miscellaneous mode bits may 
be turned off; see chmod(2). 

Cpad ([cpad) can copy an access control list from fromfile ([romfd) to tofile (tofd) without 
transferring ownership, but ensuring error checking and handling of remote files. This is done 
by passing fromuid equal to touid and fromgid equal to togid (that is, four zeros). For remote 
files, fromuid, touid, fromgid, and tagid are ignored. 

RETURN VALUE 
If successful, cpad and fcpad return zero. If an error occurs, they set errno to indicate the cause 
of failure and return a negative value, as follows: 

-1 Unable to perform getad ([getad) on a local framfile ([ramfd). 

-2 Unable to perform chmad ([chmad) on tafile (tafd) to set its file miscellaneous mode bits. 
Cpad ([cpacl) attempts this regardless of whether a file is local or remote, as long as 
framfile ([ramfd) is local. 

-3 Unable to perform setacl ([setad) on a local tafile (told). As a consequence, the file's 
optional ACL entries are deleted, its file access permission bits are zeroed, and its 

242 (Section 3) -1- HP-UX Release 7.0: September 1989 



CPACL(3C) 

-4 

EXAMPLES 

CPACL(3C) 

miscellaneous mode bits might be altered. 

Unable to perform chmod (fchmod) on tofile (told) to set its mode. As a consequence, if 
Iromfile (fromld) is local, tofile's (told's) optional ACL entries are deleted, its access per­
mission bits are zeroed, and its file miscellaneous mode bits might be altered, regardless 
of whether the file is local or remote. 

The following code fragment gets stat information on "oldfile" and copies its file miscellaneous 
bits and access control list to "newfile" owned by the caller. If either file is remote, only the 
st_mode on "oldfile" is copied. 

#indude <sys/types.h> 
#indude <sys/stat.h> 

struet stat statbufi 

if (stat (lloldfile ll, & statbuf) < 0) 
error ( ... )i 

if (epad (lloldfile ll, "newfile", statbuf.sCmode, 
statbuf.sCuid, statbuf.sCgid, geteuid(), getegid()) < 0) 

error ( ... )i 

DEPENDENCIES 
RFA and NFS 

Fcpacl fails if tofile is RFA-remote. 

AUTHOR 
Cpad and Icpad were developed by HP. 

SEE ALSO 
chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2). acltostr(3C), chownacl(3C), 
setentry(3C), strtoacl(3C), acl(S). 

HP-UX Release 7.0: September 1989 -2- (Section 3) 243 



CRTO(3) CRTO(3) 

NAME 
crtO.o, gcrtO.o, mcrtO.o, frtO.o, gfrtO.o, mfrtO.o - execution startup routines 

DESCRIPTION 
The C and Pascal compilers link in ertO.o, gertO.o, or mertO.o to provide startup capabilities and 
environment for program execution. All are identical except that gertO.o and mertO.o provide 
additional functionality for gprof(l) and prof(l) profiling support respectively. Similarly, the 
Fortran compiler will link in either frtO.o, gfrtO.o, or mfrtO.o. 

The following symbols are defined in these routines: 

__ argc value 

__ argv _value 

_environ 

DEPENDENCIES 
Series 300 

A variable of type int containing the number of arguments. 

An array of character pointers to the arguments themselves. 

An array of character pointers to the environment in which the program 
will run. This array is terminated by a null pointer. 

The symbols above are shown as they are visible from C. To access them from assembly 
language, add an additional underscore to the beginning of the symbol. For example, an assem-
bly language program will refer to __ argc value as ___ argc value. 

Series 300 startup files also define the following symbols which are listed as when used from 
assembly language. The state of these variables can be determined from C by using other 
library routines (see is_hw_present(3C». 

flag_68010 A variable of type short. Non-zero if the processor is a 68010; zero if not. 

floaCsoft A variable of type short. Zero if the HP 98635 floating-point card is 
present; non-zero if it is not present. 

Series 800 

A constant defining the location in memory of the HP 98635 floating 
point card. 

A variable of type short. Non-zero if the HP 68881 floating point copro­
cessor is present; zero if it is not present. 

A variable of type short. Non-zero if the HP 98248 floating point card is 
present; zero if it is not present. 

A constant defining the location in memory of the HP 98248 floating 
point card. 

All compilers on the Series 800 use the ertO.o , gertO.o, or mertO.o file; the files frtO.o, gfrtO.o, and 
mfrtO.o do not exist. 

The Series 800 startup files also define the following additional symbols: 

$ST ART$ Execution start address. 

_start A secondary startup routine for C programs, called from $ST ART$, which 
in tum calls main. This routine is contained in the C library rather than 
the ertO.o file. For Pascal and FORTRAN programs, this symbol labels the 
beginning of the outer block (main program) and is generated by the 
compilers. 

$global$ The beginning address of the program's data area. The startup code 
loads this address into general register 27. 

$UNWIND_START The beginning of the stack unwind table. 

244 (Section 3) -1- HP-UX Release 7.0: September 1989 



CRTO(3) CRTO(3) 

ORIGIN 

$VNWIND_END The end of the stack unwind table. 

$RECOVER_ST ART The beginning of the try jrecover table. 

$RECOVER_END The end of the try jrecover table. 

The crtO.o file defines a null procedure for _mcount, so programs compiled with profiling can 
be linked without profiling. 

AT&T System IiI 

SEE ALSO 
cc(l), f77(1), Id(l), pc(l), prof(l), gprof(l), pc(l), profil(2), exec(2), monitor(3C), 
is_hw _present(3C). 

HP-UX Release 7.0: September 1989 -2- (Section 3) 245 



CRYPT(3C) CRYPT(3C) 

NAME 
crypt, setkey, encrypt - generate hashing encryption 

SYNOPSIS 
char *crypt (key, salt) 
char *key, *salt; 

void setkey (key) 
char *key; 

void encrypt (block, fake) 
char *block; 
int fake; 

DESCRIPTION 
Crypt is the password encryption function. It is based on a one way hashing encryption algo­
rithm with variations intended (among other things) to frustrate use of hardware implementa­
tions of a key search. 

Key is a user's typed password. Salt is a two-character string chosen from the set [a-zA-ZO-9./); 
this string is used to perturb the hashing algorithm in one of 4096 different ways, after which 
the password is used as the key to encrypt repeatedly a constant string. The returned value 
points to the encrypted password. The first two characters are the salt itself. 

The setkey and encrypt entries provide (rather primitive) access to the actual hashing algorithm. 
The argument of setkey is a character array of length 64 containing only the characters with 
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each 
group is ignored; this gives a 56-bit key which is set into the machine. This is the key that will 
be used with the hashing algorithm to encrypt the string block with the function encrypt. 

The argument to the encrypt entry is a character array of length 64 containing only the charac­
ters with numerical value 0 and 1. The argument array is modified in place to a similar array 
representing the bits of the argument after having been subjected to the hashing algorithm 
using the key set by setkey. Fake is not used and is ignored, but should be present if lint(1) is 
used. 

SEE ALSO 
login(l), passwd(l), getpass(3C), passwd(4). 

BUGS 
The return value points to static data that are overwritten by each call. 

STANDARDS CONFORMANCE 
crypt: SVID2, XPG2, XPG3 

encrypt: SVID2, XPG2, XPG3 

setkey: SVID2, XPG2, XPG3 

246 (Section 3) -1- HP-UX Release 7.0: September 1989 



CTERMID(3S) CTERMID(3S) 

NAME 
ctermid - generate file name for terminal 

SYNOPSIS 
#inc1ude <stdio.h> 
char *ctermid (s) 
char *s; 

DESCRIPTIOI"-J 

NOTES 

Ctermid generates the path name of the controlling terminal for the current process, and stores 
it in a string. 

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are 
overwritten at the next call to ctermid, and the address of which is returned. Otherwise, s is 
assumed to point to a character array of at least L_ctermid elements; the path name is placed in 
this array and the value of s is returned. The constant L_ctermid is defined in the <stdio.h> 
header file. 

The difference between ctermid and ttyname(3C) is that ttyname must be handed a file descrip­
tor and returns the actual name of the terminal associated with that file descriptor, while cter­
mid returns a string (fdev fUy) that will refer to the terminal if used as a file name. Thus 
ttyname is useful only if the process already has at least one file open to a terminal. 

SEE ALSO 
ttyname(3C). 

STANDARDS CONFORMANCE 
ctermid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 3) 247 



CTIME(3C) CTIME(3C) 

NAME 
ctime, local time, gmtime, mktime, difftime, asctime, timezone, daylight, tzname, tzset, nLctime, 
nLcxtime, nLasctime, nLascxtime - convert date and time to string 

SYNOPSIS 
#inc1ude <time.h> 

char *ctime (timer) 
const time_t *timer; 

char *nl_cxtime (timer, format) 
const time_t *timer; 
const char *format; 

char *nCctime (timer, format, langid) 
const time_t *timer; const char *format; 
int langid; 

struct tm *localtime (timer) 
const time_t *timer; 

struct tm *gmtime (timer) 
const time_t *timer; 

double difftime (timet, timeO) 
time_t timet, timeO; 

time_t mktime (timeptr) 
struct tm *timeptr; 

char *asctime (timeptr) 
const struct tm *timeptr; 

char *nCascxtime (timeptr, format) 
const struct tm *timeptr; 
const char *format; 

char *nCasctime (timeptr, format, langid) 
const struct tm *timeptr: 
const char *format; 
int langid: 

void tzset ( ) 

extern time_t timezone; 

extern int daylight: 

extern char *tzname[2J; 

DESCRIPTION 

248 

Asctime converts the broken-down time contained in the structure pointed to by timeptr and 
returns a pointer to a 26-character string in the form: 

Sun Sep 16 01:03:52 1973\n\O 

All the fields have constant width. 

Ctime converts the calendar time pointed to by timer, representing the time in seconds since the 
Epoch, and returns a pointer to the local time in the form of a string. It is equivalent to: 

asctime(localtime(timer» 

Localtime and gmtime return pointers to tm structures, described below. Localtime corrects for 
the time zone and any summer time zone adjustments (such as Daylight Savings Time in the 

(Section 3) -1- HP-UX Release 7.0: September 1989 



CTIME(3C) CTIME(3C) 

USA), according to the contents of the TZ environment variable (see Environment Variables 
below). Gmtime converts directly to Coordinated Universal Time (UTC), which is the time the 
HP-UX system uses. 

Difftime returns the difference in seconds between two calendar times: timel - timeO. 

Mktime converts the broken-down time, expressed as local time, in the structure pointed to by 
timeptr into a calendar time value with the same encoding as that of the values returned by 
time(2). The original values of the tm_wday and tm_yday components of the structure are 
ignored, and the original values of the other components are not restricted to the ranges indi­
cated below. A positive or zero value for tm_isdst causes mktime initially to presume that Day­
light Saving Time, respectively, is or is not in effect for the specified time. A negative value for 
tm_isdst causes mktime to attempt to determine whether Daylight Saving Time is in effect for 
the specified time. On successful completion, all the components are set to represent the 
specified calendar time, but with their values forced to the ranges indicated below; the final 
value of tm_mday is not set until tm_mon and tm_year are determined. Mktime returns the 
specified calendar time encoded as a value of type time~t. If the calendar time cannot be 
represented, the function returns the value (time_t)-1 and sets errno to ERANGE. Note the 
value (time_t)-1 also corresponds to the time 23:59:59 on Dec 31, 1969 (plus or minus time 
zone and Daylight Saving Time adjustments), thus it is necessary to check both the return value 
and errno to reliably detect an error condition. 

The <time.h> header file contains declarations of all relevant functions and externals. It also 
contains the tm structure, which includes the following members: 

int tm_seCi /* seconds after the minute - [0,61) */ 
int tm_mini / * minutes after the hour - [0,59] * / 
int tm_houri /* hours - [0,23] */ 
int tm_mdaYi / * day of month - (1,31] * / 
int tm_moni / * month of year - [0,11] * / 
int tm_yeari /* years since 1900 */ 
int tm_wdaYi /* days since Sunday - [0,6) */ 
int tm_ydaYi /* days since January 1 - [0,365] */ 
int tm_isdsti /* daylight savings time flag */ 

The value of tm_isdst is positive if a summer time zone adjustment such as Daylight Savings 
Time is in effect, zero if not in effect, and negative if the information is not available. 

Tzset sets the values of the external variables timezone, daylight and tzname according to the 
contents of the TZ environment variable (independent of any time value). The functions local­
time, mktime, ctime, nCctime, nCcxtime, asctime, nCasctime, nCascxtime, and strftime(3C) call 
tzset and use the values returned in the external variables described below for their operations. 
Tzset may also be called directly by the user. 

The external variable timezone contains the difference, in seconds, between UTC and local stan­
dard time (in EST, timezone is 5*60*60). The external variable daylight is non-zero only if you 
have specified a summer time zone adjustment in your TZ environment variable. The external 
variable tzname[2] contains the local standard and local summer time zone abbreviations as 
specified by the TZ environment variable. 

Nl_cxtime extends the capabilities of ctime. The format specification allows the date and time to 
be output in a variety of ways. Format uses the field descriptors and field width and precision 
specifications defined in strftime(3C). If the format is the null string, the 0_ T _FMT string 
defined by langinfo(5) is used. NCcxtime is provided for historical reasons only; its use is not 
recommended. 

NCctime performs in a manner similar to nCcxtime, but effectively first calls langinit (see 
nCinit(3C» to load the program's locale according to the language specified by langid. NCctime 

HP-UX Release 7.0: September 1989 -2- (Section 3) 249 



CTIME(3C) CTIME(3C) 

also appends a newline to the formatted string. NCctime is provided for historical reasons only; 
its use is not recommended. 

NCascxtime, like nCcxtime, allows the date string to be formatted. However, like asctime, 
nCasctime takes a pointer to a tm structure as its argument. NCascxtime is provided for histori­
cal reasons only; its use is not recommended. 

NCasctime performs like nl_ascxtime, but first calls langinit (see nUnit(3C») to load the 
program's locale according to the language specified by langid. NCasctime also appends a new­
line to the formatted string. NCasctime is provided for historical reasons only; its use is not 
recommended. 

EXTERNAL INFLUENCES 
Locale 

The LC_ TIME category determines for the functions nCcxtime, nCctime, nCascxtime and 
nl_asctime the characters to be substituted for the directives described in strftime(3C) as being 
from the locale. It also determines the default output format used when a null format string is 
supplied to these functions. 

The LC_CTYPE category determines the interpretation of the bytes within format as single 
and/or multi-byte characters. 

Environment Variables 
The function tzset uses the contents of TZ to set the values of the external variables timezone, 
daylight and tzname. TZ also determines the time zone name substituted for the %Z and %z 
directives and the time zone adjustments performed by local time , mktime, ctime, nCctime and 
nl_cxtime. Two methods for specifying a time zone within TZ are described in environ(5). 

International Code Set Support 
Single- and multi-byte character code sets are supported. 

WARNINGS 
The return values point to static data whose content is overwritten by each call. 

The range of tm_sec ([0,61]) extends to 61 to allow for the occasional one or two leap seconds. 
However, the "seconds since the Epoch" value returned by time(2) and passed as the timer 
argument does not include accumulated leap seconds. The tm structure generated by local time 
and gmtime will never reflect any leap seconds. Upon successful completion, mktime will force 
the value of the tm_sec component to the range [0,59]. 

The use of strftime(3C) is recommended in place of the ctime, nl_cxtime, nCctime, asctime, 
nCascxtime, and nCasctime routines defined here. 

AUTHOR 
Ctime was developed by AT&T and HP. 

SEE ALSO 
time(2), nUnit(3C), setlocale(3C), strftime(3C), tztab( 4), environ(5), hpnls(5), lang(5), lan­
ginfo(5). 

STANDARDS CONFORMANCE 
ctime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

asctime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

daylight: SVID2, XPG2, XPG3 

difftime: ANSI C 

gmtime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

localtime: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

250 (Section 3) -3- HP-UX Release 7.0: September 1989 



CTIME(3C) 

mktime: XPG3, POSIX.1, FIPS 151-1, ANSI C 

nl_ascxtime: XPG2 

nCcxtime: XPG2 

timezone: XPG2, XPG3 

tzname: XPG2, XPG3, POSIX.1, FIPS 151-1 

tzset: XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -4-

CTIME(3C) 

(Section 3) 251 



CTYPE(3C) CTYPE(3C) 

NAME 
is alpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, 
isascii - classify characters 

SYNOPSIS 
#include <ctype.h> 

int isalpha (c) 
int ci 

DESCRIPTION 
These functions classify character-coded integer values according to the rules of the coded char­
acter set identified by the last successful call to nCinit(3C). Each function is a predicate return­
ing non-zero for true, zero for false. 

If nl_init(3C) has not been called successfully, characters are classified according to the rules of 
the default ASCII 7-bit coded character set (see nCinit(3C». 

Isascii is defined on all integer values; the other functions are defined for the range -1 (EOF) to 
255. 

isalpha 

isupper 

islower 

isdigit 

isxdigit 

isalnum 

isspace 

ispunct 

isprint 

isgraph 

iscntrl 

isascii 

DIAGNOSTICS 

c is a letter. 

c is an uppercase letter. 

c is a lowercase letter. 

c is a decimal digit (in ASCII: characters [0-9]). 

c is a hexadecimal digit (in ASCII: characters [0-9], [A-F] or [a-f). 

c is an alphanumeric (letters or digits). 

c is a character that creates "white space" in displayed text (in ASCII: space, 
tab, carriage return, new-line, vertical tab, and form-feed). 

c is a punctuation character (in ASCII: any printing character except the space 
character (040), digits, letters). 

c is a printing character. 

c is a visible character (in ASCII: printing characters, excluding the space char­
acter (040». 

c is a control character (in ASCII: character codes less than 040 and the delete 
character (0177». 

c is any ASCII character code between 0 and 0177, inclusive. 

If the argument to any of these functions is outside the domain of the function, the result is 
undefined. 

WARNING 
These functions are supplied both as library functions and as macros defined in the <ctype.h> 
header. Normally, the macro versions will be used. To obtain the library function either use a 
#undef to remove the macro definition or, if compiling in ANSI C mode, enclose the function 
name in parenthesis or take its address. The following example will use the library functions 
for isalpha, isdigit, and isspace: 

#include <ctype.h> 
#undef isalpha 

252 (Section 3) -1- HP-UX Release 7.0: September 1989 



CTVPE(3C) 

mainO 
{ 

int ("'ctype_func)O; 

if ( isalpha(c) ) 

if ( (isdigit)( c) ) 

ctype_func = isspace; 

EXTERNAL INFLUENCES 
Locale 

The LC_CTYPE category determines the classification of character type. 

International Code Set Support 
Single-byte character code sets are supported. 

AUTHOR 
Ctype was developed by AT&T and HP. 

SEE ALSO 
nUnit(3C), ascii(5). 

STANDARDS CONFORMANCE 
isalnum: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isalpha: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isascii: SVID2, XPG2, XPG3 

iscntrl: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isdigit: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isgraph: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

islower: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isprint: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

ispunct: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isspace: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isupper: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

isxdigit: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -2-

CTVPE(3C) 

(Section 3) 253 



CURSES(3X) CURSES(3X) 

NAME 
curses - CRT screen handling and optimization package 

SYNOPSIS 
#include <curses.h> 
cc [ fiags ] fiie ... -lcurses iibraries 

DESCRIPTION 
These routines provide a method for updating screens with reasonable optimization. To initial­
ize curses routines, the initscr() routine must be called before calling any other routine that deals 
with windows and screens. The endwinO routine should be called before exiting. To get 
character-at-a-time input without echoing, (most interactive, screen oriented-programs need 
this) after calling initscrO the program should call "nonlO; cbreakO; noechoO;" 

The full curses interface permits manipulation of data structures called "windows", which can 
be thought of as two-dimensional arrays of characters representing all or part of a CRT screen. 
A default window called stdscr is supplied, and others can be created using newwin. Windows 
are referred to by variables declared WINDOW *, the type WINDOW is defined in <curses.h> to 
be a C structure. These data structures are manipulated by using functions described below, 
among which the most basic are move, and addch. (More general versions of these functions 
are included. Their names begin with 'w', allowing the programmer to specify a window. The 
routines not beginning with 'w' affect stdscr.) Then refreshO is called, telling the routines to 
make the user's CRT screen resemble stdscr. 

Mini-Curses is a subset of curses which does not allow manipulation of more than one window. 
To invoke this subset, use -DMINICURSES as an option to the cc(1) command. This level is 
smaller and faster than full curses. 

If the environment variable TERMINFO is defined, any program using curses will check for a 
local terminal definition before checking in the standard place. For example, if the standard 
place is /usr/lib/terminfo, and TERM is set to "vt100", the compiled file is normally found in 
/usr/lib/terminfojv /vtlOO. (The "v" is copied from the first letter of "vt100" to avoid crea­
tion of huge directories.) However, if TERMINFO is set to /usr/markjmyterms, curses first 
checks /usr/mark/myterms/v /vtlOO, and if that fails, checks /usr/lib/terminfojv /vtlOO. 
This is useful for developing experimental definitions, or when write permission in 
jusr/libjterminfo is not available. 

Functions 
All routines listed here can be called when using the full curses. Those marked with an asterisk 
can be called when using Mini-Curses. 

addch(ch)* add a character to stdscr (Like putchar. Wraps to next 

addstr(str)* 
attroff(attrs)* 
attron(attrs)* 
attrset(attrs)* 
baudrate( )* 
beep( )* 
box(win, vert, hor) 

clear( ) 
clearok(win, bf) 
clrtobot() 
clrtoeol() 
cbreak()* 

254 (Section 3) 

line at end of line) 
calls addch with each character in str 
turn off attributes named 
turn on attributes named 
set current attributes to attrs 
current terminal speed 
sound beep on terminal 
draw a box around edges of win. vert and hor are chars 
to use for vert. and hor. edges of box 
clear stdscr 
clear screen before next redraw of win 
clear to bottom of stdscr 
clear to end of line on stdscr 
set cbreak mode 

-1- HP-UX Release 7.0: September 1989 



CURSES(3X) 

delay _output(ms)* 
delch() 
deleteln( ) 
delwin(win) 
doupdate() 
echo()* 
endwin()* 
erase( ) 
erasechar( ) 
fixterm() 
flash( ) 
flushinp( )* 
getch( ) 
getstr(str) 
gettmode() 
getyx(win, y, x) 
has_ic() 
has3() 
idlok(win, bf)* 
inch() 
initscr( )* 
insch(c) 

insert ms millisecond pause in output 
delete a character 
delete a line 
delete win 
update screen from all wnooutrefresh 
set echo mode 
end window modes 
erase stdscr 
return user's erase character 
restore tty to "in curses" state 
flash screen or beep 
throwaway any typeahead 
get a char from tty 
get a string through stdscr 
establish current tty modes 
get (y, x) co-ordinates 
true if terminal can do insert character 
true if terminal can do insert line 
use terminal's insert/delete line if bf != 0 
get char at current (y, x) co-ordinates 
initialize screens 
insert a char 
insert a line 
interrupts flush output if bf is TRUE 
enable keypad input 
return current user's kill character 

CURSES(3X) 

insertln( ) 
intrflush(win, bf) 
keypad(win, bf) 
killchar( ) 
leaveok(win, flag) OK to leave cursor anywhere after refresh if flag!=O for 

win; otherwise cursor must be left at current position. 
longname( ) return verbose name of terminal 
meta(win, flag)* allow meta characters on input if flag != 0 
move(y, x)* move to (y, x) on stdscr 
mvaddch(y, x, ch) move(y, x) then addch(ch) 
mvaddstr(y, x, str) similar ... 
mvcur(oldrow, oldcol, newrow, newcol) 

mvdelch(y, x) 
mvgetch(y, x) 
mvgetstr(y, x) 
mvinch(y, x) 
mvinsch(y, x, c) 
mvprintw(y, x, fmt, args) 
mvscanw(y, x, fmt, args) 
mvwaddch(win, y, x, ch) 
mvwaddstr(win, y, x, str) 
mvwdelch(win, y, x) 
mvwgetch(win, y, x) 
mvwgetstr(win, y, x) 
mvwin(win, by, bx) 
mvwinch(win, y, x) 
mvwinsch(win, y, x, c) 
mvwprintw(win, y, x, fmt, args) 
mvwscanw(win, y, x, fmt, args) 

HP-UX Release 7.0: September 1989 

low level cursor motion 
like delch, but move(y, x) first 
etc. 

-2- (Section 3) 255 



CURSES(3X) CURSES(3X) 

create a new pad with given dimensions newpad(nlines, ncols) 
newterm(type, outfd, infd) set up new terminal of given type to output on outfd, 

using input (it needed) from infd 
newwin(lines, cols, begin_y, begin_x) create a new window 
nl( )* set newline mapping 
nocbreak()* unset cbreak mode 
nodelay(win, bf) enable nodelay input mode through getch 
noecho( )* unset echo mode 
nonl( )* unset newline mapping 
noraw( )* unset raw mode 
overlay(winl, win2) overlay winl on win2 
overwrite(winl, win2) overwrite winl on top of win2 
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

like prefresh but with no output until doupdate called 
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

printw(fmt, argl, arg2, ... ) 
raw()* 
refresh()* 
resetterm( )* 
resetty()* 
saveterm( )* 
savetty()* 
scanw(fmt, argl, arg2, ... ) 
scroll(win) 
scrollok(win, flag) 
set_term(new) 
setscrreg(t, b) 
setterm( type) 
setupterm(term, filenum, errret) 

refresh from pad starting with given upper left corner of 
pad with output to given portion of screen 
printf on stdscr 
set raw mode 
make current screen look like stdscr 
set tty modes to "out of curses" state 
reset tty flags to stored value 
save current modes as "in curses" state 
store current tty flags 
scanf through stdscr 
scroll win one line 
allow terminal to scroll if flag != 0 
now talk to terminal new 
set user scrolling region to lines t through b 
establish terminal with given type 

standend()* clear standout mode attribute 
standout()* set standout mode attribute 
subwin(win, lines, cols, begin_y, begin_x) 

touchwin(win) 
traceoff( ) 
traceon() 
typeahead(fd) 
unctrl(ch)* 
waddch(win, ch) 
waddstr(win, str) 
wattroff(win, attrs) 
wattron(win, attrs) 
wattrset(win, attrs) 
wclear(win) 
wclrtobot(win) 
wclrtoeol(win) 
wdelch(win, c) 
wdeleteln(win) 
werase(win) 
wgetch(win) 

256 (Section 3) 

create a subwindow 
change .all of win 
turn off debugging trace output 
turn on debugging trace output 
use file descriptor fd to check typeahead 
printable version of ch 
add char to win 
add string to win 
turn off aUrs in win 
turn on aftrs in win 
set attrs in win to aUrs 
clear win 
clear to bottom of win 
clear to end of line on win 
delete char from win 
delete line from win 
erase win 
get a char through win 

-3- HP-UX Release 7.0: September 1989 



CURSES(3X) 

wgetstr(win, str) 
winch(win) 
winsch(win, c) 
winsertln(win) 
wmove(win, y, x) 
wnoutrefresh(win) 
wprintw(win, fmt, argl, arg2, ... ) 
wrefresh(win) 
wscanw(win, fmt, argl, arg2, ... ) 
wsetscrreg( win, t, b) 
wstandend(win) 
wstandout(win) 

Terminfo Level Routines 

get a string through win 
get char at current (y, x) in win 
insert char into win 
insert line into win 
set current (y, x) co-ordinates on win 
refresh but no screen output 
printf on win 
make screen look like win 
scanf through win 
set scrolling region of win 
clear standout attribute in win 
set standout attribute in win 

CURSES(3X) 

These routines should be called by programs that need to deal directly with the terminfo(4) 
database. Due to the low level of this interface, its use is discouraged. Initially, setup term 
should be called to define the set of terminal-dependent variables defined in term info (4). The 
header files <curses.h> and <term.h> should be included to get the definitions for these 
strings, numbers, and flags. Parameterized strings should be passed through tparm to instan­
tiate them. All terminfo(4) strings (including the output of tparm) should be printed with tputs 
or putp . Before exiting, resetterm should be called to restore the tty modes. (Programs desiring 
shell escapes or suspending with control-Z can call resetterm before the shell is called and 
fixterm after returning from the shell.) 

fixterm() restore tty modes for terminfo use (called by setupterm) 

resetterm( ) 

setupterm(term, fd, rc) 

tparm(str, pI, p2, ... , p9) 

tputs(str, affcnt, putc) 

putp(str) 

vidputs(attrs, putc) 

vidattr(attrs) 

set_curterm(term) 

deLcurterm(term) 

Termcap Compatibility Routines 

reset tty modes to state before program entry 

read in database. Terminal type is the character string 
term, all output is to HP-UX System file descriptor fd. A 
status value is returned in the integer pointed to by re: 1 
is normal. The simplest call would be setupterm(O, 1, 0) 
which uses all defaults. 

instantiate string str with parms Pi' 

apply padding info to string str. affent is the number of 
lines affected, or 1 if not applicable. Pute is a putchar­
like function to which the <;haracters are passed, one at a 
time. 

a handy function that calls tputs (str, 1, putchar) 

output the string to put terminal in video attribute mode 
attrs, which is any combination of the attributes listed 
below. Chars are passed to putchar-like function pute. 

Like vidputs but outputs through putchar 

set the database pointed to by term 

free the space pointed to by term 

These routines were included as a conversion aid for programs that use termcap. Calling 
parameters are the same as for termcap. They are emulated using the terminfo(4) database. 
Their use in new software is not recommended because they may be deleted in future HP-UX 
releases. 

HP-UX Release 7.0: September 1989 -4- (Section 3) 257 



CURSES(3X) 

tgetent(bp, name) 
tgetflag(id) 
tgetnum(id) 
tgetstr(id, area) 
tgoto(cap, col, row) 
tputs(cap, affcnt, fn) 

Attributes 

look up termcap entry for name 
get boolean entry for id 
get numeric entry for id 
get string entry for id 
____ 1_. ______ ,... J. ....... _! ......... _ ..... __ 
Clpp1 Y pClllll~ LV 51 V <::ll Lap 

apply padding to cap calling fn as putchar 

The following video attributes can be passed to the functions attron,attroff,attrset. 

A_STANDOUT Terminal's best highlighting mode 
A_UNDERLINE Underlining 
A_REVERSE Reverse video 
A_BLINK Blinking 
A_DIM Half bright 
A_BOLD Extra bright or bold 
A_BLANK Blanking (invisible) 
A_PROTECT Protected 

Alternate character set 

NLS Attributes 
The following NLS attributes might be returned by inch: 

A_FIRSTOF2 First byte of 16-bit character 
A_SECOF2 Second byte of 16-bit character 

Function Keys 

CURSES(3X) 

The following function keys may be returned by getch if keypad has been enabled. Note that 
not all of these are currently supported due to lack of definitions in term info or the terminal not 
transmitting a unique code when the key is pressed. 

Name Value Key name 
KEY_BREAK 0401 break key (unreliable) 
KEY _DOWN 0402 The four arrow keys '" 
KEY_UP 0403 
KEY_LEFT 
KEY_RIGHT 
KEY_HOME 

KELBACKSP ACE 
KEY_FO 
KEY_F(n) 
KEY_DL 
KEY_IL 
KEY_DC 
KEY_IC 
KEY_EIC 
KEY_CLEAR 

KEY_EOS 
KEY_EOL 

KEY_SF 
KEY_SR 
KEY_NPAGE 
KEY_PPAGE 
KEY_STAB 
KEY_CTAB 

258 (Section 3) 

0404 
0405 
0406 
0407 
0410 

(KEY _FO+(n» 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0520 
0521 
0522 
0523 
0524 
0525 

Home key (upward+left arrow) 
backspace (unreliable) 
Function keys. Space reserved for up to 64 keys. 
Formula for fn. 
Delete line 
Insert line 
Delete character 
Insert char or enter insert mode 
Exit insert char mode 
Clear screen 
Clear to end of screen 
Clear to end of line 
Scroll 1 line forward 
Scroll 1 line backwards (reverse) 
Next page 
Previous page 
Set tab 
Clear tab 

-5- HP-UX Release 7.0: September 1989 



CURSES(3X) 

KEY_CATAB 
KEY_ENTER 
KEY_SRESET 
KEY_RESET 
KEY_PRINT 
KEY_LL 

WARNINGS 

0526 
0527 
0530 
0531 
0532 
0533 

Clear all tabs 
Enter or send (unreliable) 
soft (partial) reset (unreliable) 
reset or hard reset (unreliable) 
print or copy 
home down or bottom (lower left) 

CURSES(3X) 

The plotting library plot(3X) and the curses library curses(3X) both use the names erase() and 
move(). The curses versions are macros. If you need both libraries, put the p/ot(3X) code in a 
different source file than the curses(3X) code, and/or #undef move() and erase() in the plot(3X) 
code. 

HP supports only terminals listed on the current list of supported devices. However, non­
supported and supported terminals can be in the terminfo(4) database. If you use such unsup­
ported terminals, they may not work correctly. 

The endwin routine does not release memory allocated by the initscr routine. Repeated calls 
to initscr can cause a program to use more memory than was intended. 

Some of these routines call malloc(3C) or malloc(3X) to allocate memory, and can therefore fail 
for any of the reasons described in the corresponding manual entries. 

SEE ALSO 
terminfo( 4). 

Using Curses and Terminfo, tutorial in HP-UX Concepts and Tutorials: Device I/O and User Inter­
facing. 

ST ANDARDS CONFORMANCE 
curses: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -6- (Section 3) 259 



CUSERID(3S) CUSERID(3S) 

NAME 
cuserid - get character login name of the user 

SYNOPSIS 
#include <stdio.h> 

char *cuserid (s) 
char *s; 

DESCRIPTION 
Cuserid generates a character-string representation of the user name corresponding to the 
effective user ID of the process. If s is a NULL pointer, this representation is generated in an 
internal static area, the address of which is returned. Otherwise, s is assumed to point to an 
array of at least L3userid characters; the representation is left in this array. The constant 
L_cuserid is defined in the <stdio.h> header file. 

DIAGNOSTICS 
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a 
null character (\0) will be placed at s[O]. 

SEE ALSO 
geteuid(2), getlogin(3C) getpwuid(3C). 

STANDARDS CONFORMANCE 
cuserid: XPG2, XPG3, POSIX.1, FIPS 151-1 

260 (Section 3) -1- HP-UX Release 7.0: September 1989 



CVTNUM(3C) CVTNUM(3C) 

NAME 
cvtnum - convert string to floating point number 

SYNOPSIS 
#include <cvtnum.h> 

int cvtnum(src,dst,typ,rnd,ptr,inx) 
unsigned char *src, *dst, **ptr; 
int typ,rnd, *inx; 

DESCRIPTION 
The function cvtnum converts an ASCII character string to a number in one of four floating 
point formats: single precision, double precision, extended precision, or packed decimal string. 

The string pointed to by src is the string representation of a standard number, an infinity, or a 
not-a-number. A standard number begins with an optional sign followed by a string of digits 
optionally containing a decimal point. It may then have an optional e or E followed by an 
optional sign followed by an integer. Infinities are represented by INF preceded by an optional 
sign. The string for a not-a-number is an optional sign followed by NaN followed by any 
number of hexadecimal digits enclosed in parentheses. 

The result is moved to dst and will be of the size and format as defined for the 68881 floating­
point coprocessor. 

typ indicates the type of conversion to be done. It may be one of four values: C_SNGL, 
C_DBLE, C_EXT, or C_DPACK indicating single precision, double precision, extended preci­
sion and packed decimal string respectively. 

rnd specifies the type of rounding mode and may be one of four values: C_NEAR, 
C_POS_INF, C_NEG_INF, or C_ TOZERO indicating round to nearest, to positive infinity, to 
negative infinity and to zero respectively. 

If the value of *ptr is not (char **)NULL, a pointer to the character terminating the scan is 
returned in the location pOinted to by ptr. If no number can be formed, *ptr is set to str . 

If inx is not (int *)NULL, cvtnum will use this to return an indication of the inexactness of the 
conversion. A zero indicates exact; a non-zero value, inexact. 

SEE ALSO 
scanf(3S), strtod(3C), strtol(3C) 
MC68881 Floating-Point Coprocessor User's Manual 

DIAGNOSTICS 
If no errors occur or no non-standard conversions are done, cvtnum returns O. Otherwise, it will 
return one of the following: 

C_BADCHAR - Illegal character or unexpected end of string 
C_OVER - Overflow 
C_UNDER - Underflow 
C_INF - Infinity 
C_QNAN - Quiet NaN 
C_SNAN - Signalling NaN 

HP-UX Release 7.0: September 1989 -1- (Section 3) 261 



DATALOCK(3C) DATALOCK(3C) 

NAME 
datalock - lock process into memory after allocating data and stack space 

SYNOPSIS 
#include <sys/lock.h> 
int datalock (datsiz, stsiz); 
int datsiz, stsizi 

DESCRIPTION 
Datalock allocates at leastdatsiz bytes of data space and stsiz bytes of stack space, then locks the 
program in memory. The data space is allocated with either malloc(3C) or malloc(3X) (which­
ever is linked with the program). After the program is locked, this space is released with free 
(on malloc(3C» or free (on malloc(3X», making it available for use. This allows the calling pro­
gram to use that much space dynamically without receiving the SIGSEGV signal. 

The effective user ID of the calling process must be super-user or be a member of or have an 
effective group ID of a group having PRIV _MLOCK access to use this call (see getprivgrp(2». 

EXAMPLES 
The following call to data lock allocates 4096 bytes of data space and 2048 bytes of stack space 
and then locks the process in memory: 

datalock (4096, 2048); 

RETURN VALUE 
Returns -1 if malloc cannot allocate enough memory or plock(2) returned an error. 

WARNINGS 
Multiple datalocks may not be the same as one big one. 

Methods for calculating the required size are not yet well developed. 

AUTHOR 
Datalock was developed by the Hewlett-Packard Company. 

SEE ALSO 
getprivgrp(2), plock(2). 

262 (Section 3) -1- HP-UX Release 7.0: September 1989 



DBM(3X) DBM(3X) 

NAME 
dbminit, fetch, store, delete, firstkey, nextkey, dbmclose - data base subroutines 

SYNOPSIS 
typedef struct { 

char *dptr; 
int dsize; 

datum; 

dbminit(file) 
char *file; 

datum fetch(key) 
datum key; 

store(key, content) 
datum key, content; 

delete(key) 
datum key; 

datum firstkeyO 

datum nextkey(key) 
datum key; 

dbmcloseO 

DESCRIPTION 
These functions maintain key/content pairs in a data base. The functions will handle very 
large (a billion blocks (block = 1024 bytes» databases and will locate a keyed item in one or 
two file system accesses. This package is superseded by the newer ndbm(3X) library, which 
manages multiple databases. The functions can be accessed by giving the -ldbm option to 
ld(l) or cc(I). 

Key and content parameters are described by the datum type. A datum specifies a string of 
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are 
allowed. The data base is stored in two files. One file is a directory containing a bit map of 
keys and has .dir as its suffix. The second file contains all data and has .pag as its suffix. 

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the 
files file.dir and file.pag must exist. (An empty database is created by creating zero-length .dir 
and .pag files.) 

Once open, the data stored under a key is accessed by fetch and data is placed under a key by 
store. Storing data on an existing key will replace the eXisting data. A key (and its associated 
contents) is deleted by delete. A linear pass through all keys in a database may be made, in an 
(apparently) random order, by use of firstkey and nextkey. Firstkey will return the first key in 
the database. With any key nextkey will return the next key in the database. This code will 
traverse the data base: 

for (key = firstkeyO; key.dptr != NULL; key = nextkey(key» 

A database may be closed by calling dbmclose. The user must close a database before opening a 
new one. 

DIAGNOSTICS 
All functions that return an int indicate errors with negative values and success with zero. Rou­
tines that return a datum indicate errors with a null dptr. 

WARNINGS 
The .pag file will contain holes so that its apparent size is about four times its actual content. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 263 



DBM(3X) DBM(3X) 

Some older UNIX systems create real file blocks for these holes when touched. These files can­
not be copied by normal means (such as cp(1), cat(1), tar(1), or ar(1» without expansion. 

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block. Store 
will return an error if a disk block fills with inseparable data. 

Delete does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any­
thing interesting. 

AUTHOR 
Dbm(3X) was developed by the University of California, Berkeley. 

SEE ALSO 
ndbm(3X). 

264 (Section 3) -2- HP-UX Release 7.0: September 1989 



DIAL(3C) DIAL(3C) 

NAME 
dial, undial - establish an out-going terminal line connection 

SYNOPSIS 
#include <dial.h> 

int dial (call) 
CALL call; 

void undial (fd) 
int fd; 

DESCRIPTION 
Dial returns a file-descriptor for a terminal line open for read/write. The argument to dial is a 
CALL structure (defined in the <dial.h> header file). 

When finished with the terminal line, the calling program must invoke undial to release the 
semaphore that has been set during the allocation of the terminal device. 

The definition of CALL in the <dial.h> header file is: 

typedef struct { 
struct termio 
int 
int 
char 
char 
int 
char 

int 

} CALL; 

*attr; 
baud; 
speed; 
* line; 
*telno; 
modem; 
* device; 

dev_Ien; 

/* pointer to termio attribute struct */ 
/ * transmission data rate * / 
/* 212A modem: low=300, high=1200 */ 
/ * device name for out-going line * / 
/* pointer to tel-no digits string */ 
/* specify modem control for direct lines */ 
j*Will hold the name of the device used 

to make a connection * / 
j* The length of the device used to 

make connection * / 

The CALL element speed is intended only for use with an outgoing dialed call, in which case its 
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-speed set­
ting on the 212A modem. Note that the 113A modem or the low-speed setting of the 212A 
modem will transmit at any rate between 0 and 300 bits per second. However, the high-speed 
setting of the 212A modem transmits and receivers at 1200 bits per second only. The CALL ele­
ment baud is for the desired transmission baud rate. For example, one might set baud to 110 
and speed to 300 (or 1200). However, if speed set to 1200 baud must be set to high (1200). 

If the desired terminal line is a direct line, a string pointer to its device-name should be placed 
in the line element in the CALL structure. Legal values for such terminal device names are kept 
in the Devices file. In this case, the value of the baud element need not be specified as it will 
be determined from the Devices file. 

The telno element is for a pointer to a character string representing the telephone number to be 
dialed. Such numbers may consist only of symbols described below. The termination symbol 
will be supplied by the dial function, and should not be included in the telno string passed to 
dial in the CALL structure. 

Permissible codes 
0-9 dial 0-9 
* or : 
# or; 

e or < 
wor= 

HP-UX Release 7.0: September 1989 

dial * 
dial # 
4-second delay for second dial tone 
end-of-number 
wait for secondary dial tone 

-1- (Section 3) 265 



DIAL(3C) DlAL(3C) 

flash off hook for 1 second 

The CALL element modem is used to specify modem control for direct lines. This element 
should be non-zero if modem control is required. The CALL element attr is a pointer to a ter­
mio structure, as defined in the termio.h header file. A NULL value for this pointer element may 
be passed to the dial function, but if such a structure is included, the elements specified in it 
will be set for the outgoing terminal line before the connection is established. This is often 
important for certain attributes such as parity and baud-rate. 

The CALL element device is used to hold the device name (cul..) that establishes the connection. 

The CALL element dev_len is the length of the device name that is copied into the array device. 

DIAGNOSTICS 
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics 
for these negative indices as listed here are defined in the <dial.h> header file. 

INTRPT -1 
D_HUNG -2 
NO_ANS -3 
ILL_BD -4 
A_PROB -5 
L_PROB -6 
NO_Ldv -7 
DV_NT_A -8 
DV_NT_K -9 
NO_BD_A -10 
NO_BD_K -11 

I * interrupt occurred *1 
1* dialer hung (no return from write) *1 
1* no answer within 10 seconds *1 
I * illegal baud-rate *1 
1* automatic call unit (acu) problem (openO failure) *1 
1* line problem (openO failure) *1 
1* can't open LDEVS file *1 
I * requested device not available *1 
I * requested device not known * I 
1* no device available at requested baud *1 
I * no device known at requested baud * I 

WARNINGS 
Including the <dial.h> header file automatically includes the <termio.h> header file. 

The above routine uses <stdio.h>, which causes unexpected increases in the size of programs, 
not otherwise using standard 1/0. 

DEPENDENCIES 

FILES 

HP Clustered Environment 
Dial is not supported on client nodes of an HP Cluster. 

Series 300 
An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for 
the purpose of "touching" the LCK .. file and constitutes the device allocation semaphore 
for the terminal device. Otherwise, uucp(l) may simply delete the LCK .. entry on its 90-
minute clean-up rounds. The alarm may go off while the user program is in a read(2) or 
write(2) system call, causing an apparent error return. If the user program expects to be 
around for an hour or more, error returns from reads should be checked for 
(errno==EINTR), and the read possibly reissued. 

lusr llib luucp IDevices 
lusr I spool/uucp ILCK .. tty-device 

SEE ALSO 
uucp(I), alarm(2), read(2), write(2), termio(7). 

UUCP, a tutorial in HP-UX Concepts and Tutorials. 

266 (Section 3) -2- HP-UX Release 7.0: September 1989 



DIRECTORY (3C) DIRECTORY(3C) 

NAME 
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations 

SYNOPSIS 
#include <sys/types.h> 
#include <dirent.h> 

DIR *opendir(dirname) 
char *dirname; 

struct dirent *readdir(dirp) 
DIR *dirpi 

long telldir(dirp) 
DIR *dirpi 

void seekdir(dirp, lod 
DIR *dirpi 
long loc; 

void rewinddir(dirp) 
DIR *dirp; 

int closedir(dirp) 
DIR *dirp; 

DESCRIPTION 
This library package provides functions that allow programs to read directory entries without 
having to know the actual directory format associated with the file system. Because these func­
tions allow programs to be used portably on file systems with different directory formats, this is 
the recommended way to read directory entries. 

Opendir opens the directory dirname and associates a directory stream with it. Opendir returns a 
pointer used to identify the directory stream in subsequent operations. The opendir routine allo­
cates memory using malloc(3C) or malloc(3X), depending on which is linked with the program. 

Readdir returns a pointer to the next directory entry. It returns a NULL pointer upon reaching 
the end of the directory or detecting an invalid seekdir operation. See dirent(S) for a description 
of the fields available in a directory entry. 

Telldir returns the current location (encoded) associated with the directory stream to which dirp 
refers. 

Seekdir sets the position of the next readdir operation on the directory stream to which dirp 
refers. The loc argument is a location within the directory stream obtained from telldir. The 
position of the directory stream is restored to where it was when telldir returned that loc value. 
Values returned by telldir are valid only while the DIR pointer from which they are derived 
remains open. If the directory stream is closed and then reopened, the telldir value might be 
invalid. 

Rewinddir resets the position of the directory stream to which dirp refers to the beginning of the 
directory. It also causes the directory stream to refer to the current state of the corresponding 
directory, as a call to opendirO would have done. 

Closedir doses the named directory stream and then frees the structure associated with the DIR 
pointer. 

RETURN VALUE 
Upon successful completion, opendir returns a pointer to an object of type DIR referring to an 
open directory stream. Otherwise, it returns a NULL pointer and sets the global variable errno 
to indicate the error. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 267 



DIRECTORY (3C) DIRECTORY (3C) 

Upon successful completion, readdir returns a pointer to an object of type struet dirent describ­
ing a directory entry. Upon reaching the end of the directory, readdir returns a NULL pointer 
and does not change the value of errno. Otherwise, it returns a NULL pointer and sets errno to 
indicate the error. 

Upon successful completion, telldir returns a long value indicating the current position in the 
directory. Otherwise it returns -1 and sets errno to indicate the error. 

Upon successful completion, closedir returns a value of O. Otherwise, it returns a value of -1 
and sets errno to indicate the error. 

ERRORS 
Opendir might fail if any of the following is true: 

[EACCES] Search permission is denied for a component of dirname, or read permis­
sion is denied for dirname. 

[EFAULT] Dirname points outside the allocated address space of the process. The 
reliable detection of this error is implementation dependent. 

[ELOOP] Too many symbolic links were encountered in translating the path name. 

[EMFlLE] Too many open file descriptors are currently open for the calling process. 

[ENAMETOOLONG] A component of dirname exceeds PATH_MAX bytes, or the entire length of 
dirname exceeds PATH_MAX -1 bytes while _POSIX_NO_TRUNC is in 
effect. 

[ENFILE] Too many open file descriptors are currently open on the system. 

[ENOENT] A component of the dirname does not exist. 

[ENOMEM] The malloc routine failed to provide sufficient memory to process the 
directory. 

[ENOTDIR] A component of dirname is not a directory. 

[ENOENT] The dirname argument points to an empty string. 

Readdir might fail if any of the following is true: 

[EBADF] 

[ENOENT] 

The dirp argument does not refer to an open directory stream. 

The directory stream to which dirp refers is not located at a valid direc­
tory entry. 

[EFAULT] dirp points outside the allocated address space of the process. 

Telldir might fail if the following is true: 

[EBADF] The dirp argument does not refer to an open directory stream. 

Closedir might fail if the following is true: 

[EBADF] 

[EFAULT] 

The dirp argument does not refer to an open directory stream. 

dirp points outside the allocated address space of the process. 

Rewinddir might fail if the following is true: 

[EFAULT] 

EXAMPLES 

dirp points outside the allocated address space of the process. 

The following code searches the current directory for an entry name: 

DIR *dirp; 
struct dirent *dp; 

268 (Section 3) -2- HP-UX Release 7.0: September 1989 



DIRECTORY(3C) 

WARNINGS 

dirp = opendir("."); 
while «dp = readdir(dirp» != NULL) { 

} 

if (strcmp(dp->d_name, name) == 0) { 
(void) closedir(dirp); 
return FOUND; 

(void) closedir(dirp); 
return NOT_FOUND; 

DIRECTORY(3C) 

Readdir or getdirentries(2) are the only ways to access remote NFS directories. Attempting to 
read a remote directory using read(2) with NFS returns -1 and sets errno to EISDIR. 

APPLICATION USAGE 
The header file required for these functions and the type of the return value from the readdir 
function has been changed for compatibility with System V Release 3 and the X/Open Portabil­
ity Guide. See ndir(5) for a description of the header file <ndir.h>, which is provided to allow 
existing HP-UX applications to compile unmodified. 

New applications should use the <dirent.h> header file for portability to System V and 
X/Open systems. 

AUTHOR 
Directory was developed by AT&T, HP, and the University of California, Berkeley. 

SEE ALSO 
close(2), getdirentries(2), Iseek(2), open(2), read(2), dir(4), dirent(5), ndir(5). 

STANDARDS CONFORMANCE 
closedir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

opendir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

readdir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

rewinddir: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

seekdir: XPG2, XPG3 

telldir: XPG2, XPG3 

HP-UX Release 7.0: September 1989 -3- (Section 3) 269 



DIV(3C) DIV(3C) 

NAME 
div, ldiv - integer division and remainder 

SYNOPSIS 
#inc1ude <stdlib.h> 

div_t div (numer, denom) 
int numer, denomi 

ldiv_t ldiv (numer, denom) 
long int numer, denomi 

DESCRIPTION 
The div function computes the quotient and remainder of the division of the numerator numer 
by the denominator denam. If the division is inexact, the sign of the resulting quotient is that of 
the algebraic quotient, and the magnitude of the resulting quotient is the largest integer less 
than the magnitude of the algebraic quotient. If the result can be represented, the result is 
returned in a structure of type div_t (defined in stdlib.h) having members quat and rem for the 
quotient and remainder respectively. Both members have type int and values such that quat * 
denam + rem = numer. If the result cannot be represented, the behavior is undefined. 

The ldiv function is similar to the div function, except that the arguments each have type long 
int and the result is returned in a structure of type ldiv _t (defined in stdlib.h) having long int 
members quat and rem for the quotient and remainder respectively. 

WARNINGS 
The behavior is undefined if denam is O. 

SEE ALSO 
floor(3M). 

ST ANDARDS CONFORMANCE 
div: ANSI C 

ldiv: ANSI C 

270 (Section 3) -1- HP-UX Release 7.0: September 1989 



DRAND48(3C) DRAND48(3C) 

NAME 
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate 
uniformly distributed pseudo-random numbers 

SYNOPSIS 
double drand48 ( ) 

double erand48 (xsubi) 
unsigned short xsubi[3]; 

long lrand48 ( ) 

long nrand48 (xsubi) 
unsigned short xsubi[3J; 

long mrand48 ( ) 

long jrand48 (xsubi) 
unsigned short xsubi[3J; 

void srand48 (seedval) 
long seedval; 

unsigned short *seed48 (seed16v) 
unsigned short seed16v[3J; 

void lcong48 (par am) 
unsigned short param[7J; 

DESCRIPTION 
This family of functions generates pseudo-random numbers using the well-known linear 
congruential algorithm and 48-bit integer arithmetic. 

In the following discussion, the formal mathematical notation [0.0, 1.0) indicates an interval 
including 0.0 but not including 1.0. 

Functions drand48 and erand48 return non-negative double-precision floating-point values uni­
formly distributed over the interval [0.0, 1.0). 

Functions lrand48 and nrand48 return non-negative long integers uniformly distributed over the 
interval [0, 231

). 

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the inter­
val [_231 , 231 ). 

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be 
invoked before either drand48, lrand48 or mrand48 is called. (Although it is not recommended 
practice, constant default initializer values will be supplied automatically if drand48, lrand48 or 
mrand48 is called without a prior call to an initialization entry point.) Functions erand48, 
nrand48 and jrand48 do not require an initialization entry point to be called first. 

All the routines work by generating a sequence of 48-bit integer values, Xi' according to the 
linear congruential formula 

Xn+1 = (aXn + c) mod m n ~O 

The parameter m = 248 ; hence 48-bit integer arithmetic is performed. Unless lcong48 has been 
invoked, the multiplier value a and the addend value c are given by 

a = 5DEECE66D 16 = 273673163155 8 

C = B16 = 13 8 , 

The value returned by any of the functions drand48, erand48, lrand48, nrand48, mrand48 or 
jrand48 is computed by first generating the next 48-bit Xi in the sequence. Then the appropri­
ate number of bits, according to the type of data item to be returned, are copied from the high-

HP-UX Release 7.0: September 1989 -1- (Section 3) 271 



DRAND48(3C) DRAND48(3C) 

order (leftmost) bits of Xi and transformed into the returned value. 

The functions drand48, lrand48 and mrand48 store the last 48-bit Xi generated in an internal 
buffer; that is why they must be initialized prior to being invoked. The functions erand48, 
nrand48 and jrand48 require the calling program to provide storage for the successive Xi values 
in the array specified as an argument when the functions are invoked. That is why these rou­
tines do not have to be initialized; the calling program merely has to place the desired initial 
value of Xi into the array and pass it as an argument. By using different arguments, functions 
erand48, nrand48 and jrand48 allow separate modules of a large program to generate several 
independent streams of pseudo-random numbers, i.e., the sequence of numbers in each stream 
will not depend upon how many times the routines have been called to generate numbers for 
the other streams. 

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits contained in its 
argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16 . 

The initializer function seed48 sets the value of Xi to the 48-bit value specified in the argument 
array. In addition, the previous value of Xi is copied into a 48-bit internal buffer, used only by 
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which 
can just be ignored if not needed, is useful if a program is to be restarted from a given point at 
some future time - use the pointer to get at and store the last Xi value, and then use this value 
to reinitialize via seed48 when the program is restarted. 

The initialization function lcong48 allows the user to specify the initial Xi, the multiplier value 
a, and the addend value c. Argument array elements param[O-2] specify Xi, param[3-5] specify 
the multiplier a, and param[6] specifies the 16-bit addend c. After lcong48 has been called, a 
subsequent call to either srand48 or seed48 will restore the "standard" multiplier and addend 
values, a and c, specified on the previous page. 

SEE ALSO 
rand(3C). 

STANDARDS CONFORMANCE 
drand48: SVID2, XPG2, XPG3 

erand48: SVID2, XPG2, XPG3 

jrand48: SVID2, XPG2, XPG3 

lcong48: SVID2, XPG2, XPG3 

lrand48: SVID2, XPG2, XPG3 

mrand48: SVID2, XPG2, XPG3 

nrand48: SVID2, XPG2, XPG3 

seed48: SVID2, XPG2, XPG3 

srand48: SVID2, XPG2, XPG3 

272 (Section 3) -2- HP-UX Release 7.0: September 1989 



ECYT(3C) ECYT(3C) 

NAME 
ecvt, fcvt, gcvt, nLgcvt - convert floating-point number to string 

SYNOPSIS 
char *ecvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, * sign; 

ehar "'fevt (value, ndigit, deep!, sign) 
double value; 
int ndigit, *decpt, * sign; 

char *gcvt (value, ndigit, buf) 
double value; 
int ndigit; 
char *buf; 

char *nLgcvt (value, ndigit, buf, langid) 
double value; 
int ndigit; 
char *buf; 
int langid; 

DESCRIPTION 
Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer to the 
string. The high-order digit is non-zero, unless the value is zero. The low-order digit is 
rounded. The position of the radix character relative to the beginning of the string is stored 
indirectly through decpt (negative means to the left of the returned digits). The radix character 
is not included in the returned string. If the sign of the result is negative, the word pointed to 
by sign is non-zero, otherwise it is zero. 

One of three non-digit characters strings could be returned if the converted value is out of 
range. A " __ " or "++" is returned if the value is larger than the exponent can contain, and is 
negative, or positive, respectively. The third string is returned if the number is illegal, a zero 
divide for example. The result value is Not A Number (NAN) and would return a "?" character. 

Fcvt is identical to ecvt, except that the correct digit has been rounded for printf "%f" (FOR­
TRAN F-format) output of the number of digits specified by ndigit. 

Gcvt converts the value to a null-terminated string in the array pointed to by but and returns 
buf. It produces ndigit significant digits in FORTRAN F-format if possible, or E-format otherwise. 
A minus sign, if required, and a radix character will be included in the returned string. Trailing 
zeros are suppressed. The radix character is determined by the currently loaded NLS environ­
ment (see setlocale(3C». If setlocale has not been called successfully, the default NLS environ­
ment, "C", is used (see lang(S». The default environment specifies a period (.) as the radix 
character. 

NCgcvt differs from gcvt only by first calling langinit (see nUnit(3C» to load the NLS environ­
ment according to the language specified by langid. 

WARNINGS 
The values returned by ecvt and fcvt point to a single static data array whose content is 
overwritten by each call. 

Nl_gcvt is provided for historical reasons only; its use is not recommended. 

EXTERNAL INFLUENCES 
Locale 

The LC_NUMERIC category determines the value of the radix character within the current NLS 

HP-UX Release 7.0: September 1989 -1- (Section 3) 273 



ECVT(3C) ECVT(3C) 

environment. 

AUTHOR 
Eevt and [evt were developed by AT&T. Gevt was developed by AT&T and HP. NCgevt was 
developed by HP. 

SEE ALSO 
setlocale(3C), printf(3S), hpnls(5), lang(5). 

STANDARDS CONFORMANCE 
eevt: XPG2 

[evt: XPG2 

gevt: XPG2 

274 (Section 3) -2- HP-UX Release 7.0: September 1989 



END(3C) END(3C) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern _end; 
extern end; 
extern _ etext; 
extern etext; 
extern _edata; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with interesting contents. The address of 
the symbols _etext and etext is the first address above the program text, the address of _edata 
and edata is the first address above the initialized data region, and the address of _end and end 
is the first address above the uninitialized data region. 

The linker defines these symbols with the appropriate values if they are referenced by the pro­
gram but not defined. The linker will issue an error if the user attempts to define _etext, 
_edata, or _end. 

When execution begins, the program break (the first location beyond the data) coincides with 
_end, but the program break may be reset by the routines of brk(2), malloc(3C), standard 
input/output (stdio(3S)), the profile (-p) option of cc(1), and so on. Thus, the current value of 
the program break should be determined by sbrk(O) (see brk(2)). 

WARNINGS 
In C, these names must look like addresses. Thus, you would write &end instead of end to 
access the current value of end. 

SEE ALSO 
cc(1), Id(1), brk(2), malloc(3C), stdio(3S). 

STANDARDS CONFORMANCE 
end: XPG2 

edata: XPG2 

etext: XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 3) 275 



ERF(3M) 

NAME 
erf, erfc - error function and complementary error function 

SYNOPSIS 
#inc1ude <math.h> 

double erf (x) 
double x; 

double erfc (x) 
double x; 

DESCRIPTION 

Ert returns the error function of x, defined as _2-J e-12 dt. 
v"i 0 

ERF(3M) 

Ertc, which returns 1.0 - ert(x), is provided because of the extreme loss of relative accuracy if 
ert(x) is called for large x and the result subtracted from 1.0 (for example, for x = 5, twelve 
places are lost). 

DEPENDENCIES 
Series 800 Ulib/libm.a and ANSI C /lib/libM.a) 

Ert returns 1.0 when x is +INFINITY , or -1.0 when x is -INFINITY. 

Ertc returns 0.0 when x is +INFINITY , or 2.0 when x is -INFINITY. 

ERRORS 
Series 800 Ulib /libm.a and ANSI C /lib /libM.a) 

Ert and ertc return NaN and set errno to EDOM when x is NaN. 

SEE ALSO 
isinf(3M), isnan(3M), exp(3M). 

STANDARDS CONFORMANCE 
erf: SVID2, XPG2, XPG3 

ertc: SVID2, XPG2, XPG3 

276 (Section 3) -1- HP-UX Release 7.0: September 1989 



EXP(3M) 

NAME 
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root functions 

SYNOPSIS 
#indude <math.h> 

double exp (x) 
double Xi 

double log (x) 
double Xi 

double log10 (x) 
double Xi 

double pow (x, y) 

double x, Yi 

double sqrt (x) 
double Xi 

DESCRIPTION 
Exp returns eX. 

Log returns the natural logarithm of x. The value of x must be positive. 

LoglO returns the logarithm base ten of x. The value of x must be positive. 

Pow returns xY• If x is 0.0, y must be positive. If x is negative, y must be an integer. 

Sqrt returns the non-negative square root of x. The value of x must not be negative. 

DEPENDENCIES 
Series 300 

The algorithms used are those from HP 9000 BASIC. 

Series 800 (flib/libm.a and ANSI C /lib/libM.a) 
Exp returns: 

ERRORS 

+INFINITY when x is +INFINITY , 

0.0 when x is -INFINITY. 

Log and loglO return +INFINITY when x is +INFINITY . 

Pow returns +INFINITY when: 

Absolute value of x is greater than 1.0 and y is +INFINITY , 

Absolute value of x is less than 1.0 and y is -INFINITY , 

x is +INFINITY and y is greater than 0.0, or 

x is -INFINITY and y is an even integer. 

Pow returns -INFINITY when x is -INFINITY and y is an odd integer. 

Pow returns 0.0 when: 

Absolute value of x is greater than 1.0 and y is -INFINITY, 

absolute value of x is less than 1.0 and y is +INFINITY I 

x is +INFINITY and y is less than 0.0. 

Sqrt returns +INFINITY when x is +INFINITY . 

EXP(3M) 

HP-UX Release 7.0: September 1989 -1- (Section 3) 277 



EXP(3M) EXP(3M) 

Series 300 
Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct 
value would underflow, and sets errno to ERANGE. 

Log and loglO return -HUGE_VAL and set errno to EDOM when x is non-positive. A mes­
sage illdicating DOrv1AIl'"~ error (or SII".JG error v/hen x is 0.0) is printed on the standard 
error output. 

Pow returns 0.0 and sets errno to EDaM when x is 0.0 and y is non-positive, or when x is 
negative and y is not an integer. In these cases a message indicating DOMAIN error is 
printed on the standard error output. When the correct value for pow would overflow or 
underflow, pow returns ±HUGE_ VAL or 0.0 respectively, and sets errno to ERANGE. 

Sqrt returns 0.0 and sets errno to EDOM when x is negative. A message indicating 
DOMAIN error is printed on the standard error output. 

Series 800 (jlib jlibm.a) 
Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct 
value would underflow, and sets errno to ERANGE. NaN is returned and errno is set to 
ED OM when x is NaN. 

Log and loglO return -HUGE_VAL and set errno to EDOM when x is non-positive. NaN is 
returned and errno is set to ED OM when x is NaN or -INFINITY. A message indicating 
DOMAIN error (or SING error when x is 0.0) is printed on the standard error output in 
these cases. 

Pow returns 0.0 and sets errno to EDOM when x is 0.0 and y is negative, or when x is 
negative and y is not an integer. NaN is returned and errno is set to ED OM when x or y 
is NaN. In these cases a message indicating DOMAIN error is printed on the standard 
error output. When the correct value for pow would overflow or underflow, pow returns 
±HUGE_ VAL or 0.0 respectively, and sets errno to ERANGE. 

Sqrt returns NaN and sets errno to EDOM when x is negative, NaN or -INFINITY. A 
message indicating DOMAIN error is printed on the standard error output. 

Series 800 (ANSI C jlibjlibM.a) 
No error messages are printed on the standard error output. 

Exp returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct 
value would underflow, and sets errno to ERANGE. NaN is returned and errno is set to 
EDaM when x is NaN. 

Log and loglO return NaN and set errno to ED OM when x is negative, -INFINITY, or NaN. 
-HUGE_VAL is returned and errno is set to EDaM when x is 0.0. 

Pow returns 1.0 and sets errno to ED OM when x and yare both 0.0. HUGE_VAL is 
returned and errno is set to ED OM when x is 0.0 and y is negative. NaN is returned and 
errno is set to ED OM when x is negative and y is not an integer or when x or y is NaN. 
When the correct value for pow would overflow or underflow, pow returns ±HUGE_ VAL or 
0.0 respectively, and sets errno to ERANGE . 

Sqrt returns NaN and sets errno to EDaM when x is negative, NaN or -INFINITY. 

These error-handling procedures may be changed with the function matherr(3M). 

SEE ALSO 
hypot(3M), isinf(3M), isnan(3M), matherr(3M), sinh(3M). 

STANDARDS CONFORMANCE 
exp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

278 (Section 3) -2- HP-UX Release 7.0: September 1989 



EXP(3M) 

log: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

logIO: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

pow: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

sqrt: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -3-

EXP(3M) 

(Section 3) 279 



FCLOSE(3S) FCLOSE(3S) 

NAME 
fclose, fflush - close or flush a stream 

SYNOPSIS 
#include <stdio.h> 

int fclose (stream) 
FILE *stream; 

int £flush (stream) 
FILE *stream; 

DESCRIPTION 
Fclose causes any buffered data for the named stream to be written out, and the stream to be 
closed. Buffers allocated by the standard input/output system may be freed. 

Fclose is performed automatically for all open files upon calling exit(2). 

If stream points to an output stream or an update stream in which the most recent operation 
was output, !flush causes any buffered data for the stream to be written to that file; otherwise 
any buffered data is discarded. The stream remains open. 

If stream is a null pointer, the !flush function performs this flushing action on all currently open 
streams. 

DIAGNOSTICS 
These functions return 0 for success, and EOF if any error (such as trying to write to a file that 
has not been opened for writing) was detected. 

SEE ALSO 
close(2), exit(2), fopen(3S), setbuf(3S). 

STANDARDS CONFORMANCE 
fclose: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

!flush: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

280 (Section 3) -1- HP-UX Release 7.0: September 1989 



FERROR(3S) FERROR(3S) 

NAME 
ferror, feo£, clearerr - stream status inquiries 

SYNOPSIS 
#indude <stdio.h> 

int ferror (stream) 
FILE 
*stream; 

int feof (stream) 
FILE 
*stream; 

void dearerr (stream) 
FILE 
*stream; 

DESCRIPTION 
Ferror returns non-zero when an I/O error has previously occurred reading from or writing to 
the named stream, otherwise zero. Unless cleared by clearerr, or unless the specific stdio rou­
tine so indicates, the error indication lasts until the stream is closed. 

Feof returns non-zero when EOF has previously been detected reading the named input stream, 
otherwise zero. 

Clearerr resets the error indicator and EOF indicator to zero on the named stream. 

WARNINGS 
All these routines are implemented as both library functions and macros. The macro versions, 
which are used by default, are defined in <stdio.h>. To obtain the library function either use a 
#undef to remove the macro definition or, if compiling in ANSI-C mode, enclose the function 
name in parenthesis or use the function address. For following example illustrates each of these 
methods: 

SEE ALSO 

#include <stdio.h> 
#undef ferror 

mainO 
{ 

int (*find_error()) 0; 

return_ val=ferror(fd); 

return_ val=(feof)(fd1); 

find_error = feof; 
}; 

open(2), fopen(3S). 

ST ANDARDS CONFORMANCE 
ferror: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

clearerr: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

feof: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -1- (Section 3) 281 



FGETPOS(3S) FGETPOS(3S) 

NAME 
fgetpos, fsetpos - save and restore a file position indicator for a stream 

SYNOPSIS 
#include <stdio.h> 

int fgetpos (stream, pos) 
FILE *streami 
fpos_t *pOSi 

int fsetpos (stream, pos) 
FILE *streami 
const fpos_t *pOSi 

DESCRIPTION 
Fgetpos stores the current value of the file position indicator for the stream pointed to by stream 
in the object pointed to by pos. The value stored contains information usable by fsetpos for 
repositioning the stream to its position at the time of the call to fgetpos. 

Fsetpos sets the file position indicator for the stream pointed to by stream according to the value 
of the object pointed to by pos, which shall be a value set by an earlier call to fgetpos on the 
same stream. 

A successful call to fsetpos clears the end-of-file indicator for the stream and undoes any effects 
of ungetc(3S) on the same stream. After a fsetpos call, the next operation on a update stream 
may be either input or output. 

RETURN VALUES 
If successful, these functions return zero; otherwise non-zero. 

WARNINGS 
Failure may occur if these functions are used on a file that has not been opened via fopen; in 
particular, they may not be used on a terminal, or on a file opened via popen(3S). 

SEE ALSO 
fseek(3S), fopen(3S), popen(3S), ungetc(3S). 

STANDARDS CONFORMANCE 
fgetpos: ANSI C 

282 (Section 3) -1- HP-UX Release 7.0: September 1989 



FILENO(3S) 

NAME 
fileno - map stream pointer to file descriptor 

SYNOPSIS 
#include <stdio.h> 

int fileno (stream) 
FILE 
*streami 

DESCRIPTION 

FILENO(3S) 

Fileno returns the integer file descriptor associated with the named stream; see open(2). 

The following symbolic values in <unistd.h> define the file descriptors associated with stdin, 
stdout, and stderr when a program is started: 

STDIN_FILENO Value of zero for standard input, stdin. 
STDOUT _FILENO Value of 1 for standard output, stdout. 
STDERR_FILENO Value of 2 for standard error, stderr. 

DIAGNOSTICS 
Upon error, fileno will return a -1. 

SEE ALSO 
open(2), fopen(3S). 

STANDARDS CONFORMANCE 
fileno: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 3) 283 



FLOOR(3M) FLOOR(3M) 

NAME 
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions 

SYNOPSIS 
#inc1ude <math.h> 

double floor (x) 
double x; 

double ceil (x) 
double x; 

double fmod (x, y) 
double x, y; 

double fabs (x) 
double x; 

DESCRIPTION 
Floor returns the largest integer (as a double-precision number) not greater than x. 

Ceil returns the smallest integer not less than x. 

Fmod returns the floating-point remainder (f) of the division of x by y, where f has the same 
sign as x, such that x = iy + f for some integer i, and 1 f 1 < 1 y 1 • 

Fabs returns the absolute value of x, 1 x I. 

DEPENDENCIES 
Series 300 

Fmod returns x if y is 0.0 or if xjy would overflow. 

Series 800 Ulib jlibm.a) 
When x is ±INFINITY ,floor and ceil return ±INFINITY respectively. 

Fabs returns +INFINITY when x is ±INFINITY . 

Fmod returns x if y is 0.0, if xjy would overflow, or if xjy would underflow (including 
when y is ±INFINITY ). 

Series 800 (ANSI C jlib jLibM.a) 

ERRORS 

When x is ±INFINITY , floor and ceil return ±INFINITY respectively. 

Fabs returns +INFINITY when x is ±INFINITY . 

Fmod returns 0.0 if x jy would overflow, or x if x jy would underflow (including when y is 
±INFINITY). 

Series 800 Ulib jlibm.a) 
Floor and ceil return NaN and set errno to ED OM when x is NaN. 

Fmod returns NaN and sets errno to EDOM when x or y is NaN, or when x is ±INFINITY . 

Fabs returns NaN and sets errno to ED OM when x is NaN. 

Series 800 (ANSI C jlib jlibM.a) 

SEE ALSO 

Floor and ceil return NaN and set errno to EDOM when x is NaN. 

Fmod returns NaN and sets errno to EDOM when y is 0.0, when x or y is NaN, or when x 
is ±INFINITY . 

Fabs returns NaN and sets errno to ED OM when x is NaN. 

abs(3C), isinf(3M), isnan(3M). 

284 (Section 3) -1- HP-UX Release 7.0: September 1989 



FLOOR(3M) 

ST ANDARDS CONFORMANCE 
floor: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

ceil: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

jabs: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

jmod: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -2-

FLOOR(3M) 

(Section 3) 285 



FOPEN(3S) FOPEN(3S) 

NAME 
fopen, freopen, fdopen - open or re-open a stream file; convert file to stream 

SYNOPSIS 
#inc1ude <stdio.h> 

FILE *fopen (file_name, type) 
const char *file_name, *type; 

FILE *freopen (file_name, type, stream) 
const char *file_name, *type; 
FILE *stream; 

FILE *fdopen (filedes, type) 
int file des; 
const char *type; 

DESCRIPTION 

286 

Fopen opens the file named by file_name and associates a stream with it. Fopen returns a 
pointer to the FILE structure associated with the stream. 

File_name points to a character string that contains the name of the file to be opened. 

Type is a character string having one of the following values: 

"r" 

"w" 

"a" 
"rb" 

"wb" 

"ab" 

"r+" 

"w+" 

"a+" 

open for reading 

truncate to zero length or create for writing 

append; open for writing at end of file, or create for writing 

open binary file for reading 

truncate to zero length or create binary file for writing 

append; open binary file for writing at end-of-file, or create binary file 

open for update (reading and writing) 

truncate to zero length or create for update 

append; open or create for update at end-of-file 

"r+b" or "rb+" 
open binary file for update (reading and writing) 

"w+b" or "wb+" 
truncate to zero length or create binary file for update 

"a+b" or "ab+" 
append; open or create binary file for update at end-of-file 

Freopen substitutes the named file in place of the open stream. The original stream is closed, 
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc­
ture associated with stream and makes an implicit call to clearerr (see ferror(3S)). 

Freopen is typically used to attach the pre opened streams associated with stdin, stdout and 
stderr to other files. 

Fdopen associates a stream with a file descriptor. File descriptors are obtained from open(2), 
dup(2), creat(2), or pipe(2), which open files but do not return pointers to a FILE structure 
stream. Streams are necessary input for many of the Section (3S) library routines. The type of 
stream must agree with the mode of the open file. The meanings of type used in the fdopen call 
are exactly as specified above, except that "w", "w+", "wb", and "wb+" do not cause trunca­
tion of the file. 

(Section 3) -1- HP-UX Release 7.0: September 1989 



FOPEN(3S) FOPEN(3S) 

When a file is opened for update, both input and output may be done on the resulting stream. 
However, output may not be directly followed by input without an intervening call to the !flush 
function or to a file positioning function ([seek, [setpos, or rewind), and input may not be directly 
followed by output without an intervening call to a file positioning function, unless the input 
operation encounters end-of-file. 

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to overwrite 
information already in the file. All output is written at the end of the file, regardless of inter­
vening class to the [seek function. If two separate processes open the same file for append, each 
process can write freely to the file without fear of destroying output being written by the other. 
The output from the two processes will be intermixed in the file in the order in which it is writ­
ten. 

DIAGNOSTICS 

NOTES 

Fopen and [reopen return a NULL pointer if file_name cannot be accessed, if there are too many 
open files, or if the arguments are incorrect. 

Fdopen returns a NULL upon failure. 

On HP-UX the binary file types are equivalent to their non-binary counterparts. For example, 
the "r" and "rb" types are equivalent. 

SEE ALSO 
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), popen(3S). 

STANDARDS CONFORMANCE 
[open: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C 

[dopen: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

[reopen: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C 

HP-UX Release 7.0: September 1989 -2- (Section 3) 287 



FREAD(3S) FREAD(3S) 

NAME 
fread, fwrite - buffered binary input/output to a stream file 

SYNOPSIS 
#include <stdio.h> 

size_t fread (ptr, size, nit ems, stream) 
char *ptr; 
size_t size, nit ems; 
FILE *stream; 

size_t fwrite (ptr, size, nitems, stream) 
const char *ptr; 
size_t size, nitems; 
FILE *stream; 

DESCRIPTION 
Fread copies, into an array pointed to by ptr, nitems items of data from the named input stream, 
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of 
length size. Fread stops appending bytes if an end-of-file or error condition is encountered 
while reading stream, or·if nitems items have been read. Fread leaves the file pointer in stream, 
if defined, pointing to the byte following the last byte read if there is one. Fread does not 
change the contents of stream. 

Fwrite appends at most nitems items of data from the array pointed to by ptr to the named out­
put stream. Fwrite stops appending when it has appended nitems items of data or if an error 
condition is encountered on stream. Fwrite does not change the contents of the array pointed to 
by ptr. 

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof specifies the length 
of an item pointed to by ptr. If ptr points to a data type other than char it should be cast into a 
pointer to char. 

SEE ALSO 
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S). 

DIAGNOSTICS 
Fread and fwrite return the number of items read or written. If size or nitems is non-positive, 
no characters are read or written and 0 is returned by both fread and fwrite. 

STANDARDS CONFORMANCE 
fread: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

fwrite: SVID2, XPG2, XPG3 

288 (Section 3) -1- HP-UX Release 7.0: September 1989 



FREXP(3C) FREXP(3C) 

NAME 
frexp, ldexp, modf - split floating-point into mantissa and exponent 

SYNOPSIS 
double frexp (value, eptr) 
double valuei 
int *eptri 

double ldexp (value, exp) 
double valuei 
int eXPi 

double modf (value, iptr) 
double value, *iptri 

DESCRIPTION 
Every non-zero number can be written uniquely as x * 2n

, where the "mantissa" (fraction) x is 
in the range 0.5 ::; I x I < 1.0, and the "exponent" n is an integer. 

Frexp returns the mantissa of a double value, and stores the exponent indirectly in the location 
pointed to by eptr. If value is zero, both results returned by frexp are zero. 

Ldexp returns the quantity value * 2exp
. 

Modf returns the signed fractional part of value and stores the integral part indirectly in the 
location pointed to by iptr. 

DIAGNOSTICS 
If ldexp would cause overflow, ±HUGE is returned (according to the sign of value), and errno is 
set to ERANGE. 
If ldexp would cause underflow, zero is returned and errno is set to ERANGE. 

STANDARDS CONFORMANCE 
frexp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

ldexp: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

modf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -1- (Section 3) 289 



FSEEK(3S) FSEEK(3S) 

NAME 
fseek, rewind, ftell - reposition a file pointer in a stream 

SYNOPSIS 
#inc1ude <stdio.h> 

int fseek (stream, offset, ptrname) 
FILE *streami 
long offset; 
int ptrname; 

void rewind (stream) 
FILE *streami 

long ftell (stream) 
FILE *streami 

DESCRIPTION 
Fseek sets the position of the next input or output operation on the stream. The new position, 
measured in bytes from the beginning of the file, is obtained by adding offset to the position 
specified by ptrname. The specified position is the beginning of the file for SEEK_SET, the 
current position for SEEK_CUR, or end-of-file for SEEK_END. 

Rewind(stream) is equivalent to fseek (stream, OL, SEEK_SET), except that no value is returned. 

Fseek and rewind undo any effects of ungetc(3S). 

After fseek or rewind, the next operation on a file opened for update may be either input or out­
put. Fseek clears the EOF indicator for the stream. Rewind does an implicit clearerr (on 
ferror(3S» call. 

Ftell returns the offset of the current byte relative to the beginning of the file associated with 
the named stream. 

DIAGNOSTICS 
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can be, for exam­
ple, an fseek done on a file that has not been opened via fopen; in particular, fseek may not be 
used on a terminal, or on a file opened via popen(3S). 

Ftell returns -1 for error conditions. 

WARNING 
Although on HP-UX an offset returned by ftell is measured in bytes, and it is permissible to seek 
to positions relative to that offset, portability to non-UNIX operating systems requires that an 
offset be used by fseek directly. Arithmetic may not meaningfully be performed on such an 
offset, which is not necessarily measured in bytes. 

SEE ALSO 
Iseek(2), ferror(3S), fgetpos(3S), fopen(3S), fsetpos(3S), popen(3S), ungetc(3S). 

ST ANDARDS CONFORMANCE 
fseek: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

ftell: SVID2, XPG2, XPG3, POSIX.1, PIPS 151-1, ANSI C 

rewind: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

290 (Section 3) -1- HP-UX Release 7.0: September 1989 



FTW(3C) FTW(3C) 

NAME 
ftw, ftwh - walk a file tree 

SYNOPSIS 
#include <ftw.h> 

int ftw (path, fn, depth) 
char *path; 
int (*fn) ( ); 
int depth; 

int ftwh (path, fn, depth) 
char *path; 
int (*fn) ( ); 
int depth; 

DESCRIPTION 
Ftw recursively descends the directory hierarchy rooted in path. For each object in the hierar­
chy, ftw calls fn, passing it a pointer to a null-terminated character string containing the name 
of the object, a pointer to a stat structure (see stat(2» containing information about the object, 
and an integer. Possible values of the integer, defined in the <ftw.h> header file, are FTW_F 
for a file, FTW _D for a directory, FTW _DNR for a directory that cannot be read, and FTW _NS for 
an object for which stat could not successfully be executed. If the integer is FTW _DNR, descen­
dants of that directory will not be processed. If the integer is FTW _NS, the stat structure will 
contain garbage. An example of an object that would cause FTW _NS to be passed to fn would 
be a file in a directory with read but without execute (search) permission. 

Ftw visits a directory before visiting any of its descendants. 

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero 
value, or some error is detected within ftw (such as an I/O error). If the tree is exhausted, ftw 
returns zero. If fn returns a nonzero value, ftw stops its tree traversal and returns whatever 
value was returned by fn. If ftw detects an error, it returns -1, and sets the error type in errna. 

Ftw uses one file descriptor for each level in the tree. The depth argument limits the number of 
file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth 
must not be greater than the number of file descriptors currently available for use. Ftw will run 
more quickly if depth is at least as large as the number of levels in the tree. 

Ftwh performs the same function as ftw but ftwh also traverses hidden directories (context 
dependent files, see cdf(4». 

ERRORS 
ftwO will fail if any of the following occurs: 

[EACCES] Search permission is denied for any component of path. 

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the 
length of a component of the path name exceeds NAME_MAX bytes while 
_POSIX_NO_ TRUNC is in effect. 

[ENOENT] Path points to the name of a file that does not exist, or points to an empty 
string. 

[ENOTDIR] A component of path is not a directory. 

ftwO may fail if: 

[EINV AL] The value of the depth argument is invalid. 

In addition, if the function pointed to by fn encounters system errors, errno may be set accord­
ingly. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 291 



FTW(3C) FTW(3C) 

WARNINGS 
Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to 
very deep file structures. 
It can be made to run faster and use less storage on deep structures at the cost of considerable 
complexity. 
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is forcibly ter­
minated, such as by longjmp being executed by fn or an interrupt routine, ftw will not have a 
chance to free that storage, so it will remain permanently allocated. A safe way to handle inter­
rupts is to store the fact that an interrupt has occurred, and arrange to have fn return a nonzero 
value at its next invocation. 

AUTHOR 
Ftw was developed by AT&T. Ftwh was developed by HP. 

SEE ALSO 
stat(2), malloc(3C), cdf(4). 

STANDARDS CONFORMANCE 
ftw: SVID2, XPG2, XPG3 

292 (Section 3) -2- HP-UX Release 7.0: September 1989 



GAMMA(3M) GAMMA(3M) 

NAME 
gamma, 19amma, signgam - log gamma function 

SYNOPSIS 
#include <math.h> 

double gamma (x) 
double Xi 

double 19amma (x) 
double Xi 

extern int signgami 

DESCRIPTION 

Gamma returns In( I r(x) I), where r(x) is defined as !e-ttX-1dt. The sign of r(x) is returned 
o 

in the external integer signgam. The argument x must not be a non-positive integer. (Gamma is 
defined over the reals excluding the non-positive integers). 

The following C program fragment can be used to calculate r: 

if «y = gamma(x» > LN_MAXDOUBLE) 
error( ); 

y = signgam * exp(y); 

where if y is greater than LN_MAXDOUBLE, as defined in the <values.h> header file, exp(3M) 
will return a range error. 

ERRORS 
Series 300 

For non-positive integer arguments gamma returns HUGE_VAL and sets errno to EDaM. A 
message indicating SING error is printed on the standard error output. 

If the correct value would overflow, gamma returns HUGE_VAL and sets errno to ERANGE. 

Series 800 (flib jlibm.a) 
For non-positive integer arguments, gamma returns HUGE_VAL and sets errno to EDaM. 
A message indicating SING error is printed on the standard error output. 

If the correct value would overflow, gamma returns HUGE_VAL and sets errno to ERANGE. 

Gamma returns NaN and sets errno to EDaM when x is NaN, or returns +INFINITY and 
sets errno to EDaM when x is ±INFINITY. A message indicating DOMAIN error is printed 
on the standard error output. 

Series 800 (ANSI C jlib jlibM.a) 
No error messages are printed on the standard error output. 

For non-positive integer arguments gamma returns HUGE_VAL and sets errno to EDaM. A 
message indicating SING error is printed on the standard error output. 

If the correct value would overflow, gamma returns HUGE_ VAL and sets errno to ERANGE. 

Gamma returns NaN and sets errno to EDaM when x is NaN, or returns +INFINITY and 
sets errno to EDaM when x is ±INFINITY . 

These error-handling procedures may be changed with the function matherr(3M). 

SEE ALSO 
exp(3M), isinf(3M), isnan(3M), matherr(3M), values(5). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 293 



GAMMA(3M) 

ST ANDARDS CONFORMANCE 
gamma: SVID2, XPG2, XPG3 

signgam: SVID2, XPG2, XPG3 

294 (Section 3) 

GAMMA(3M) 

-2- HP-UX Release 7.0: September 1989 



GETC(3S) GETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or word from a stream file 

SYNOPSIS 
#inc1ude <stdio.h> 

int getc (stream) 
FILE *streami 

int getenar 0 

int fgetc (stream) 
FILE *streami 

int getw (stream) 
FILE *streami 

DESCRIPTION 
Getc returns the next character (i.e., byte) from the named input stream, as an unsigned charac­
ter converted to an integer. It also moves the file pointer, if defined, ahead one character in 
stream. Getchar is defined as getc(stdin). Getc and getchar are defined as both macros and func­
tions. 

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more slowly than 
getc, but it takes less space per invocation and its name can be passed as an argument to a 
function. 

Getw returns the next word (i.e. int in C) from the named input stream. Getw increments the 
associated file pointer, if defined, to point to the next word. The size of a word is the size of an 
integer and varies from machine to machine. Getw assumes no special alignment in the file. 

SEE ALSO 
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S). 

DIAGNOSTICS 
These functions return the constant EOF at end-of-file or upon an error. Because EOF is a valid 
integer, ferror(3S) should be used to detect getw errors. 

WARNING 
The getc and getchar routines are implemented as both library functions and macros. The macro 
versions, which are used by default, are defined in <stdio.h>. To obtain the library function 
either use a #undef to remove the macro definition or, if compiling in ANSI-C mode, enclose 
the function name in parenthesis or use the function address. For following example illustrates 
each of these methods : 

#include <stdio.h> 
#undef getc 

mainO 
{ 

int ("'get_char()) 0; 

return_ val=getc(c,fd); 

return_ val=(getc)( c,fd 1); 

get_char = getchar; 
}; 

HP-UX Release 7.0: September 1989 -1- (Section 3) 295 



GETC(3S) GETC(3S) 

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then 
compared against the integer constant EOF, the comparison may never succeed, because sign­
extension of a character on widening to integer is machine-dependent. 

The macro version of getc incorrectly treats a stream argument with side effects. In particular, 
getc(*f++) does not work sensibly. The function version of getc or fgetc should be used 
instead. 
Because of possible differences in word length and byte ordering, files written using putw are 
machine-dependent, and may not be read using getw on a different processor. 

STANDARDS CONFORMANCE 
getc: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

fgetc: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

getchar: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

getw: SVID2, XPG2, XPG3 

296 (Section 3) -2- HP-UX Release 7.0: September 1989 



GETCCENT(3C) GETCCENT(3C) 

NAME 
getccent, getcccid, getccnam, setccent, endccent, fgetccent - get HP Cluster configuration entry 

SYNOPSIS 
#include <sys/types.h> 
#include <cluster.h> 

struct ect_entry *geteeentO 

struct eet_entry *geteecid(cid) 
enode_t cidi 

struct eet_entry *geteenam(name) 
char *name; 

void seteeent() 

void endeeentO 

struct ect_entry *fgetceent(f) 
FILE *f; 

DESCRIPTION 
Getccent, getcccid, and getccnam each return a pointer to an object with the following structure 
containing the broken-out fields in the /ete/clusterconf file. The file contains a list of 
ect_entry structures, defined in the <cluster.h> header file. The ect_entry structure includes 
the following fields: 

u_char machine_id[M_IDLEN]; 
cnode_t cnode_id; 
char cnode_name[15]; 
char cnode_type; 

cnode_t swap_serving_cnode; 
int kcsp; 

j* Unique machine ID * j 
j* cnode ID * j 
j* cnode name * j 
/* 'r'=cluster server 

'c'=all other cluster nodes * j 
/* swap cnode * j 
j* default number of CSPs to create 

see csp(lM) * j 

The constant M_IDLEN is defined in <cluster.h> . 

Getccent when first called opens the cluster configuration file /etc/clustereonf and returns a 
pointer to the first ect_entry structure in the file. Thereafter, it returns a pointer to the next 
ect_entry structure in the file. Successive calls can be used to search the entire file. Getcccid 
searches from the beginning of the file until an entry whose cnode ID matches cid is found and 
returns a pointer to the particular structure in which it was found. Getccnam searches from the 
beginning of the file until a cnode name matching name is found and returns a pointer to the 
particular structure in which it was found. If an EOF or an error is encountered on reading, 
these functions return a NULL pointer. 

A call to setccent has the effect of rewinding the cluster configuration file to the beginning of the 
file to allow repeated searches. Endccent can be called to close the cluster configuration file 
when processing is complete. 

Fgetccent returns a pointer to the next ceCentry structure in the stream I, which matches the 
format of /etc/clusterconf. 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 297 



GETCCENT(3C) GETCCENT(3C) 

WARNINGS 
The above routines use <stdio.h>, which causes them to increase the size of programs not oth­
erwise using standard I/O, more than might be expected. 

All information is contained in a static area overwritten with each call; thus information must 
be copied if it is to be saved. 

AUTHOR 
Getccent was developed by HP. 

FILES 
/ etc/ clusterconf 

SEE ALSO 
csp(lM), clusterconf( 4). 

298 (Section 3) -2- HP-UX Release 7.0: September 1989 



GETCDF(3C) GETCDF(3C) 

NAME 
getcdf - return the expanded path that matches a path name 

SYNOPSIS 
char *getcdf (path, buf, size) 
char *path; 
char *buf; 
int size; 

DESCRIPTION 
Getcdf returns a pointer to the expanded path matching the path name in path. The path name 
can be a context dependent file (COF). If path is a COF, a path name with all hidden directories 
expanded is returned. If path is not a COF, the original path name is returned. 

The value of size must be at least one greater than the length of the path name to be returned. 

If buf is not a NULL pointer, getcdf copies the expanded path name into array buf. If buf is a 
NULL pointer, getcdf obtains size bytes of space using malloc(3C). In this case, the pointer 
returned by getcdf can be used as an argument in a subsequent call to free (see malloc(3C»). 

DIAGNOSTICS 
Returns NULL with errno set if size is not large enough, or the path name in bUf does not exist 
or cannot be accessed. 

EXAMPLES 

AUTHOR 

char *path, *cdf, *getcdf(); 
int size; 

if «cdf = getcdf(path, NULL, size» == NULL) { 
perror(" getcdf"); 
exit(1); 

} 
printf("%s\n", cd£); 

Getcdf was developed by HP. 

SEE ALSO 
showcdf(l), malloc(3C), cdf(4), context(S). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 299 



GETCWD(3C) GETCWD(3C) 

NAME 
getcwd, gethcwd - get pathname of current working directory 

SYNOPSIS 
char *getcwd (buff size) 
char *buf; 
int size; 

char *gethcwd (buff size) 
char *buf; 
int size; 

DESCRIPTION 
Getcwd places the absolute pathname of the current working directory in the array pointed to 
by buf, and returns buf. The value of size must be at least one greater than the length of the 
pathname to be returned. 

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). In this case, 
the pointer returned by getcwd may be used as the argument in a subsequent call to free (see 
malloc(3C». Invoking getcwd with buf as a null pointer is not recommended as this functional­
ity may be subject to later withdrawal. 

Gethcwd works the same as getcwd except the returned directory pathname will list all hidden 
directories (context dependent files, see cdf(4». 

RETURN VALUE 
Upon successful completion, getcwd returns a pointer to the current directory pathname. Other­
wise, it returns NULL with errno set if size is not large enough, or if an error occurs in a lower­
level function. 

ERRORS 
Getcwd will fail if any of the following is true: 

[EINV AL] The size argument is zero or negative. 

[ERANGE] The size argument is greater than zero, but is smaller than the 
length of the pathname. 

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, 
or the length of a component of the path name exceeds 
NAME_MAX bytes while _POSIX_NO_TRUNC is in effect. 

Getcwd may fail if any of the following is true: 

EXAMPLES 

[EACCES] 

[EFAULT] 

[ENOMEM] 

Read or search permission is denied for a component of path­
name. 

Buf points outside the allocated address space of the process. 
Getcwd may not always detect this error. 

The malloc routine failed to provide size bytes of memory. 

char ~cwd, *getcwdO; 
char buf[P ATH_MAX + 1 ]; 

if «cwd = getcwd«buf *)NULL, PATH_MAX + 1» == NULL) { 
perror("pwd"); 
exit(l); 

300 (Section 3) -1- HP-UX Release 7.0: September 1989 



GETCWD(3C) GETCWD(3C) 

} 
puts(cwd); 

AUTHOR 
Getcwd was developed by AT&T. Gethcwd was developed by HP. 

SEE ALSO 
pwd(l), malloc(3C), cdf(4). 

STANDARDS CONFORMANCE 
getcwd: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

HP-UX Release 7.0: September 1989 -2- (Section 3) 301 



GETENV(3C) 

NAME 
getenv - return value for environment name 

SYNOPSIS 
#include <stdlib.h> 
char *gelenv (name) 
char *namei 

DESCRIPTION 

GETENV(3C) 

Getenv searches the environment list (see environ(5» for a string of the form name=value, and 
returns a pointer to the value in the current environment if such a string is present, otherwise a 
NULL pointer. Name may be either the desired name, null-terminated, or of the form 
name=value, in which case getenv uses the portion to the left of the "=" as the search key. 

WARNINGS 
Getenv returns a pointer to static data which may be overwritten by subsequent calls. 

SEE ALSO 
exec(2), putenv(3C), environ(5). 

EXTERNAL INFLUENCES 
Locale 

The LC_CTYPE category determines the interpretation of characters in name as single- and/or 
multi-byte characters. 

International Code Set Support 
Single- and multi-byte character code sets are supported. 

STANDARDS CONFORMANCE 
getenv: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

302 (Section 3) -1- HP-UX Release 7.0: September 1989 



GETFSENT(3X) GETFSENT(3X) 

NAME 
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry 

SYNOPSIS 
#inc1ude <checklist.h> 

struct checklist *getfsentO 

struct checklist *getfsspec(spec) 
char *spec; 

struct checklist *getfsfile(file) 
char *file; 

struct checklist *getfstype(type) 
char *type; 

int setfsent() 

int endfsentO 

DESCRIPTION 
These routines are included for compatibility with 4.2 BSD; they have been superseded by the 
getmntent(3X) library routines. 

Getfsent, getfsspec, getfsfile, and getfstype each returns a pointer to an object with the following 
structure containing the broken-out fields of a line in the /etc/checklist file. The structure is 
declared in the <checklist.h> header file: 

struct checklist { 
char *fs_spec; 
char *fs_bspec; 
char *fs_dir; 
char *fs_type; 
int fs_passno; 
int fs_freq; 

}; 

/* special file name * / 
/* block special file name * / 
/* file sys directory name * / 
/* type: ro, rw, sw, xx * / 
/* fsck pass number * / 
/* backup frequency * / 

The fields have meanings described in checklist(4). If the block special file name, the file system 
directory name, and the type are not all defined on the associated line in fete/checklist, these 
routines will return pointers to NULL in the fs_bspec, fs_dir and fs_type fields. If the pass 
number or the backup frequency field are not present on the line, these routines will return -1 
in the corresponding structure member. Fs_freq is reserved for future use. 

Getfsent reads the next line of the file, opening the file if necessary. 

Setfsent opens and rewinds the file. 

Endfsent closes the file. 

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special 
file name or file system file name is found, or until EOF is encountered. Getfstype does like­
wise, matching on the file system type field. 

DIAGNOSTICS 
A null pointer is returned on EOF, invalid entry or error. 

WARNINGS 
Since all information is contained in a static area, it must be copied to be saved. 

AUTHOR 
Getfsent was developed by HP and the University of California, Berkeley. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 303 



GETFSENT(3X) 

FILES 
/ etc/ checklist 

SEE ALSO 
checklist(4). 

304 (Section 3) 

GETFSENT(3X) 

-2- HP-UX Release 7.0: September 1989 



GETGRENT(3C) GETGRENT(3C) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry 

SYNOPSIS 
#include <grp.h> 

struet group *getgrent ( ) 

struet group *getgrgid (gid) 
gid_t gid; 

struct group *getgrnam (name) 
ehar *namei 

void setgrent ( ) 

void endgrent ( ) 

struet group *fgetgrent (f) 

FILE *fi 

DESCRIPTION 
The getgrent, getgrgid, and getgrnam functions locate an entry in the fete/group file, and return 
a pointer to an object of type struet group. 

The group structure is defined in <grp.h> and includes the following members: 

ehar *gr_namei /* the name of the group */ 
ehar *gr_passwdi /* the encrypted group password */ 
gid_t gcgidi /* the numerical group ID */ 
ehar **gr_memi /* null-terminated array of pointers to member names */ 

Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it 
returns a pointer to the next group structure in the file. In this way, successive calls can be 
used to search the entire file. Getgrent opens the fete/group file prior to doing its work and 
leaves the file open afterward; setgrent has the effect of rewinding this file to allow repeated 
searches; endgrent can be called to close the file when processing is complete. 

Getgrgid searches from the beginning of the file until a numeric group ID matching gid is found, 
and returns a pointer to the particular structure in which it was found. 

Getgrnam searches from the beginning of the file until a group name matching name is found, 
and returns a pointer to the particular structure in which it was found. 

Fgetgrent returns a pointer to the next group structure in the standard I/O stream f, which 
should be open for reading, and its contents should match the format of fete/group. 

NETWORKING FEATURES 
NFS 

If an entry beginning with a plus sign (+) or a minus sign ( - ) is found, these routines 
try to use the Yellow Pages network database for data. See group(4) for proper syntax and 
operation. 

RETURN VALUE 
The getgrent, getgrgid, getgrnam, and fgetgrent functions return a NULL pointer if an end-of-file 
or error is encountered on reading. Otherwise, the return value points to an internal static area 
containing a valid group structure. 

WARNINGS 
The above routines use <stdio.h> and the Yellow Pages library. This causes them to increase 
the size of programs that do not otherwise use standard I/O and Yellow Pages more than 
might ordinarily be expected. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 305 



GETGRENT(3C) GETGRENT(3C) 

The value returned by these functions points to a single static area that is overwritten by each 
call to any of the functions. It must be copied if it is to be saved. 

DEPENDENCIES 
NFS 

FILES 

FILES 
/ etc/yp / domainname / group.byname 
/ etc /yp / domainname / group. bygid 

SEE ALSO 
ypcat(l) in Networking Reference Manual. 

/etc/group 

SEE ALSO 
getgroups(2), getpwent(3C), stdio(3S), group(4). 

STANDARDS CONFORMANCE 
getgrent: SVID2, XPG2 

endgrent: SVID2, XPG2 

fgetgrent: SVID2, XPG2 

getgrgid: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

getgrnam: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1 

setgrent: SVID2, XPG2 

306 (Section 3) -2- HP-UX Release 7.0: September 1989 



GETLOGIN(3C) 

NAME 
getlogin - get login name 

SYNOPSIS 
char *getlogin ( )i 

DESCRIPTION 

GETLOGIN(3C) 

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same user ID is shared by 
several login names. 

If getlogin is called within a process that is not attached to a terminal, it returns a NULL pointer. 
The recommended procedure to obtain the user name associated with the real user ID of the 
calling process is to call getlogin , and if that fails to call getpwuid. The function cuserid may be 
used to obtain the user name associated with the effective user ID of the calling process. 

ERRORS 
Getlogin will fail if any of the following is true: 

FILES 

[EBADF] 

[EMFILE] 

[ENFILE] 

/etc/utmp 

SEE ALSO 

An invalid file descriptor was obtained. 

Too many file descriptors are in use by this process. 

The system file table is full. 

getgrent(3C), getpwent(3C), cuserid(3S), utmp(4). 

DIAGNOSTICS 
Getlogin returns the NULL pointer if name is not found. 

WARNINGS 
The return values point to static data whose content is overwritten by each call. 

STANDARDS CONFORMANCE 
getlogin: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1 

HP-UX Release 7.0: September 1989 -1- (Section 3) 307 



GETMNTENT(3X) GETMNTENT(3X) 

NAME 
getmntent, setmntent, addmntent, endmntent, hasmntopt - get file system descriptor file entry 

SYNOPSIS 
#inc1ude <stdio.h> 
#inc1ude <mntent.h> 

FILE *setmntent(filename, type) 
char *filenamei 
char *typei 

struct mntent *getmntent(filep) 
FILE *filepi 

int addmntent(filep, mnt) 
FILE *filepi 
struct mntent *mnti 

char *hasmntopt(mnt, opt) 
struct mntent *mnti 
char *opt; 

int endmntent(filep) 
FILE *filep; 

DESCRIPTION 
These routines replace the getfsent routines for accessing the file system description file 
/etc/checklist. They are also used to access the mounted file system description file 
/etc/mnttab. 

Setmntent opens a file system description file and returns a file pointer which can then be used 
with getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3C). 
Getmntent reads the next line from filep and returns a pointer to an object with the following 
structure containing the broken-out fields of a line in the filesystem description file, 
<mntent.h>. The fields have meanings described in checklist(4). 

struct mntent { 

}; 

char *mnt_fsname; 
char *mnt_dir; 
char *mnt_type; 
char *mnt_opts; 
int mnt_freq; 
int mnt_passno; 
long mnt_time; 

/* file system name * / 
/* file system path prefix * / 
/* hfs, nfs, swap, or xx * / 
/* re, suid, etc. * / 
/* dump frequency, in days * / 
/* pass number on parallel fsck * / 
/* When file system was mounted; * / 

/* see mnttab(4). * / 

Addmntent adds the mntent structure mnt to the end of the open file filep. Note that filep must 
be opened for writing. Hasmntopt scans the mnt_opts field of the mntent structure mnt for a 
substring that matches opt. It returns the address of the substring if a match is found, 0 other­
wise. Endmntent closes the file. 

The following definitions are provided in <mntent.h>: 

#define MNT_CHECKLIST 
#define MNT _MNTTAB 

308 (Section 3) 

" /etc/checklist" 
"/etc/mnttab" 

-1- HP-UX Release 7.0: September 1989 



GETMNTENT(3X) GETMNTENT(3X) 

#define MNTMAXSTR 128 /* Max size string in mntent "'1 

#define MNTTYPE_HFS "hfs" /* HFS file system'" I 
#define MNTTYPE_NFS "nfs" I'" Network file system'" I 
#define MNTTYPE_SW AP "swap" I'" Swap device'" I 
#define MNTTYPE_SW APFS "swapfs" /* File system swap'" I 
#define MNTTYPE_IGNORE "ignore" /* Ignore this entry'" I 

#define MNTOPLDEFAULTS "defaults" /* Use all default options'" I 
#define MNTOPT _RO "ro" /* Read only'" I 
#define MNTOPT _RW "rw" /* Read/write "'I 
#define MNTOPT _SUlD "suid" /* Set uid allowed "'I 
#define MNTOPT _NOSUlD "nosuid" /* No set uid allowed'" I 

The following definitions are provided for file system swap in <mntent.h>: 

#define MNTOPT _MIN 
#define MNTOPT _LIM 
#define MNTOPT _RES 
#define MNTOPT _PRI 

NETWORKING FEATURES 
NFS 

"min" 
"lim" 
"res" 
"pri" 

/* minimum file system swap "'I 
I'" maximum file system swap'" I 
/* reserve space for file system "'I 
/* file system swap priority "'I 

The following definitions are provided in <mntent.h>: 
#define MNTOPT _BG 
#define MNTOPT _FG 
#define MNTOPT _RETRY 
#define MNTOPT _RSIZE 
#define MNTOPT _ WSIZE 
#define MNTOPT _ TIMEO 
#define MNTOPT _RETRANS 
#define MNTOPT _PORT 
#define MNTOPT _SOFT 
#define MNTOPT _HARD 
#define MNTOPT _INTR 
#define MNTOPT _NOINTR 
#define MNTOPT _DEVS 
#define MNTOPT _NODEVS 

RETURN VALUE 

"bg" 
"fg" 
"retry" 
"rsize" 
"wsize" 
"timeo" 
"retrans" 
"port" 
"soft" 
"hard" 
"intr" 
"nointr" 
"devs" 
"nodevs" 

/* Retry mount in background'" I 
I'" Retry mount in foreground'" I 
/* Number of retries allowed'" I 
/* Read buffer size in bytes "'I 
/* Write buffer size in bytes'" I 
/* Timeout in 1/10 seconds'" I 
I'" Number of retransmissions'" I 
/* Server's IP NFS port "'I 
1* Soft mount *1 
1* Hard mount'" I 
1* Interruptable hard mounts *1 
1* Uninterruptable hard mounts* / 
1* Device file access allowed "'I 
/* No device file access allowed *1 

Setmntent returns a null pointer on error. Getmntent returns a null pointer on error or EOF. 
Otherwise, getmntent returns a pointer to a mntent structure. Some of the fields comprising a 
mntent structure are optional in /etc/checklist and letc/mnttab. In the supplied structure, 
such missing character pointer fields are set to NULL and missing integer fields are set to -1. 
Addmntent returns 1 on error. Endmntent returns 1. 

WARNINGS 
The returned mntent structure points to static information that is overwritten in each call. 

AUTHOR 
Addmntent, endmntent, getmntent, hasmntopt and setmntent were developed by The University of 
California, Berkeley, Sun Microsystems, Inc. and HP. 

HP-UX Release 7.0: September 1989 -2- (Section 3) 309 



GETMNTENT(3X) 

FILES 
jetcjchecklist 
jetcjmnttab 

SEE ALSO 
checklist(4), getfsent(3X), mnttab(4). 

310 (Section 3) 

GETMNTENT(3X) 

-3- HP-UX Release 7.0: September 1989 



GETMSG(3C) 

NAME 
getmsg - get message from a catalog 

SYNOPSIS 
char *getmsg (fildes, set_num, msg_num, buf, buflen) 
int fildes, seCnum, msg_num, buflen; 
char buf[]; 

DESCRIPTION 

GETMSG(3C) 

Getmsg reads message msg_num in set set_num from the message catalog identified by fildes, a 
file descriptor returned from a previous call to open(2). The returned message is stored in but, a 
buffer of size buflen bytes. 

A message longer than buflen -1 bytes is silently truncated. The returned message is always ter­
minated with a null byte. 

RETURN VALUE 
If successful, getmsg returns a pointer to the message in but. Otherwise, if fildes is invalid or if 
set_num or msg_num is not in the catalog, getmsg returns a pointer to an empty string. 

WARNINGS 
This routine is provided for historical reasons only. Use of the equivalent routine catgetmsg(3C) 
is recommended. 

AUTHOR 
Getmsg was developed by HP. 

SEE' ALSO 
gencat(l), insertmsg(l), read(2), catgetmsg(3C), catopen(3C), nLcatopen(3C), hpnls(S). 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 311 



GETOPT(3C) GETOPT(3C) 

NAME 
getopt, optarg, optind, opterr - get option letter from argument vector 

SYNOPSIS 
int getopt (argc, argv, optstring) 
int argc; 
char **argv, *opstring; 

extern char *optarg; 
extern int optind, opterr; 

DESCRIPTION 
Getopt returns the next option letter in argv (starting from argv[l]) that matches a letter in opt­
string. Optstring is a string of recognized option letters; if a letter is followed by a colon, the 
option is expected to have an argument that mayor may not be separated from it by white 
space. Optarg is set to point to the start of the option argument on return from getopt. 

Getopt places in optind the argv index of the next argument to be processed. The external vari­
able optind is initialized to 1 before the first call to the function getopt. 

When all options have been processed (Le., up to the first non-option argument), getopt returns 
EOF. The special option -- may be used to delimit the end of the options; EOF will be 
returned, and - - will be skipped. 

DIAGNOSTICS 
Getopt prints an error message on stderr and returns a question mark (?) when it encounters an 
option letter not included in optstring. This error message may be disabled by setting opterr to 
zero. 

EXAMPLES 
The following code fragment shows how one might process the arguments for a command that 
can take the mutually exclusive options a and b, and the options f and 0, both of which require 
arguments: 

main (argc, argv) 
int argc; 
char **argv; 
{ 

int c; 
extern char *optarg; 
extern int optind; 

while «c = getopt(argc, argv, "abf:o:"» != EOF) 
switch (c) { 

312 (Section 3) 

case 'a ': 
if (bflg) 

errflg++; 
else 

break; 
case 'b': 

if (aflg) 

else 

aflg++; 

errflg++; 

bproc( ); 

-1- HP-UX Release 7.0: September 1989 



GETOPT(3C) GETOPT(3C) 

WARNINGS 

break; 
case T: 

ifile = optarg; 
break; 

case 0 : 
ofile = optarg; 
break; 

C<1SC '?': 
errflg++; 

} 
if (errflg) { 

} 

fprintf(stderr, II usage: . . . "); 
exit (2); 

for ( ; optind < argc; optind++) { 
if (access(argv[optind], 4» { 

Options can be any ASCII characters except colon (:), question mark (?), or null (\0). It is 
impossible to distinguish between a ? used as a legal option, and the character that getopt 
returns when it encounters an invalid option character in the input. 

SEE ALSO 
getopt(l). 

EXTERNAL INFLUENCES 
Locale 

The LC_CTYPE category determines the interpretation of option letters as single and/or multi­
byte characters. 

International Code Set Support 
Single- and multi-byte character code sets are supported with the exception of multi-byte char­
acter file names. 

STANDARDS CONFORMANCE 
getopt: SVID2, XPG2, XPG3 

optarg: SVID2, XPG2, XPG3 

opterr: SVID2, XPG2, XPG3 

optind: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 -2- (Section 3) 313 



GETPASS(3C) 

NAME 
getpass - read a password 

SYNOPSIS 
char *getpass (prompt) 
char *prompti 

DESCRIPTION 

GETPASS(3C) 

Getpass reads up to a newline or EOF from the file jdev jUy, after prompting on the standard 
error output with the null-terminated string prompt and disabling echoing. A pointer is 
returned to a null-terminated string of at most 8 characters. If jdev jUy cannot be opened, a 
NULL pointer is returned. An interrupt will terminate input and send an interrupt signal to the 
calling program before returning. 

FILES 
/dev/tty 

SEE ALSO 
crypt(3C). 

WARNING 
The above routine uses <stdio.h>, which causes it to increase the size of programs not other­
wise using standard I/O, more than might be expected. 

WARNINGS 
The return value points to static data whose content is overwritten by each call. 

ST ANDARDS CONFORMANCE 
getpass: SVID2, XPG2, XPG3 

314 (Section 3) -1- HP-UX Release 7.0: September 1989 



GETPW(3C) 

NAME 
getpw - get name from UID 

SYNOPSIS 
int getpw (uid, buf) 
int uid; 
char *buf; 

DESCRIPTION 

GETPW(3C) 

Getpw searches the password file for a user id number that equals uid, copies the line of the 
password file in which uid was found into the array pointed to by but, and returns O. Getpw 
returns non-zero if uid cannot be found. The line is null-terminated. 
This routine is included only for compatibility with prior systems and should not be used; see 
getpwent(3C) for routines to use instead. 

NETWORKING FEATURES 
NFS 

This routine is implemented using getpwuid(3C) and therefore uses the Yellow Pages net­
work database as described in passwd(4). 

DIAGNOSTICS 
Getpw returns non-zero on error. 

WARNINGS 
The above routine uses <stdio.h>, which causes it to increase, more than might be expected, 
the size of programs not otherwise using standard I/O. 

AUTHOR 
Getpw was developed by AT&T and HP. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3C), passwd(4). 

STANDARDS CONFORMANCE 
getpw: XPG2 

HP-UX Release 7.0: September 1989 -1- (Section 3) 315 



GETPWENT(3C) GETPWENT(3C) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file entry 

SYNOPSIS 
#include <pwd.h> 

struct passwd *getpwent ( ) 

struct passwd *getpwuid (uid) 
uid_t uid; 

struct passwd *getpwnam (name) 
char *name; 

void setpwent ( ) 

void endpwent ( ) 

struct passwd *fgetpwent (f) 
FILE *f; 

DESCRIPTION 
The getpwent, getpwuid, and getpwnam functions locate an entry in the /etc/passwd file, and 
return a pointer to an object of type struct passwd. 

The passwd structure is defined in <pwd.h> and includes the following members: 

char 
char 
int 
int 
char 
char 
char 
char 
char 
long 
int 

*pw_name; 
*pw _passwd; 
pw_uid; 
pw_gid; 
*pw_age; 
*pw _comment; 
*pw_gecos; 
*pw_dir; 
*pw_shel1; 
pw_audid; 
pw_audflg; 

The pW30mment field is unused; the others have meanings described in passwd(4). 

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, 
it returns a pointer to the next passwd structure in the file. In this way, successive calls can be 
used to search the entire file. Getpwent opens the /etc/passwd file prior to doing its work and 
leaves the file open afterward; setpwent has the effect of rewinding this file to allow repeated 
searches; endpwent can be called to close the file when processing is complete. 

Getpwuid searches from the beginning of the file until a numeric user ID matching uid is found, 
and returns a pointer to the particular structure in which it was found. 

Getpwnam searches from the beginning of the file until a login name matching name is found, 
and returns a pointer to the particular structure in which it was found. 

Fgetpwent returns a pointer to the next passwd structure in the standard I/O stream f, which 
should be open for reading, and its contents should match the format of /etc/passwd. 

SECURITY FEATURES 

316 

If the secure password file (j.secure/etc/passwd) exists on the system and the calling process 
has permission to access it, the getpwent routines fill in the encrypted password, audit 10, and 
audit flag from the corresponding entry in that file. 

If the secure password file exists but the caller does not have permission to read the it, the 
encrypted password field is set to * and the audit ID and audit flag are set to -1. 

(Section 3) -1- HP-UX Release 7.0: September 1989 



GETPWENT(3C) GETPWENT(3C) 

If the secure password file does not exist, the encrypted password in /etc/passwd is returned 
and the audit ID and audit flag are set to -1. 

In situations where it is not necessary to get information from the regular password file, 
getspwent(3C) is significantly faster because it avoids unnecessary searches of the regular pass­
word file, and does not use the Yellow Pages database. 

Putpwent affects only /etc/passwd; the audit ID and audit flag in the password structure are 
ignored. Putspwent(3C) must be used to modify /.secure/etc/passwd. 

NETWORKING FEATURES 
NFS 

If an entry beginning with a plus sign (' +') or a minus sign (' -') is found, these routines 
try to use the Yellow Pages network database for data. See passwd(4) for proper syntax 
and operation. 

RETURN VALUE 
The getpwent, getpwuid, getpwnam, and fgetpwent functions return a NULL pointer if an end­
of-file or error is encountered on reading. Otherwise, the return value points to an internal 
static area containing a valid passwd structure. 

WARNINGS 
The above routines use <stdio.h> and the Yellow Pages library, which causes them to increase 
the size of programs, not otherwise using standard I/O and Yellow Pages, more than might be 
expected. 

The value returned by these functions points to a single static area that is overwritten by each 
call to any of the functions, so it must be copied if it is to be saved. 

DEPENDENCIES 
NFS 

AUTHOR 

FILES 
/ etc /yp / domainname / passwd. byname 
/ etc /yp / domainname / passwd. byuid 

SEE ALSO 
ypcat(l). 

Getpwent, getpwuid, getpwnam, setpwent, endpwent, and fgetpwent were developed by AT&T 
and HP. 

FILES 
/etc/passwd 

SEE ALSO 
cuserid(3S), getlogin(3C), getgrent(3C), stdio(3S), passwd(4), getspwent(3C), putspwent(3C). 

ypcat(l), spasswd(4) in HP-UX Networking Reference. 

STANDARDS CONFORMANCE 
getpwent: SVID2, XPG2 

endpwent: SVID2, XPG2 

fgetpwent: SVID2, XPG2 

getpwnam: SVID2, XPG2, XPG3, POSIX.1, PIPS 151-1 

getpwuid: SVID2, XPG2, XPG3, POSIX.1, PIPS 151-1 

setpwent: SVID2, XPG2 

HP-UX Release 7.0: September 1989 -2- (Section 3) 317 



GETS(3S) GETS(3S) 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
#include <stdio.h> 

char *gets (s) 
char *Si 

char *fgets (s, n, stream) 
char *Si 
int ni 
FILE *streami 

DESCRIPTION 
Gets reads characters from the standard input stream, stdin, into the array pointed to by s, until 
a new-line character is read or an end-of-file condition is encountered. The new-line character 
is discarded and the string is terminated with a null character. 

Fgets reads characters from the stream into the array pointed to by s, until n -1 characters are 
read, or a new-line character is read and transferred to s, or an end-of-file condition is encoun­
tered. The string is then terminated with a null character. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S). 

DIAGNOSTICS 
If end-of-file is encountered and no characters have been read, no characters are transferred to s 
and a NULL pointer is returned. If a read error occurs, such as trying to use these functions on 
a file that has not been opened for reading, a NULL pointer is returned. Otherwise s is 
returned. 

STANDARDS CONFORMANCE 
gets: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

[gets: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

318 (Section 3) -1- HP-UX Release 7.0: September 1989 



GETSPWENT(3C) GETSPWENT(3C) 

NAME 
getspwent, getspwuid, getspwaid, getspwnam, setspwent, endspwent, fgetspwent - get secure 
password file entry 

SYNOPSIS 
#include <pwd.h> 

struet s_passwd *getspwent ( ) 

struet s_passwd *getspwuid (uid) 
uid_t aid; 

struet s_passwd *getspwaid (aid) 
aid_t aid; 

struet s_passwd *getspwnam (name) 
ehar *name; 

void setspwent ( ) 

void endspwent ( ) 

struet s_passwd *fgetspwent (f) 
FILE *f; 

DESCRIPTION 
These privileged routines provide access to the secure password file in a manner similar to the 
way getpwent(3C) routines handle the regular password file, (/ete/passwd). 

These routines are particularly useful in situations where it is not necessary to get information 
from the regular password file. Getspwent(3C) routines run significantly faster than 
getpwent(3C) routines because they avoid unnecessary scanning of the password file and use of 
Yellow Pages. 

Getspwent, getspwuid, getspwaid and getspwnam each return 
s_passwd structure is written in the /.seeure/ete/passwd file, 
line, as follows: 

a pointer to an object. The 
and consists of five fields per 

struct s_passwd { 

}; 

ehar *pw _name; 
ehar *pw _passwd; 
ehar *pw _age; 
int pw _audid; 
int pw _audflg; 

/* login name * / 
/* encrypted password * / 
/* password age * / 
/* audit ID * / 
/* audit flag 1=on, O=off * / 

Since the s_passwd structure is declared in the <pwd.h> header file, it is unnecessary to rede­
clare it. 

When first called, getspwent returns a pointer to each s_passwd structure in 
/.seeure/ete/passwd in sequence; subsequent calls can be used to search the entire file. 
Getspwuid searches each entry from the beginning of the file until it finds a numerical user ID 
matching uid; then it returns a pointer to the particular structure in which uid is found. Simi­
larly, getspwaid searches for a numerical audit ID matching aid and returns a pointer to the par­
ticular structure in which aid is found. (See spasswd(4) for details on this field.) Getspwnam 
searches from the beginning of the file until a login name matching name is found, and returns 
a pointer to the particular structure in which name is found. 

A call to setspwent resets the file pointer to the beginning of the /.seeure/ete/passwrd file to 
allow repeated searches. Endspwent can be called to close the secure password file when pro­
cessing is complete. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 319 



GETSPWENT(3C) GETSPWENT(3C) 

Fgetspwent returns a pointer to the next s_passwd structure in the stream f, which matches the 
format of /.secure/etc/passwd. 

DIAGNOSTICS 
Getspwent returns a NULL pointer if any of these routines encounter an end-of-file or error 
while searching, or if the effective user ID of the calling process is not zero. 

WARNINGS 
The above routines use <stdio.h>, which causes them to increase the size of programs by more 
than might be expected. 

Since all information is contained in a static area, it must be copied to be saved. 

AUTHOR 
Getspwent was developed by HP. 

FILES 
/ .secure/ etc/passwd 

SEE ALSO 
getgrent(3C), getlogin(3C), getpwent(3C), putspwent(3C), passwd(4), spasswd(4). 

ypcat(l) in HP-UX Networking Reference. 

320 (Section 3) -2- HP-UX Release 7.0: September 1989 



GETUT(3C) GETUT(3C) 

NAME 
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file entry 

SYNOPSIS 
#inc1ude <sys/types.h> 
#inc1ude <utmp.h> 

struct utmp *getutent ( ) 

struct utmp *getutid (id) 
struct utmp *id; 

struct utmp *getutline (line) 
struct utmp *1ine; 

void pututline (utmp) 
struct utmp *utmp; 

void setutent ( ) 

void endutent ( ) 

void utmpname (file) 
char *file; 

DESCRIPTION 
Getutent, getutid and getutline each return a pointer to a structure of the following type: 

struct utmp { 

}; 

char ut_user[8]; 
char uUd[4]; 
char ut_line[12]; 
pid_t ut_pid; 
short ut_type; 
struct exit_status { 

short 
short 
} ut_exit; 

/ * User login name * / 
/* /etc/inittab id (usually line #) */ 
/* device name (console, lnxx) */ 
/ * process id * / 
/ * type of entry * / 

e_termination;/* Process termination status */ 
e _ exit; / * Process exit status * / 
/ * The exit status of a process * / 
/* marked as DEAD_PROCESS. */ 

unsigned short ut_reserved1; /* Reserved for future use */ 
time_t ut_time; /* time entry was made */ 
char ut_host[16]; /* host name, if remote; NOT SUPPORTED */ 
unsigned long ut_addr; /* Internet addr of host, if remote */ 

Getutent reads in the next entry from a utmp-like file. If the file is not already open, it opens it. 
If it reaches the end of the file, it fails. 

Getutid searches forward from the current point in the utmp file until it finds an entry with a 
uCtype matching id->ut_type if the type specified is RUN_LVL, BOOLTIME, OLD_TIME or 
NEW_TIME. If the type specified in id is INIT_PROCESS, LOGIN_PROCESS, 
USER_PROCESS or DEAD_PROCESS, getutid will return a pointer to the first entry whose type 
is one of these four and whose ut_id field matches id->ut_id. If the end of file is reached 
without a match, it fails. 

Getutline searches forward from the current point in the utmp file until it finds an entry of the 
type LOGIN_PROCESS or USER_PROCESS that also has a uUine string matching the 
line- >uUine string. If the end of file is reached without a match, it fails. 

Pututline writes out the supplied utmp structure into the utmp file. It uses getutid to search for­
ward for the proper place if it finds that it is not already at the proper place. It is expected that 

HP-UX Release 7.0: September 1989 -1- (Section 3) 321 



GETUT(3C) GETUT(3C) 

normally the user of pututline will have searched for the proper entry using one of the getut 
routines. If so, pututline will not search. If pututline does not find a matching slot for the new 
entry, it will add a new entry to the end of the file. 

Setutent resets the input stream to the beginning of the file. This should be done before each 
search for a new entry if it is desired that the entire file be examined. 

Endutent closes the currently open file. 

Utmpname allows the user to change the name of the file examined, from /etc/utmp to any 
other file. It is most often expected that this other file will be /ete/wtmp. If the file does not 
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname 
does not open the file. It just closes the old file if it is currently open and saves the new file 
name. 

The most current entry is saved in a static structure. Multiple accesses require that it be copied 
before further accesses are made. Each call to either getutid or getutline sees the routine exam­
ine the static structure before performing more I/O. If the contents of the static structure match 
what it is searching for, it looks no further. For this reason to use getutline to search for multi­
ple occurrences, it would be necessary to zero out the static after each success, or getutline 
would just return the same pointer over and over again. There is one exception to the rule 
about removing the structure before further reads are done. The implicit read done by pututline 
(if it finds that it is not already at the correct place in the file) will not hurt the contents of the 
static structure returned by the getutent, getutid or getutline routines, if the user has just 
modified those contents and passed the pointer back to pututline. 

These routines use buffered standard I/O for input, but pututline uses an unbuffered non­
standard write to avoid race conditions between processes trying to modify the utmp and wtmp 
files. 

RETURNS 
A NULL pointer is returned upon failure to read, whether for permissions or having reached 
the end of file, or upon failure to write. 

A NULL pointer is also returned if the size of the file is not an integral multiple of sizeof(struet 
utmp). 

WARNINGS 
Some vendors' versions of getutent erase the utmp file if the file exists but is not an integral 
multiple of sizeof(struet utmp). Given the possiblity of user error in providing a name to utmp­
name (such as giving improper arguments to who (1», HP-UX does not do this, but instead 
returns an error indication. 

FILES 
/etc/utmp 
/etc/wtmp 

SEE ALSO 
ttyslot(3C), utmp( 4). 

STANDARDS CONFORMANCE 
endutent: SVID2, XPG2 

getutent: SVID2, XPG2 

getutid: SVID2, XPG2 

getutline: SVID2, XPG2 

pututline: SVID2, XPG2 

322 (Section 3) -2- HP-UX Release 7.0: September 1989 



GETUT(3C) 

setutent: SVID2, XPG2 

utmpname: SVID2, XPG2 

HP-UX Release 7.0: September 1989 

GETUT(3C) 

-3- (Section 3) 323 



GPIO _ GET _ST ATUS(3I) 

NAME 
gpio_get_status - return status lines of GPIO card 

SYNOPSIS 
int gpio_get_status (eid) 
int eid; 

DESCRIPTION 
Gpio_get_status enables you to read the status register of the GPIO interface associated with the 
device file identified by eid. Eid is an entity identifier of an open GPIO device file obtained from 
an open(2), dup(2), /cntl(2), or creat(2). The current state of each status line on the interface 
card is mapped to the value returned, with STSO mapped to the least significant bit. Only x 
least-significant bits are used, where x is the number of status lines available on the hardware 
interface being used. 

DEPENDENCIES 
Series 300 

For the 98622A, x is 2. 

Series 800 
For the 27114A, x is 2. 

For the 27114B, x is 6. 

For the 28651A, x is 5. 

RETURN VALUE 
Gpio_get_status returns the value of the status register of the GPIO interface associated with eid, 
and -1 if an error was encountered. 

ERRORS 
Gpio_get_status fails if one of the following conditions is true and sets errno accordingly: 

[EBADF] 

[ENOTTY] 

324 (Section 3) 

eid does not refer to an open file. 

eid does not refer to a GPIO device file. 

-1- HP-UX Release 7.0: September 1989 



NAME 
gpio_set_ctl - set control lines on GPIO card 

SYNOPSIS 
int gpio_seCctl (eid, value) 
int eid, value; 

DESCRIPTION 
Gpio_set_ctl enables you to set the control register of a GPIO interface. Eid is an entity identifier 
of an open GPIO device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Value is 
the value to be written into the control register of the GPIO interface associated with eid. 

Value is mapped onto the control lines on the interface card, with the least significant bit 
mapped to CTLO. Only the x least significant bits are used, where x is the number of control 
lines available on the hardware interface being used. 

DEPENDENCIES 
Series 300 

For the 98622A, x is 2. 

Series 800 
For the 27114A, x is 3. 

For the 27114B, x is 6. 

For the 28651A, x is 5. 

RETURN VALUE 
Gpio_set_ctl returns 0 if successful, and -1 if an error was encountered. 

ERRORS 
Gpio_set_ctl fails if one of the following conditions is true and sets errno accordingly: 

[EBADF] 

[ENOTTY] 

eid does not refer to an open file. 

eid does not refer to a GPIO device file. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 325 



HANKAKUZENKAKU(3X) HANKAKUZENKAKU(3X) 

NAME 
HankakuZenkaku, ZenkakuHankaku - translate characters 

SYNOPSIS 
#include <jlib.h> 

unsigned char *HankakuZenkaku (81, s2, mode) 
unsigned char *sl, *s2; 
int mode; 

unsigned char *ZenkakuHankaku(sl, 82) 
unsigned char *sl, *s2; 

DESCRIPTION 
The arguments s1 and s2 point to strings (arrays of characters terminated by a null character). 

HankakuZenkaku copies string s1 to s2 translating 8-bit special, 8-bit alphanumeric, and HAN­
KAKU KATAKANA characters to the corresponding 16-bit ones. HANKAKU KATAKANA charac­
ters are translated to HIRAGANA or KATAKANA characters based on mode. The argument mode 
must be one of the following: 

toHiragana translate to HIRAGANA characters (default) 

toKatakana translate to KATAKANA characters 

where default indicates which value is taken if neither value is specified. 

If some characters in s1 can be translated into the set of 8-bit special, 8-bit alphanumeric, and 
HANKAKU KATAKANA characters, ZenkakuHankaku copies string s1 to s2 translating them. Oth­
erwise, it copies without translating. 

DIAGNOSTICS 
Each function returns s2 upon successful completion. Otherwise, a NULL pointer is returned. 

WARNINGS 
ZenkakuHankaku copies the following characters, which are expressed by section-point code, 
without translating them because there are no characters corresponding to them in kana(8). 

04-78 
04-80 
04-81 
05-78 
05-80 
05-81 
05-85 
05-86 

A KATAKANA character with DAKUON or HANDAKUON is translated to two HANKAKU KATA­
KANA characters followed by DAKUTEN or HANDAKUTEN, and vice versa. 

Neither function checks for overflow of any input string. In HankakuZenkaku the length of the 
resultant string is not greater than twice the length of s1. In ZenkakuHankllku the resultant 
string is shorter than s1. 

SEE ALSO 
open_jlib(3X) 

326 (Section 3) -1- HP-UX Release 7.0: September 1989 



HENKAN(3X) HENKAN(3X) 

NAME 
Henkan, JiKouho, Kakutei, HenkanOwari, SetUserDict - KANA to KANJI conversion routines 

SYNOPSIS 
#include <jlib.h> 

Bun *Henkan (ed, string, len, buf, size, mode) 
int ed; 
unsigned char *string, *buf; 
int len, size, mode; 

int JiKouho (ed, pb, nb) 
int ed; 
Bun *pb; 
int nb; 

int Kakutei (ed, pb, nb, nk) 
int ed; 
Bun *pb; 
int nb, nki 

int HenkanOwari (ed, pb) 
int ed; 
Bun *pb; 

int SetUserDict (ed, dp, mode) 
int edi 
UserDict dPi 
int mode; 

DESCRIPTION 
Ed is an environment descriptor obtained from a open_kana_kan call. 

Henkan performs KANA to KANJI conversion for string. String is an array of characters ter­
minated by a null character. Len is the length of the first BUNSETSU in bytes. If a positive 
value is assigned to len, henkan takes its value as the length of the first BUNSETSU. Otherwise, 
it is ignored. Henkan puts the resultant string (an array of characters terminated by a null char­
acter) into but and returns a pointer to the Bun structure. Size is the size of but in bytes. Mode 
is a flag having one of the following values: 

JIDOU 

IKKATSU 

enable automatic KANA to KANJI conversion. 

disable automatic KANA to KANJI conversion (default). 

where default is the value used when neither value is specified. 

The Bun structure declared in the <jlib.h> header file includes the following fields: 

int nbunsetsu; /* number of BUNSETSU * / 
int nvalid; /* number of BUNSETSU with validity * / 
Bunsetsu **bunsetsu; /* BUNSETSU table * / 

where nvalid is effective when mode is JIDOU. 

The Bunsetsu structure includes the following fields: 

unsigned char *yomi; /* YOMI (an array of characters ter­
minated by a null character) * / 

Kouho kouho; /* KOUHO associated with YOMI * / 
Kouhogun *kouhogun; /* a pointer to Kouhogun structure * / 

where the Kouho structure includes the following field: 

HP-UX Release 7.0: September 1989 -1- (Section 3) 327 



HENKAN(3X) HENKAN(3X) 

unsigned char *hyouki; /* HYOUKI (an array of charac­
ters terminated by a null charac­
ter) * / 

and kouhogun is set to a NULL pointer by henkan. 

JiKouho is used to get all KOUHOs for any BUNSETSU in the given sentence associated with pb. 
Pb is a pointer to a Bun structure obtained from a Henkan call. Nb is an index for the BUN­
SETSU table in the Bun structure. JiKouho sets a pointer to the Kouhogun structure in the Bun 
structure. The structure declared in the <jlib.h> header file includes the following fields: 

int nkouho; /* number of KOUHO * / 
Kouho **kouho; /* KOUHO table * / 

The KOUHO before the last one and the last one are spelled by HIRAGANA and KATAKANA 
respectivel y. 

Henkan and JiKouho allocate space themselves. After HenkanOwari is performed, this space is 
made available for further allocation. The argument to HenkanOwari is a pointer to a Bun struc­
ture obtained from a Henkan call. 

Kakutei is used to update HINDO information after Kakutei is performed. The KOUHO appears 
with higher priority in further conversion. Pb is a pointer to a Bun structure. Nb is an index for 
the BUNSETSU table in the Bun structure and Nk is an index for the KOUHO table in the Kouho­
gun structure. 

SetUserDict is used to enable or disable consulting of a user dictionary in addition to a system 
dictionary during the KANA to KANJI conversion. The last enabled dictionary is consulted first. 
Dp is a dictionary pointer returned by J-UD_open. Mode specifies the action to be taken, and 
must be one of the following: 

UDoff disable consulting of a user dictionary 

UDon enable user dictionary consulting (default) 

where default indicates which value is used when neither value is specified. 

DIAGNOSTICS 

328 

Henkan returns a NULL pointer upon conversion failure. jlib_errno is set to indicate the error: 

[JNOSPC] Not enough space to return the result. 

[JNOBUF] 

[JBADSIZ] 

[JINVAL] 

[JNOTRESPOND] 

[JBADED] 

No more space to put the resultant string into buf. 

Size is equal to or less than O. 

String is too long. 

A server does not respond. 

Ed is not a valid environment descriptor. 

JiKouho returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno is set to 
indicate the error: 

[JNOSPC] 

[JINVAL] 

[JNOTRESPOND] 

[JBADED] 

Not enough space in memory to return the result. 

Nb is invalid. 

A server does not respond. 

Ed is not a valid environment descriptor. 

Kakutei returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno is set to 
indicate the error: 

(Section 3) -2- HP-UX Release 7.0: September 1989 



HENKAN(3X) 

[JNOTRESPOND] 

[JINVAL] 

[JBADED] 

A server does not respond. 

Nb or nk is invalid. 

Ed is not a valid environment descriptor. 

HENKAN(3X) 

HenkanOwari returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno is 
set to indicate the error. 

[JNOTRESPOND] 

[JBADED] 

A server does not respond. 

Ed is not a valid environment descriptor. 

SetUserDict returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno is 
set to indicate the error: 

EXAMPLES 

[JBADED] 

[JUDBADDP] 

[JNOTRESPOND] 

Ed is not a valid environment descriptor. 

Dp is not a valid dictionary pointer. 

A server does not respond. 

The following example shows typical use for the above routines. After KANA to KANJI conver­
sion is performed, one of the following actions is taken for each BUNSETSU: 

If the BUNSETSU matchs what you want, Kakutei is invoked. 

Otherwise, JiKouho is invoked to get all KOUHOs, and Kakutei is invoked for the KOUHO 
matching what you want. 

HenkanOwari is invoked with the return value of the previous Henkan call. 

for (;;) { j* top level * j 
/* get sentences * j 

/* conversion (KANA to KANJI) * j 
if «p = Henkan (ed, string, 0, buf, BUFSIZ, IKKATSU)) == NULL) 

errorO; 

/* accept result or not * j 
n = p->nbunsetsu; /* number of BUNSETSU * j 
/* for each BUNSETSU * j 
for (i = 0; i < n; i++) { 

cp = p->bunsetsu[i]; 
if ( /* acceptable * j ) 

Kakutei (ed, p, i, 0); /* accept * j 
else { 

/* get alternatives * j 
if (JiKouho (ed, p, i) == -1) 

errorO; 
j* select one of them * j 
/* assume it to be k-th entry * j 
Kakutei (ed, p, i, k-1); 

} 
} /* end of for (i = 0; i < n; i++) * j 

HenkanOwari (ed, p); 

} j* end of for (;;) * j 

HP-UX Release 7.0: September 1989 -3- (Section 3) 329 



HENKAN(3X) HENKAN(3X) 

SEE ALSO 
open_kana_kan(3X), L UD _open(3X) 

330 (Section 3) -4- HP-UX Release 7.0: September 1989 



HIRAGANAKATAKANA(3X) HIRAGANAKATAKANA(3X) 

NAME 
HiraganaKatakana, KatakanaHiragana - translate characters 

SYNOPSIS 
#include <jlib.h> 

unsigned char *HiraganaKatakana (51, 52) 
unsigned char *51, *52; 

unsigned char *KatakanaHiragana (s1, s2) 
unsigned char *51, *52; 

DESCRIPTION 
The arguments 51 and 52 point to strings (arrays of characters terminated by a null character). 

HiraganaKatakana copies string 51 to 52 translating HIRAGANA characters in 51 to corresponding 
KATAKANA characters. KatakanaHiragana copies string 51 to 52 translating KATAKANA charac­
ters in 51 to corresponding HIRAGANA characters. 

Speaking in another way, HIRAGANA characters from 04-01 to 04-83 in section-point code is 
translated to corresponding KATAKANA characters from 05-01 to 05-83 by HiraganaKatakana. 
KatakanaHiragana does just the opposite. Here is an illustartion of what HiraganaKatakana and 
KatakanaHiragana do: . 

HIRAGANA 
04-15 

HiraganaKatakana 
--> 
<--

KatakanaH iragana 

KATAKANA 
05-15 

Characters except 04-01 to 04"83 in HiraganaKatakana, and characters except 05-01 to 05-83 in 
KatakanaHiragana are copied without translating. 

DIAGNOSTICS 
Each function returns 52 upon successful completion. Otherwise, a NULL pointer is returned. 

WARNINGS 
KatakanaHiragana copies the three 16-bit KATAKANA characters expressed by the following 
section-point codes without translating, because there are no HIRAGANA characters correspond­
ing to them. 

05-84 
05-85 
05-86 

SEE ALSO 
open_jIib(3X) 

HP-UX Release 7.0: September 1989 -1- (Section 3) 331 



HPIB_ABORT(31) 

NAME 
hpib_abort - stop activity on specified HP-IB bus 

SYNOPSIS 
int hpib_abort (eid); 
int eid; 

DESCRIPTION 
Hpib_abort terminates activity on the addressed HP-IB bus by pulsing the lFC line. Eid is an 
entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), fcntl(2), 
or creat(2) call. 

Hpib_abort also sets the REN line and clears the ATN line. The status of the SRQ line is not 
affected. The interface must be the system controller of the bus. 

RETURN VALUE 
Hpib_abort returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_abort fails under the following circumstances, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] eid does not refer to an HP-IB raw bus device file. 

[ElO] the specified interface is not the system controller. 

[ETIMEDOUT] a timeout occurs. 

[EACCES] The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

DEPENDENCIES 
SHies 300: 

The HP 98625AjB HP-IB interface does not clear the ATN line. 

EIO is returned if a timeout occurs. 

Series 800: 
If the interface is not currently the system controller, hpib_abort sets errno to [EACCES] 
instead of to [EIO]. 

AUTHOR 
Hpib_abort was developed by the Hewlett-Packard Company. 

332 (Section 3) -1- HP-UX Release 7.0: September 1989 



HPIB_ADDRESS_CTL(31) Series 300 Only 

NAME 
hpib_address_ctl - set the HP-IB bus address for an interface 

SYNOPSIS 
int hpib_address3t1 (eid, ba); 
int eid, ba; 

DESCRIPTION 
Hpib _address_ctl 
sets the HP-IB 
bus address of the interface associated with eid to ba. Eid is an entity identifier of an open HP­

IB raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Ba is an integer 
and must be in the range of [0-30]. 

The new bus address will remain in effect until a reboot, an iOJeset call, or another 
hpib_address_ctl call occurs. When a reboot or iOJeset call occurs, the HP-IB bus address reverts 
to its powerup value. 

RETURN VALUE 
Hpib _address_ctf returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_address_ctf fails under the following circumstances and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[EIO] 

[EINTR] 

[EINVAL] 

AUTHOR 

eid does not refer to an HP-IB raw bus device file. 

a timeout occurred. 

the request was interrupted by a signal. 

ba is not in the range of 0-30. 

Hpib_address_ctl was developed by the Hewlett-Packard Company. 

SEE ALSO 
io _reset(3I). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 333 



Series 300 Only 

NAME 
hpib_atn_ctl - control the Attention line on HP-IB 

SYNOPSIS 
int hpib_atn3t1 (eid, flag); 
int eid, flag; 

DESCRIPTION 
Hpib_atnjtl enables/disables the Attention (ATN) line depending upon the value of flag. 
Eid is an entity identifier of an open HP-IB raw bus device file obtained from an apen(2), dup(2), 
fcntl(2), or creat(2) call. Flag is an integer which, if non-zero, enables the ATN line, and other­
wise disables it. 

RETURN VALUE 
Hpib_atn_ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_atn_ctl fails under the following circumstances, and sets errna (see errna(2» to the value in 
square brackets: 

[EBADF] 

[ENOTTYj 

[EIO] 

AUTHOR 

eid does not refer to an open file. 

eid does not refer to an HP-IB raw bus device file. 

the interface is not the active controller or a timeout occurred. 

Hpib_atnjtl was developed by the Hewlett-Packard Company. 

334 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 
hpib_bus_status - return status of HP-IB interface 

SYNOPSIS 
#include <dvio.h> 

int hpib_bus_status (eid, status); 
int eid, status; 

DESCRIPTION 
Hpib_bus_status enables you to determine various status information about an HP-IB chan­
nel. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), 
dup(2), fcntl(2), or creat(2) call. Status is an integer determining what status information is 
returned for a particular call. The values defined for status and their associated meanings are: 

REMOTE_ST ATUS 
Is the channel currently in remote state? 

SRQ_STATUS 
What is the current state of the SRQ line? 

NDAC_ST ATUS 
What is the current state of the NDAC line? 

SYS_CONT_STATUS 
Is the channel currently system controller? 

ACT_CONT_STATUS 
Is the channel currently active controller? 

T ALKER_ST ATUS 
Is the channel currently addressed as talker? 

LISTENER_STATUS 
Is the channel curreJ;ltly addressed as listener? 

CURRENT _BUS_ADDRESS 
What is the channel's bus address? 

The remote state status is not defined when the interface is the active controller, although 
reading remote state status in such a situation is not an error. Determining the status of the 
NDAC line is not available on all machines, and its use is therefore discouraged to ensure 
compatibility among various systems. Machines which do not support sensing the NDAC line 
return an error. 

RETURN VALUE 
Hpib_bus_status's return value depends upon the value of status. If status is 
CURRENT_BUS_ADDRESS, then the return value is either the HP-IB bus address or -1 if an 
error occurred. If status is any of the other values, then the return value is 0 if the condition is 
false (the line is clear), 1 if the condition is true (the line is set), or -1 if an error occurred. 

ERRORS 
Hpib_bus_status fails under the following conditions, and sets errno (see errno(2)) to the value 
in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[EINVAL] 

DEPENDENCIES 

eid does not refer to an HP-IB raw bus device file. 

status is not one of the values specified above. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 335 



Series 300 

AUTHOR 

The status of those lines being driven by the interface is undefined, although reading 
them in such a situation is not an error. Non-active controllers cannot sense the SRQ line. 
Active listeners cannot sense the NDAC line. 

The HP 98625AjB HP-IB interface cannot determine the current state of the NDAC line. 
Attempts to read this line will fail and set errno (see errno(2» to EINVAL. 

Hpib_bus_status was developed by HP. 

336 (Section 3) -2- HP-UX Release 7.0: September 1989 



HPIB _ CARD _PPOLL_RESP (31) 

NAME 
hpib_card_ppoILresp - control response to parallel poll on HP-IB 

SYNOPSIS 
int hpib_card_ppoICresp (eid,fiag); 
int eid,fiag; 

DESCRIPTION 
HpihJard_ppolCresp enables an interface to enable (or disable) itself for parallel polls. It 
also controls the sense, and determines the line on which the response is sent. This gives the 
interface the ability to either ignore or respond to a parallel poll depending upon whether 
or not it is enabled to respond. 

Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), 
fcntl(2), or creat(2) call. Flag is an integer having one of the following bit patterns: 

Bit Pattern 

10000 
OSPPP 

Meaning 

Disable parallel poll response. 
Enable parallel poll response, where 
S = sense of the response, and 
PPP = 3-bit binary number specifying the line on which the 
response is sent where the octal values 0 through 7 correspond to 
lines DI01 through DI08. 

RETURN VALUE 
Hpib_card_ppoICresp returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_card_ppoICresp fails under the following circumstances, and sets errno (see errno(2» to the 
value in square brackets: 

[EACCES] The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

[EBADF] eid does not refer to an open file. 

[ENOTTY] eid does not refer to an HP-IB raw bus device file. 

[EINV AL] the device cannot respond on the line number specified by flag. 

[ETIMEDOUT] a timeout occurs. 

DEPENDENCIES 
Series 300 

The HP 98625AjB HP-IB interface supports only enabling and disabling the parallel poll 
response (bit 4 of flag). The sense and response line number are not programmable on 
this card. 

EIO is returned if a timeout occurs. 

Series 800 
Since the sense and response line number are not programmable on the HP27110B HP-IB 
interface, the equivalent parallel poll configuration commands are sent ()ver the HP-IB to 
the interface. Therefore, this function will fail if the interface is not active controller. 

AUTHOR 
Hpib_card_ppoICresp was developed by HP. 

SEE ALSO 
hpib_ppoll(3I), hpib_ppolLresp_ct1(3I). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 337 



NAME 
hpib_eoLctl - control EOI mode for HP-IB file 

SYNOPSIS 
int hpib_eoCctl (eid, flag); 
int eid, flag; 

DESCRIPTION 
Hpib_eoCctl enables you to turn EOI mode on or off. Eid is an entity identifier of an open HP-IB 
raw device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Flag is an integer 
which, if non-zero, enables EOI mode, and otherwise disables it. 

EOI mode causes the last byte of all subsequent write operations to be written out with the EOI 
line asserted, signifying the end of the data transmission. By default, EOI mode is disabled 
when the device file is opened. 

Entity ids for the same device file obtained by separate open(2) requests have their own 
EOI modes associated with them. Entity ids for the same device file obtained by dup(2) or 
inherited by a fork(2) request share the same EOI mode. In the latter case, if one process 
enables EOI mode, then EOI mode is in effect for all such entity ids. 

RETURN VALUE 
Hpib_eoCctl returns a a (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_eoi_ctl fails under any of the following circumstances and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

DEPENDENCIES 
Series 800 

eid does not refer to an HP-IB device file. 

EOI mode is enabled when the device file is first opened. 

AUTHOR 
Hpib_eoCctl was developed by HP. 

338 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 
hpib_io - perform I/O with an HP-IB channel from buffers 

SYNOPSIS 
#include <dvio.h> 
int hpib_io(eid, iovec, iolen) 
int eidi 
struct iodetail *ioveci 
int ioleni 

DESCRIPTION 
Hpib_io enables you to perform and control read and/or write operations on the specified HP-IB 
bus. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), 
dup(2), fcntl(2), or creat(2) call. [avec is a pointer to an array of structures of the form: 

struct iodetail { 
char mode; 
char terminator; 
int count; 
char *buf; 

}; 

The iodetail structure is defined in the include file dvio.h. [olen specifies the number of struc­
tures in iovec. 

The mode parameter in the iodetail structure describes what is to be done during I/O on the 
buffer pointed to by buf. Mode is constructed by OR-ing flags from the following list: 

Only one of the following two flags must be specified: 

HPIBREAD Perform a read of the HP-IB bus, placing data into the accompany­
ing buffer. 

HPIBWRITE Perform a write to the HP-IB bus, using data from the accom­
panying buffer. 

The following flags may be used in most combinations (not all combinations are valid), 
or not at all: 

HPIBATN 

HPIBEO! 

HPIBCHAR 

Data is written with ATN enabled. 

Data written is terminated with EO! (this flag is ignored when HPI­
BATN is enabled). 

Data read is terminated with the character given in the terminator 
element of the iodetail structure. 

Terminator describes the termination character, if any, that should be checked for on input. 
Count is an integer specifying the maximum number of bytes to be transferred. 

A read operation terminates when either count is matched, an EO! is detected, or the desig­
nated terminator is detected (if HPIBCHAR is set in mode). 

A write operation terminates when count is matched, and the final byte is sent with EO! 
asserted (if HPIBEOI is set in mode). 

If HPIBATN is set in mode, then write operations occur with ATN enabled. Setting HPIBATN for 
a read operation is ignored and has no effect. 

The members of the iovec array are accessed in order. 

RETURN VALUES 
If all transactions are successful, hpib_io returns a zero and updates the count element in each 

HP-UX Release 7.0: September 1989 -1- (Section 3) 339 



structure in the iovec array to reflect the actual number of bytes read or written. 

If an error is encountered during a transaction defined by an element of iovec, hpib_io 
returns without completing any transactions that might follow. In particular, if an error occurs, 
hpib_io returns a -I, and the count element of the transaction which caused the error is set to 
-1. 

ERRORS 
Hpib_io fails under any of the following circumstances, and sets errno (see errno(2» to the value 
in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] eid does not refer to an HP-IB raw bus device file. 

[ETIMEDOUT] a timeout occurs. 

[EIO] eid is not the active controller. 

DEPENDENCIES 
Series 300: 

EIO is returned if a timeout occurs. 

Series 800: 
If the interface is not currently the active controller, hpib_io sets errno to [EACCES] 
instead of to [EIO). 

AUTHOR 
Hpib_io was developed by the Hewlett-Packard Company. 

340 (Section 3) -2- HP-UX Release 7.0: September 1989 



Series 300 Only 

NAME 
hpib_parity_ctl - enable/disable odd parity on ATN commands 

SYNOPSIS 
int hpib_parity 3tl (eid, flag); 
int eid, flag; 

DESCRIPTION 
Hpib_parity_ctl enables/disables the sending of odd parity for ATN command sequences 
depending upon the value of flag. Eid is an entity identifier of an open HP-IB raw bus device 
file obtained from an open(2), dup(2), jcntl(2), or creat(2) call. Flag is an integer which, if non­
zero, enables odd parity and otherwise disables it. 

Entity ids for the same device file obtained by separate open(2) requests have their own parity 
flags associated with them. Entity ids for the same device file obtained by dup(2) or inherited 
by a fork(2) request share the same parity flag. In the latter case, if one process changes the 
parity flag, the new parity flag is in effect for all such entity ids. 

RETURN VALUE 
Hpib _parity _ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_parity_ctl fails under the following circumstances, and sets errno (see errno(2» to the value 
in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

AUTHOR 

eid does not refer to an HP-IB raw bus device file. 

Hpib_parity_ctl was developed by the Hewlett-Packard Company. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 341 



NAME 
hpib_pass_ctl - change active controllers on HP-IB 

SYNOPSIS 
int hpib_pass_ctl (eid, ba) 
int eid, ba; 

DESCRIPTION 
Hpib_pass_ctl passes control of a bus to an inactive controller on that bus. The inactive con­
troller becomes the active controller of that bus. Eid is an entity identifier of an open HP-IB 
raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Ba is the bus 
address of the intended device. 

Not all devices can accept control. Pass control passes only active control of the bus. It cannot 
pass system control of the bus. The specified interface must be the current active controller 
but need not be the system controller. The pass control operation does not suspend your 
program if the inactive controller does not take active control of the bus. However, the inter­
face is no longer active controller. 

RETURN VALUE 
Hpib_pass_ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_pass_ctl fails under any of the following circumstances, and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] eid does not refer to an HP-IB raw bus device file. 

[EIO] the interface is not the active controller. 

[ETIMEDOUT] a timeout occurs. 

[EINVAL] ba is not a valid HP-IB bus address. 

[EACCES] The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

DEPENDENCIES 
Series 300: 

EIO is returned if a timeout occurs. 

Series 800: 
If the interface is not currently the active controller, hpib_pass_ctl sets errno to 
[EACCES] instead of to [EIO]. 

AUTHOR 
Hpib_pass_ctl was developed by the Hewlett-Packard Company. 

342 (Section 3) -1- HP-UX Release 7.0: September 1989 



HPIB]POLL(3I) 

NAME 
hpib_ppoll - conduct parallel poll on HP-IB bus 

SYNOPSIS 
int hpib_ppoll (eid); 
int eid; 

DESCRIPTION 
Hpib_ppoii conducts a parallel poll on an HP-IB bus. Eid is an entity identifier of an open HP-IB 
raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. 

Devices enabled to respond and that are in need of service can then assert the appropriate 
DIO line. This enables the controller to determine which devices, if any, need service at a 
given time. Hpib_ppoll delays for 25 microseconds before returning with the response. The 
interface must be the active controller to conduct a parallel poll. 

RETURN VALUE 
Hpib_ppoll returns an integer value whose least significant byte corresponds to the byte formed 
by the 8 data input/output (DIO) lines. Devices enabled to respond to a parallel poll do so on 
the appropriate DIO line. DIO line 1 corresponds to the least significant bit in the response byte; 
line 8 to the most significant bit. A -1 return value indicates that an error occurred. 

ERRORS 
Hpib_ppoll fails under the following situations, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[EIO] 

AUTHOR 

eid does not refer to an HP-IB raw bus device file. 

the interface is not current the active controller. 

Hpib_ppoll was developed by the Hewlett-Packard Company. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 343 



NAME 
hpib_ppoICresp_ctl - define interface parallel poll response 

SYNOPSIS 
int hpib_ppoILresp_ctl (eid, response) 
int eid, response; 

DESCRIPTION 
Eid is an entity identifier of an open HP-IB raw bus device file, obtained from an open(2), dup(2), 
fcntl(2), or creat(2) call. 

Hpib_ppoICresp_ctl defines a response to be sent when an active controller performs a parallel 
poll on an HP-IB interface. The value of response indicates whether this computer does or does 
not need service. A non-zero response value indicates that service is required. This statement 
only sets up a potential response; no actual response is generated when the statement is exe­
cuted. The sense of the response and the line number to respond on are set by 
hpib_card_ppoICresp(3I) or by the active controller. 

RETURN VALUE 
Hpib_ppoICresp_ctl returns 0 if the response is successfully set, or -1 if an error hasoccured. 

ERRORS 
Hpib_ppollJesp_ctl fails under the following situations, and sets errno (see errno(2» to the value 
in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[EACCES] 

AUTHOR 

eid does not refer to a raw HP-IB device file. 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

Hpib_ppoICresp_ctl was developed by the Hewlett-Packard Company. 

SEE ALSO 
hpib_ppoll(3I), hpib_card_ppoICresp(3I) 

344 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 
hpib_ren_ctl - control the Remote Enable line on HP-IB 

SYNOPSIS 
int hpib_ren_ctl (eid, flag); 
int eid, flag; 

DESCRIPTION 
. HpibJen_ctl enables/disables the Remote Enable (REN) line depending upon the value of 
flag. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), 
dup(2), fcntl(2), or creat(2) call. Flag is an integer which, if non-zero, enables the REN line, and 
otherwise disables it. 

HpibJen_ctl, in conjunction with hpib_send_cmnd(3I), enables you to place devices into the 
remote state or local state. The REN line is normally . enabled at all times, and is in this state at 
power-up. Only the system controller may enable/disable the REN line. 

RETURN VALUE 
HpibJen_ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
HpibJen_ctl fails under the following circumstances, and sets ermo (see errno(2)) to the value 
in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[EIO] 

AUTHOR 

eid does not refer to an HP-IB raw bus device file. 

the interface is not the system controller. 

HpibJen_ctl was developed by the Hewlett-Packard Company. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 345 



NAME 
hpib_rqsLsrvce - allow interface to enable SRQ line on HP-IB 

SYNOPSIS 
int hpib_rqsCsrvce (eid, CV)i 
int eid, CVi 

DESCRIPTION 
Hpib _rqst_srvce specifies the response byte that the interface sends when it is serially polled by 
the active controller. Eid is an entity identifier of an open HP-IB raw bus device file obtained 
from an open(2), dup(2), fcntl(2), or creat(2) call. Cv is an integer control value representation of 
the desired response byte. 

HpibJqscsrvce optionally enables the SRQ line depending upon the response byte. If bit 6 of 
the response byte is set, the SRQ line is enabled. It remains enabled until the active controller 
conducts a serial poll or until the computer executes the request function with bit 6 cleared. 
The SRQ line is not enabled, however, as long as the interface is active controller. Ifbit 6 is set, 
the interface remembers its response byte, and enables the SRQ line when control is passed to 
another device on the bus. 

The response byte looks as follows: 

Bit Meaning 

o SPOLL bit (least significant bit of response byte) 
1 SPOLL bit 
2 SPOLL bit 
3 SPOLL bit 
4 SPOLL bit 
5 SPOLL bit 
6 SRQ line 
7 SPOLL bit (most significant bit of response byte) 

RETURN VALUE 
HpibJqscsrvce returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
HpibJqst_srvce fails under the following circumstances, and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

[ETIMEDOUT] 

[EACCES] 

DEPENDENCIES 
Series 300 

eid does not refer to an HP-IB raw bus device file. 

a timeout occurs. 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

The HP 98625A/B HP-IB interface card allows only bit 6 to be set. All other bits are 
cleared. 

EIO is returned if a timeout occurs. 

Series 800 
The HP 27110B HP-IB interface card allows only bit 6 to be set. All other bits are cleared. 

AUTHOR 
HpibJqst_srvce was developed by the Hewlett-Packard Company. 

346 (Section 3) -1- HP-UX Release 7.0: September 1989 



HPIB_SEND_CMND(3I) 

NAME 
hpib_send_cmnd - send command bytes over HP-IB 

SYNOPSIS 
int hpib_send3mnd (eid, ca, length); 
int eid, length; 
char *ca; 

DESCRIPTION 
Hpib_send_cmnd enables you to send arbitrary bytes of information on the HP-IB with the ATN 
line asserted. This enables you to configure and control the bus. Eid is an entity identifier of 
an open HP-IB raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Ca 
is a character pointer to a string of bytes to be written to the HP-IB bus as commands. Length is 
an integer specifying the number of bytes in the string pointed to by ca. 

The interface must currently be the active controller in order to send commands over the 
bus. 

Note that for all HP-IB interfaces, both built-in and plug-in, the most significant bit of each byte 
is overwritten with a parity bit. All commands are written with odd parity. 

RETURN VALUE 
Hpib_send_cmnd returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Hpib_send_cmnd fails under the following circumstances, and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

eid does not refer to an HP-IB raw bus device file. 

the interface is not currently the active controller. 

a timeout occurs. 

[ENOTTY] 

[ElO] 

[ETIMEDOUT] 

[EACCES] The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(31». 

[EINVAL] The value specified for length is invalid, either less than or equal to 0 or greater 
than MAX_HPIB_COMMANDS as defined in <dvio.h>. 

DEPENDENCIES 
Series 300: 

ElO is returned if a timeout occurs. 

Series 800: 
If the interface is not currently the active controller, hpib_send_cmnd sets errno to 
[EACCES] instead of to [EIO]. 

AUTHOR 
Hpib_send_cmnd was developed by Hewlett-Packard Company. 

SEE ALSO 
hpib_parity _ctl(31). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 347 



NAME 
hpib_spoll - conduct a serial poll on HP-IB bus 

SYNOPSIS 
int hpib_spoll (eid, ba)i 
int eid, bai 

DESCRIPTION 
Hpib_spoll conducts a serial poll of the specified device. Eid is an entity identifier of an open 
HP-IB raw bus device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. Ba is the 
bus address of the intended device. 

Hpib_spoll polls a single device for its response byte. The information stored in the response 
byte is device specific with the exception of bit 6. If bit 6 of the response byte is set, the 
addressed device has asserted the SRQ line, and is requesting service. (Note that the least 
significant bit of the response byte is bit 0.) 

Not all devices respond to the serial poll function. Consult the device documentation. Speci­
fying a device that does not support serial polling may cause a timeout error or suspend your 
program indefinitely. The interface cannot serial poll itself. The interface must be the active 
controller. 

RETURN VALUE 
If hpib _spoIl is successful, the device response byte is returned in the least significant byte of the 
return value. Otherwise, -1 is returned, indicating an error. 

ERRORS 
Hpib_spoll fails under the following circumstances, and sets errno (see errno(2)) to the value in 
square brackets: 

[EBAD] 

[ENOTTY) 

[EIO) 

[ETIMEDOUT) 

[EINVALJ 

[EACCES) 

DEPENDENCIES 
Series 300: 

eid does not refer to an open file. 

eid does not refer to an HP-IB raw bus device file. 

the interface is not the active controller. 

the device polled did not respond before timeout. 

ba is the address of the polling interface itself. 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I)). 

EIO is returned if a timeout occurs. 

Series 800: 
If the interface is not currently the active controller, hpib_spoll sets errno to [EACCES] 
instead of to [EIO]. 

AUTHOR 
Hpib_spoll was developed by the Hewlett-Packard Company. 

SEE ALSO 
hpib_rqsLsrvce(3I). 

348 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 
hpib_status_ wait - wait until the requested status condition becomes true 

SYNOPSIS 
#include <dvio.h> 

int hpib_status_wait (eid, status); 
int eid,status; 

DESCRIPTION 
Hpib _status_wait enables you to wait until a specific condition has occurred before returning. 
Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), 
fcntl(2), or creat(2) call. Status is an integer specifying what information is returned. The possi­
ble values for status and their associated meanings are: 

WAIT _FOR_SRQ 
Wait until the SRQ line is enabled. 

WAIT _FOR_CONTROL 
Wait until this channel is the active controller. 

WAIT _FOR_TALKER 
Wait until this channel is addressed as talker. 

WAIT _FOR_LISTENER 
Wait until this channel is addressed as listener. 

The wait is subject to the current timeout in effect. If a timeout occurs before the desired 
condition occurs, the function returns with an error. 

RETURN VALUE 
Hpib _status_wait returns zero when the condition requested becomes true. A value of -1 is 
returned if an error occurs. A -1 is also returned if a timeout occurs before the desired condi­
tion becomes true. 

ERRORS 
Hpib_status_wait fails under the following circumstances, and sets ermo (see errno(2)) to the 
value in square brackets: 

[EBADF] 

[ENOTTY] 

[ETIMEDOUT] 

[EINVAL] 

[EACCES] 

DEPENDENCIES 
Series 300: 

eid does not refer to an open file. 

eid does not refer to an HP-IB raw bus device file. 

a timeout occurs. 

status contains an invalid value. 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I)). 

EIO is returned if a timeout occurs. 

AUTHOR 

The following error is also defined: 

[EIO] the device is active controller and status specifies WAIT _FOR_ TALKER or 
WAIT _FOR_LISTENER. 

Hpib_status_wait was developed by the Hewlett-Packard Company. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 349 



NAME 
hpib_ waiLon_ppoll - wait until a particular parallel poll value occurs 

SYNOPSIS 
int hpib_waiCon_ppoll (eid, mask, sense) 
int eid, mask, sense; 

DESCRIPTION 
Hpib_waicon_ppoll waits for a parallel poll response to occur on one or more lines. Eid is an 
entity identifier of an open HP-IB raw bus device file. 

The mask argument specifies on which lines the parallel poll response is expected. The value of 
mask is viewed as an eight-bit binary number where the least significant bit corresponds to line 
DIOl; the most significant bit to DI08. For example, if you want to wait for a response on lines 
DI02 and DI06, the corresponding binary number is 00010010, so a hexadecimal value of 12 
should be passed as the mask argument. 

The sense argument specifies what response is expected on the selected lines. The value of 
sense is constructed in the same way as mask; eight bits for eight lines. If a bit in sense is set, 
the function returns when the line corresponding to that bit is cleared. If a bit in sense is clear, 
the function returns when the corresponding line is set. Using the previous example, if mask is 
Ox12 and sense is 00000010 (Ox02 hexadecimal), the function will return when line DIOS is set, 
or when line DI02 is clear. 

RETURN VALUE 
Hpib_waiCon_ppoll returns a value of -1 if an error or timeout condition occurs. Upon success­
ful completion, the function returns the response byte XOR-ed with the sense value and AND-ed 
with the mask. 

ERRORS 
Hpib_wait_on_ppoll fails and sets errno to indicate the error if any of the following is true: 

[EACCES] 

[EBADF] 

[ENOTTY] 

[EINVAL] 

[EIO] 

[EIO] 

[ETIMEDOUT] 

DEPENDENCIES 
Series 800: 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

The eid argument is not a valid open entity identifier. 

The eid argument does not refer to an HP-IB raw bus device file. 

An invalid mask is received. 

The interface is not currently the active controller. 

A timeout occurs (Series 300 only). 

A timeout occurs (Series 800 only). 

If the interface is not currently the active controller, hpib_wait_on_ppoll sets errno to 
[EACCES] instead of to [EIO]. 

Series 300: 
[EIO] is returned if a timeout occurs. 

AUTHOR 
Hpib_wait_on_ppoll was developed by HP. 

350 (Section 3) -1- HP-UX Release 7.0: September 1989 



HPIMAGE(3X) Series 800 Only HPIMAGE(3X) 

NAME 
hpibegin, hpiclose, hpicontrol, hpidelete, hpiend, hpierror, hpifind, hpifindset, hpiget, hpiinfo, 
hpilock, hpimemo, hpiopen, hpiput, hpiundo, hpiupdate, chpibegin, chpic1ose, chpicontrol, 
chpidelete, chpiend, chpierror, chpifind, chpifindset, chpiget, chpiinfo, chpilock, chpimemo, 
chpiopen, chpiput, chpiundo, chpiupdate - ALLBASE/HP-UX HPIMAGE programmatic calls 

REMARKS 
The ALLBASE/HP-UX product must be previously installed on the system for hpimage pro­
grammatic calls to function. 

DESCRIPTION 
This set of calls invokes the appropriate hpimage procedure or function calls for programmati­
cally accessing an ALLBASE/HP-UX HPIMAGE network database. FORTRAN and Pascal calls 
are invoked with the calls that begin with "hpi." C calls are invoked with the calls that begin 
with "chpi." The following descriptions apply to the C calls as well: 

hpibegin 

hpiclose 

hpicontrol 

hpidelete 

hpiend 

hpierror 

hpifind 

hpifindset 

hpiget 

hpiinfo 

hpilock 

hpimemo 

hpiopen 

hpiput 

hpiundo 

Designates the beginning of a transaction, and optionally writes user informa­
tion to the log file. 

Terminates access to a database or a data set. 

Enables or disables the return of chain information. 

Deletes an entry from the database. 

Defines the end of a transaction, commits the transaction, and optionally writes 
user information to the log file. 

Supplies a natural language message that interprets the status array as set by 
any hpimage procedure. 

Locates the first and last entries of a data chain in preparation for accessing 
that chain. 

Locates entries satisfying a given expression in preparation for access to those 
entries. 

Retrieves an entry in a data set. 

Provides structural information about the database being accessed. 

Locks a database or one or more data sets for exclusive access. 

Writes user information to the log file. 

Initiates access to a database. 

Adds a new entry to a data set. 

Undoes an uncommitted tranaction and optionally writes user information to 
the log file. This procedure also defines the end of a transaction. 

hpiupdate Modifies an existing entry in a database. 

The hpimage programmatic calls can be executed by all system users. 

AUTHOR 
The hpimage programmatic calls were developed by Hewlett-Packard. 

FILES 
/usr/bin/hpdbdaemon cleanup daemon program file 
/usr /bin/hpimage HPlMAGE program file 
/usr/lib/hpicaOOO HPlMAGE message catalog file 

SEE ALSO 
ALLBASE/HP-UX HPlMAGE Reference Manual. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 351 



HPPAC(3X) Series 800 Only HPPAC(3X) 

NAME 
HPPACADDD, HPPACCMPD, HPPACCVAD, HPPACCVBD, HPPACCVDA, HPPACCVDB, HPPAC­
DIVD, HPPACLONGDIVD,· HPPACMPYD, HPPACNSLD, HPPACSLD, HPPACSRD, HPPACSUBD 
3000-mode packed-decimal library 

Syr-':OPSIS 
#include <hppac.h> 

DESCRIPTION 
This set of calls invokes the library functions for emulating 3000-mode (MPE V IE) packed­
decimal operations. These functions are in library "libel" which is searched when the option 
-lcl is used with cc(l) or ld(l). 

HPP ACADDD Performs packed-decimal addition. 

HPPACCMPD Compares two packed-decimal numbers. 

HPPACCVAD Converts an ASCII representation to packed-decimal. 

HPPACCVBD Converts a binary representation to packed-decimal. 

HPPACCVDA Converts a packed-decimal number to ASCII. 

HPPACCVDB Converts a packed-decimal number to binary. 

HPPACDIVD Performs packed-decimal division. 

HPP ACLONGDIVD 
Performs packed-decimal division (alternate routine). 

HPPACMPYD Performs packed-decimal multiplication. 

HPPACNSLD Performs a packed-decimal normalizing left shift. 

HPPACSLD Performs a packed-decimal left shift. 

HPPACSRD Performs a packed-decimal right shift. 

HPPACSUBD Performs packed-decimal subtraction. 

AUTHOR 
The HPPAC library was developed by HP. 

SEE ALSO 
Compiler Library/XL Reference Manual 

352 (Section 3) -1- HP-UX Release 7.0: September 1989 



HSEARCH(3C) HSEARCH(3C) 

NAME 
hsearch, hcreate, hdestroy - manage hash search tables 

SYNOPSIS 
#include <search.h> 

ENTRY *hsearch (item, action) 
ENTRY item; 
ACTION action; 

int hcreate (nel) 
unsigned nel; 

void hdestroy ( ) 

DESCRIPTION 
Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a 
pointer into a hash table indicating the location at which an entry can be found. Item is a 
structure of type ENTRY (defined in the <search.h> header file) containing two pointers: 
item.key points to the comparison key, and item.data points to any other data to be associated 
with that key. (Pointers to types other than character should be cast to pointer-to-character.) 
Action is a member of an enumeration type ACTION indicating the disposition of the entry if it 
cannot be found in the table. ENTER indicates that the item should be inserted in the table at 
an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is 
indicated by the return of a NULL pointer. 

Hcreate allocates sufficient space for the table, and must be called before hsearch is used. Nel is 
an estimate of the maximum number of entries that the table will contain. This number may be 
adjusted upward by the algorithm in order to obtain certain mathematically favorable cir­
cumstances. 

Hdestroy destroys the search table, and may be followed by another call to hcreate. 

EXAMPLE 
The following example will read in strings followed by two numbers and store them in a hash 
table, discarding duplicates. It will then read in strings and find the matching entry in the hash 
table and print it out. 

#include <stdio.h> 
#include <search.h> 

struct info { / * this is the info stored in the table * / 
int age, room; /* other than the key. */ 

}; 
#define NUM_EMPL 5000 /* # of elements in search table */ 

main( 
{ 

/ * space to store strings * / 
char string_space[NUM_EMPL*20]; 

/ * space to store employee info * / 
struct info info_space[NUM_EMPL]; 

/ * next avail space in string_space * / 
char *stcptr = string_space; 

/ * next avail space in info_space * / 

HP-UX Release 7.0: September 1989 -1- (Section 3) 353 



HSEARCH(3C) 

SEE ALSO 

struct info *info_ptr = info_space; 
ENTRY item, * found_item, *hsearch( ); 
/ * name to look for in table * / 

_1. ______ L_ L:_"U')nl. 
\..1lal llQ.lllC_I..V_illLULJVJ, 

int i = 0; 

/* create table */ 
(void) hcreate(NUM_EMPL); 
while (scanf("%s%d%d", stcptr, &info_ptr->age, 

&info_ptr- >room) != EOF && i++ < NUM_EMPL) 

/ * put info in structure, and structure in item * / 
item.key = stcptr; 
item. data = (char *)info_ptr; 
stcptr += strlen(stcptr) + 1; 
info_ptr++; 

/ * put item into table * / 
(void) hsearch(item, ENTER); 

/ * access table * / 
item. key = name_to_find; 
while (scanf("%s", item. key) != EOF) { 

if «found_item = hsearch(item, FIND» != NULL) { 

/* if item is in the table */ 
(void)printf(lIfound %s, age = %d, room = %d\n", 

found_item - > key, 

} else { 

«struct info * )found_item - >data)- >age, 
«struct info * )found_item - >data)- >room); 

(void)printf("no such employee %s\n", 
name_to_find); 

bsearch(3C), lsearch(3C), malloc(3C), string(3C), tsearch(3C), malloc(3X). 

DIAGNOSTICS 

HSEARCH(3C) 

Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or 
the action is ENTER and the table is full. 

Hcreate returns zero if it cannot allocate sufficient space for the table. 

WARNING 
Hsearch and hcreate use malloc(3C) to allocate space. 

BUGS 
Only one hash search table may be active at any given time. 

STANDARDS CONFORMANCE 
hsearch: SVID2, XPG2, XPG3 

354 (Section 3) -2- HP-UX Release 7.0: September 1989 



HSEARCH(3C) 

hcreate: SVID2, XPG2, XPG3 

hdestroy: SVID2, XPG2, XPG3 

HP-UX Release 7.0: September 1989 

HSEARCH(3C) 

-3- (Section 3) 355 



HYPOT(3M) 

NAME 
hypot - Euclidean distance function 

SYNOPSIS 
#include <math.h> 

double hypot (x, y) 
double x, Yi 

DESCRIPTION 
Hypot returns sqrt(x * x + Y * y), taking precautions against unwarranted overflows. 

DEPENDENCIES 
Series 800 (jlib/libm.a and ANSI C /lib/libM.a) 

Hypot returns +INFINITY when x or y is ±INFINITY . 

ERRORS 
Series 300 

HYPOT(3M) 

When the correct value would overflow, hypot returns HUGE_VAL and sets errno to 
ERANGE. 

Series 800 (jlib/libm.a and ANSI C /lib/libM.a) 
When the correct value would overflow, hypot returns HUGE_VAL and sets errno to 
ERANGE. 

Hypot returns NaN and sets errno to EDOM when x or y is NaN. 

These error-handling procedures may be changed with the function matherr(3M). 

SEE ALSO 
isinf(3M), isnan(3M), matherr(3M). 

STANDARDS CONFORMANCE 
hypot: SVID2, XPG2, XPG3 

356 (Section 3) -1- HP-UX Release 7.0: September 1989 



ICONV(3C) ICONV(3C) 

NAME 
iconvsize, iconvopen, iconvclose, iconvlock, ICONV, ICONVl, ICONV2 - code set conversion 
routines 

SYNOPSIS 
#inc1ude <iconv.h> 

int iconvsize (tocode, fromcode) 
char *tocode; 
char *fromcode; 

iconvd iconvopen (tocode, fromcode, table, dl, d2) 
char *tocode; 
char *fromcode; 
unsigned char *table; 
int dl; 
int d2; 

int iconvc1ose (cd) 
iconvd cd; 

int iconvlock( cd, direction, lock, s) 
iconvd cd; 
int direction; 
int lock; 
char *s; 

int ICONV (cd, inchar, inbytesleft, outchar, outbytesleft) 
iconvd cd; 
unsigned char **inchar; 
int *inbytesleft; 
unsigned char **outchar; 
int *outbytesleft; 

int ICONVl (cd, to, from, buflen) 
iconvd cd; 
unsigned char *to; 
unsigned char * from; 
int buflen; 

int ICONV2 (cd, to, from, buflen) 
iconvd cd; 
unsigned char *to; 
unsigned char * from; 
int buflen; 

DESCRIPTION 
Iconvsize finds the size of a table if one is needed to convert characters from the code set 
specified by the fromcode argument to the code set specified by the tocode argument. If a 
conversion table is needed and the table exists, the size of the table in bytes is returned. If a 
table is needed and the table does not exist, a -1 is returned. If a conversion table is not 
needed, a 0 is returned. 

Iconvopen performs all initializations that have to be done to convert characters from the code 
set specified by the fromcode argument to the code set specified by the tocode argument and 
returns a conversion descriptor of type iconvd that identifies the conversion. Up to MAX_CD 
conversions can be open simultaneously. See iconv(1) for HP supplied fromcode and to code 
names and their corresponding code sets. For conversions that require a table, the table argu­
ment is a pointer to the start of the conversion table. It is the caller's responsibility to allocate 

HP-UX Release 7.0: September 1989 -1- (Section 3) 357 



ICONV(3C) ICONV(3C) 

sufficient memory for the table which is given by iconvsize. For conversions that do not require 
a table, the table argument must be a NULL pointer. The iconvsize function can be used to 
determine if a table is needed. For multi-byte code sets, a "converted from" character is 
mapped to a default character (dl or d2) if it does not have an equivalent in the "converted to" 
code set. The muiti-byte code sets currentiy supported can have character lengths of one or 
two bytes. If a one-byte character is unmapped, then the default one-byte character dl is used. 
Similarly, if a two-byte character is unmapped, then the default two-byte character d2 is used. 
Default characters are used since different multi-byte code sets typically do not have the same 
number of characters which makes a one-to-one mapping difficult. Also unused sections in 
multi-byte code sets are usually reserved for future use. A different approach is taken with 
single-byte code sets. For single-byte code sets, it is assumed that the translation table forces a 
one-to-one mapping between the "from" and "to" characters. No default characters are used 
with single-byte code sets. This one-to-one mapping guarantees that the conversion is reversi­
ble. For example, if the output of a ROMAN8 to ISO 8859/1 conversion is converted back to 
ROMAN8, then the result of this double conversion is the same as the original data. 

Iconvclose closes the conversion descriptor cd freeing it up for a subsequent iconvopen. It is 
the caller's responsibility to de-allocate any table associated with the cd conversion descriptor. 

If needed, code set lock-shift information for the conversion identified by cd can be initialized 
by the iconvlock function. If direction is 0, then string s is used as a lock-shift sequence for the 
"converted from" or input data. If direction is 1, then string s is used as a lock-shift sequence 
for the "converted to" or output data. Currently, three lock-shift sequences can be used in a 
conversion: lock-shift 0, lock-shift 1 and lock-shift 2. These are identified by the lock parame­
ter values 0, 1 and 2. The iconvlock function also resets any state information to the initial shift 
state. 

ICON V fetches a character in the "converted from" code set from an input buffer, converts the 
character to the "converted to" code set and places it plus any lock-shift information into an 
output buffer. The descriptor cd identifies the conversion. The contents of inchar points to a 
single- or multi-byte character in the input buffer and inbytesleft points to the number of bytes 
from the input character to the end of the buffer. The contents of outchar points to the next 
available space in the output buffer and outbytesleft points to the number of the bytes from 
the next available space to the end of the buffer. While conversions are done from the input 
buffer to the output buffer, the contents of inchar, inbytesleft, outchar and outbytesleft are 
incremented or decremented to reflect the current status of the input and output buffers. 

ICONV1 and ICONV2 are used where it is more efficient to handle single- and multi-byte char­
acters separately. These routines do not check for lock-shift information. ICONV1 converts 
single-byte characters in from according to the conversion identified by cd and returns the con­
verted value in to. ICONV1 assumes from contains only single-byte characters. Similarly, 
ICONV2 converts double-byte characters in from according to the conversion identified by cd 
and returns the converted value in to. ICONV2 assumes from contains only double-byte char­
acters. The buflen argument in both ICONV1 and ICONV2 specifies the number of byes that 
will be converted. 

EXTERNAL INFLUENCES 
International Code Set Support 

Single- and multi-byte character code sets are supported. 

RETURN VALUES 

358 

Iconvsize returns the size of the conversion table in bytes if a table is needed and it exists. The 
function returns a -1 if a table is needed and it does not exist. The function returns a ° if a 
table is not needed. 

Iconvopen returns a conversion descriptor if successful; otherwise a (iconvd) -1 is returned. 

(Section 3) -2- HP-UX Release 7.0: September 1989 



ICONV(3C) ICONV(3C) 

Iconvclose returns a non-negative number if successful; otherwise a -1 is returned. 

ICONV returns 0 if all characters from the input buffer are successfully converted and placed 
into the output buffer. ICONV returns 1 if a multi-byte input character or a lock-shift sequence 
spans the input buffer boundary. No conversion is attempted on the character and the contents 
of inchar points to the start of the truncated character sequence. ICONV returns 2 if an input 
character does not belong to the "converted from" character set. No conversion is attempted on 
the character and the contents of inchar points to the start of the unidentified input character. 
ICONV returns 3 if there is no room in the output buffer to piace the converted character. The 
converted characters is not placed in the output buffer and the contents of inchar points to the 
start of the character sequence that caused the output buffer overflow. 

ICONVl and ICONV2 return the number of bytes converted if successful; otherwise a -1 is 
returned. 

EXAMPLE 
int 
convert( to code, fromcode, d1, d2) 
char "'tocode; /* tocode name '" / 
char "'fromcode; /'" fromcode name '" / 
int d1; 
int d2; 
{ 

extern void errorO; 

/'" one-byte default character '" / 
/* two-byte default character '" / 

/'" local error message '" / 

iconvd cd; /'" conversion descriptor '" / 
int size; /* size of translation table '" / 
unsigned char "'table; /* ptr to translation table '" / 
int bytesread; /* num bytes read into input buffer '" / 
unsigned char inbuf[BUFSIZ]; /'" input buffer '" / 
unsigned char "'inchar; /'" ptr to input character '" / 
int inbytesleft; /'" num bytes left in input buffer '" / 
unsigned char outbuf[BUFSIZ]; /'" output buffer '" / 
unsigned char "'outchar; /* ptr to output character '" / 
int outbytesleft; /'" num bytes left in output buffer '" / 

/* create conversion table '" / 
if «size = iconvsize( tocode, fromcode» == BAD) { 

error( FA TAL, BAD _SIZE); 
} 
else if (size == 0) { 

table = (unsigned char "') NULL; 
} 
else if «table = (unsigned char "') malloc ( (unsigned int) size» == (unsigned char "') NULL) { 

error( FATAL, BAD_CREATE); 

/* start up a conversion '" / 
if «cd = iconvopen( tocode, fromcode, table, d1, d2» == (iconvd) BAD) { 

error( FATAL, BAD_OPEN); 

inchar = inbuf; 
inbytesleft = 0; 

HP-UX Release 7.0: September 1989 -3- (Section 3) 359 



ICONV(3C) 

outchar = outbuf; 
outbytesleft = BUFSIZ; 

/* translate the characters * / 
for ( ;; ) { 

ICONV(3C) 

switch (ICONV( cd, &inchar, &inbytesleft, &outchar, &outbytesleft» { 
case 0: 
case 1: 

case 2: 

case 3: 

/* 
** Done with buffer, empty buffer or character spans 
** input buffer boundary. Move any remaining stuff 
** to start of buffer, get more characters and 
** reinitialize input variables. If at EOF, flush 
** output buffer and leave; otherwise, continue to 
** convert the characters.' 
*/ 
strncpy( inbuf, inchar, inbytesleft); 
if «bytesread = read( Input, inbuf+inbytesleft, BUFSIZ-inbytesleft» < 0) { 

perror( "prog"); 
return BAD; 

} 
if (! (inbytesleft += bytesread» { 

if (write( I, outbuf, BUFSIZ - outbytesleft) < 0) { 
perror( "prog"); 
return BAD; 

} 
goto END_CONVERSION; 

inchar = inbuf; 
break; 

error( FATAL, BAD_CONVERSION); 

/* 
** Full buffer or output character spans output buffer 
** boundary. Send the output buffer to stdout, 
** reinitialize the output variables. 
*/ 
if (write( I, outbuf, BUFSIZ - outbytesleft) < 0) { 

perror( "prog"); 
return BAD; 

} 
outchar = outbuf; 
outbytesleft = BUFSIZ; 

} 
END_CONVERSION: 

/* end conversion & get rid of the conversion table * / 
if (iconvclose( cd) == BAD) { 

error( FATAL, BAD_CLOSE); 
} 
if (size) { 

360 (Section 3) -4- HP-UX Release 7.0: September 1989 



ICONV(3C) 

free( (char *) table); 
} 
return GOOD; 

AUTHOR 
Iconv was developed by HP. 

SEE ALSO 
iconv(l) 

HP-UX Release 7.0: September 1989 

ICONV(3C) 

-5- (Section 3) 361 



INITGROUPS(3C) INITGROUPS(3C) 

NAME 
initgroups - initialize group access list 

SYNOPSIS 
initgroups(name, basegid) 
char *name; 
int basegid; 

DESCRIPTION 
Initgroups reads the login group file, /ete/logingroup, and sets up the group access list for the 
user specified by name, using the setgroups(2) system call. If the value of basegid is zero or 
positive, it is automatically included in the groups list. Typically this value is given as the 
group number from the password file. If the login group file does not exist or is empty, basegid 
is the only member of the list. 

DIAGNOSTICS 
Initgroups returns -1 if it was not invoked by the super-user. 

WARNINGS 
Initgroups uses the routines based on getgrent(3C). If the invoking program uses any of these 
routines, the group structure is overwritten by the call to initgroups. 

On many systems, no one seems to keep /ete/logingroup up to date. 

NETWORKING FEATURES 
NFS: 

If /ete/logingroup is linked to fete/group, initgroups tries to use the Yellow Pages net­
work database for entries beginning with a plus sign (+). See group(4) for proper syn­
tax and operation. 

AUTHOR 
Initgroups was developed by the University of California, Berkeley. 

FILES 
/etcjlogingroup login group file 

SEE ALSO 
login(l), su(l), setgroups(2), group(4). 

362 (Section 3) -1- HP-UX Release 7.0: September 1989 



Series 300 Only 

NAME 
io_burst - perform low-overhead I/O on an HP-IB/GPIO channel 

SYNOPSIS 
#include <dvio.h> 
io_burst (eid, flag) 

DESCRIPTION 
Io_burst enables you to perform low-overhead burst transfers on the specified HP-IB or GPIO 
channel. Eid is the entity identifier for an open HP-IB/GPIO device file returned by a previous 
call to open(2), dup(2), creat(2), or fcntl(2) with an FDUPD command option. Flag is an integer 
which, if non-zero, enables burst mode or, if zero, disables it. 

In burst mode, memory-mapped I/O address space assigned to the interface card select code is 
mapped directly into user space such that data can be transferred directly between user memory 
and the interface card, eliminating the need for kernel calls and the associated overhead. Burst 
mode affects only read (2), write(2), gpio~et_status(3I), gpio_set_ctl(3I), hpib_io(3I), and 
hpib_send_cmd(31) calls. All other operations are unaffected. When burst mode is enabled, the 
interface is locked so that no other process can access it until burst mode is disabled. When 
burst mode is disabled, the interface is reset (see iOJeset(31»). 

RETURN VALUE 
Io_burst returns zero if successful or -1 if an error is detected. 

DIAGNOSTICS 
Io_burst fails under any of the following circumstances and sets errno (see errno(2» to the value 
in square brackets: 

[EBADF] 

[ENOTTY] 

[EIO] 

WARNINGS 

eid does not refer to an open file. 

eid does not refer to an HP-IB or GPIO device special file. 

a timeout occurred during the call to ioburst. 

Enabling burst mode locks the interface from all other processes, so it should never be used 
with any interface that supports a system disk or swap device. 

Timeouts for read(2), write(2), gpio_get_status(3I), gpio_set_ctl(3I), hpib_io(3I), and 
hpib_send_cmd(3I) do not work while in burst mode, but these commands can be interrupted by 
signals. 

SEE ALSO 
read(2), write(2), gpio_get_status(3I), gpio_set_ctl(31), hpib_io(31), hpib_send_cmd(3I), 
io_reset(3I). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 363 



Series 300 Only 

NAME 
io_dma_ctl ..:.. control DMA allocation for an interface 

SYNOPSIS 
#include <sysjdil.h> 
io_dma_cil (eid, mode) 
int eid, mode; 

DESCRIPTION 
Io_dma_ctl enables you to control system DMA allocation for a specific interface. Eid is the 
entity identifier for an open HP-IBjGPIO device file returned by a previous call to open(2), 
dup(2), creat(2), or fcntl(2) with an FDUPD command option. 

The mode parameter describes what type of DMA allocation the system should use for the inter­
face associated with EID. Mode is determined by selecting one of flags from the following list 
in <sysjdil.h>: 

Only one of the following flags must be specified: 

DMA_ACTIVE 
Inform the DMA subsystem that this interface intends to use DMA and requires 
higher priority than slow devices. This is the level of DMA allocation used by 
CS80, Amigo and SCSI devices. 

DMA_UNACTIVE 
Remove the effect of a previous DMA_ACTIVE. 

DMA_RESERVE 
Guarantee that a DMA channel will remain unlocked for future requests for 
DMA by all devices on this interface. 

DMA_UNRESERVE 
Remove the effect of a previous DMA_RESERVE. 

DMA_LOCK 
Lock a DMA channel for exclusive use by all devices on this interface. 

DMA_UNLOCK 
Unlock a DMA channel locked by this interface. 

RETURN VALUES 
Io_dma_ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
io_dma_ctl fails under the following circumstances, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] 

[ENOTTY] 

[EIO] 

[EINTR] 

[EINVAL] 

WARNING 

eid does not refer to an open file. 

eid does not refer to an DIL bus device file. 

a timeout occurred. 

the request was interrupted by a signal. 

the interface was unable to reserve or lock a DMA channel. 

There are only two DMA channels available on the Series 300. Use of DMA_LOCK could 
starve your system disks of DMA resources, resulting in lower system performance. 

AUTHOR 
Io_dma_ctl was developed by the Hewlett-Packard Company. 

364 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 
io_eoLctl - set up read termination character on special file 

SYNOPSIS 
int io_eoCctl (eid, flag, match); 
int eid, flag, match; 

DESCRIPTION 
Io_eoCctl enables you to specify a character to be used in terminating a read operation from 
the specified file id. 

Eid is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an 
open(2}, dup(2}, fcntl(2}, or creat(2} call. Flag is an integer which enables or disables character­
match termination. A non-zero value enables character-match termination, while a zero value 
disables it. Match is an integer containing the numerical equivalent of the termination charac­
ter. Match is ignored if flag is zero. When in 8-bit mode, the lower 8 bits of match are used as 
the termination character. In 16-bit mode, the lower 16 bits are used. 

Upon opening a file, the default condition is character-match termination disabled. When 
enabled, the character specified by match is checked for during read operations. The read is 
terminated upon receipt of this character, or upon any of the other termination conditions 
normally in effect for this file. Examples of other conditions are satisfying the specified 
byte count, and receiving a character when the EOI line is asserted (HP-IB). When the read 
is terminated by a match character, this character is the last character returned in the buffer. 

Entity ids for the same device file obtained by separate open(2} requests have their own 
termination characters associated with them. Entity ids for the same device file inherited by 
a fork(2} request share the same termination character. In the latter case, if one process 
changes the termination character, the new termination character is in effect for all such 
entity ids. 

RETURN VALUE 
Io_eoCctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Io_eoCctl fails under the following circumstances, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] eid does not refer to an open file [EBADF]; 

[ENOTTY] 

AUTHOR 

eid does not refer to a channel device file. 

Io_eol_ctl was developed by HP. 

SEE ALSO 
io_ width_ctl(3I}. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 365 



IO_GET _ TERM_REASON(31) IO_GET _TERM_REASON (31) 

NAME 
io_geCterm_reason - determine how last read terminated 

SYNOPSIS 
int io_geCterm_reason (eid)i 
int eid; 

DESCRIPTION 
IO-$et_termJeason returns the termination reason for the last read made on this entity id. Eid 
is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an open(2), 
dup(2), fcntI(2), or creat(2) call. 

All entity ids descending from an open(2) request (such as from dup(2) or fork(2» set this status. 
For example, if the calling process had opened this entity id, and later forked, the status 
returned would be from the last read done by either the calling process or its child. 

RETURN VALUE 
Io_geCtermJeason returns a value indicating how the last read on the specified entity id was 
terminated. This value is interpreted as follows (note that combinations are possible): 
Value Description 

ERRORS 

-1 An error was encountered while making 
this function request. 

o Last read encountered some abnormal termination 
reason not covered by any of the other reasons. 
Last read terminated by reading the number of bytes 
requested. 

2 Last read terminated by detecting the specified 
termination character. 

4 Last read terminated by detecting some device-imposed 
termination condition. Examples are: EOI for 
HP-IB, PSTS line on GPIO, or 
some other end-of-record condition, such as the physical 
end-of-record mark on a 9-track tape. 

Io_geCtermJeason fails under the following circumstances, and sets errno (see errno(2» to the 
value in square brackets: 

[EBADF] eid does not refer to an open file. 

[ENOTTY] 

DEPENDENCIES 
Series 300 

eid does not refer to a channel device file. 

For the GPIO interface, PSTS is checked only at the beginning of a transfer. An interrupt 
caused by an EIR will also terminate a transfer. The value of the termination reason in 
this case is also 4. 

AUTHOR 
Io_geCtermJeason was developed by HP. 

SEE ALSO 
read(2), io_eoLct1(3I). 

366 (Section 3) -1- HP-UX Release 7.0: September 1989 



IO_INTERRUPT _CTL(31) 

NAME 
io_interrupt_ctl - enable/disable interrupts for the associated eid 

SYNOPSIS 
int io_interrupCctl (eid, enable_flag) 
int eid, enable_flag; 

DESCRIPTION 
Eid is an entity identifier of an open HP-IB raw bus or GPIO device file, obtained from an 
open(2), dup(2): fcntl(2), or creat(2) ·call. Flag is an integer which enables or disables interrupts 
for the associated eid. A non-zero value enables interrupts. 

Interrupts may be disabled or enabled by the user as desired. When an interrupt occurs for a 
given eid the interrupts associated with this eid are automatically disabled from reoccurring. 
Interrupts for this eid may be re-enabled by the user with io_interrupt_ctl. 

RETURN VALUE 
io_interrupt_ctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Io_interrupt_ctl fails under the following situations, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] 

[ENOTTY] 

[EINVAL] 

AUTHOR 

eid does not refer to an open file. 

eid does not refer to a device that supports interrupts. 

no interrupt conditions were specified for this eid. 

Io_interrupCctl was developed by the Hewlett-Packard Company. 

SEE ALSO 
io_on_interrupt(3I) 

HP-UX Release 7.0: September 1989 -1- (Section 3) 367 



IO_LOCK(31) IO_LOCK(31) 

NAME 
io_lock, io_unlock - lock and unlock an interface 

SYNOPSIS 
int io_lock (eid) 
int eid; 
int io_unlock (eid) 
int eid; 

DESCRIPTION 
Eid is an entity identifier of an open HP-IB or GPIO, device file, obtained from an open(2), 
dup(2), fcntl(2), or creat(2) call. 

This function attempts to lock the interface associated with an entity identifier for the requesting 
process. Locking an interface gives exclusive use of the interface associated with the eid to the 
requesting process, thus avoiding unintended interference from other processes during a series 
of separate I/O requests. All the locks for a process are removed when the process closes the 
file or terminates. 

Other processes that attempt to access or lock a locked interface will either return an error or 
sleep until the interface becomes unlocked. The action taken is determined by the current set­
ting of the O_NDELAY flag (see open(2). If the O_NDELAY flag is set, accesses to a locked inter­
face will fail and set errno to indicate the error. If the O_NDELAY flag is not set, accesses to a 
locked interface will block until the interface is unlocked, the current timeout expires, or the 
request is interrupted by a signal. 

A lock is associated with a process, not an eid. Locking an interface with a particular eid does 
not prevent the process that owns the lock from accessing the interface through another eid. A 
lock associated with an eid is not inherited by a child process during a fork(2). 

Nested locking is fully supported. If a· process owns a locked interface and calls a generic sub­
routine that does a lock and unlock, the calling process does not lose its lock on the interface. 
Locking requests produced by a given process for an interface already locked by the same pro­
cess will increment the current lock count for that interface. 

lo_unlock allows a process to remove a lock from the interface associated with the eid. A locked 
interface can be unlocked only by the process directly owning the lock. When an unlock opera­
tion is applied to an eid that is currently multiply locked, the unlock operation decrements the 
current lock counter for that interface, and the interface remains locked until the count is 
reduced to zero. 

RETURN VALUE 
lo_lock and io_unlock return the integer value of the current lock count if successful. A lock 
count greater than zero indicates that the interface is still locked. A lock count of zero indicates 
that the interface is no longer locked. A -1 indicates that an error has occured. 

ERRORS 
lo_ldck and io_unlock fail in the following situations, and set errno (see errno(2» to the value in 
square brackets: 

[EACCES] 

[EBADF] 

[EINTR] 

an attempt is made to lock an interface locked by another process with ° _NDELAY set. 

an eid does not refer to an open file. 

a signal is caught while attempting to perform the lock with O_NDELAY clear. 

[EINV AL] an attempt is made to unlock when the interface is not locked. 

[ETIMEDOUT] a timeout occurs while attempting to perform the lock with O_NDELAY clear. 

368 (Sectien 3) -1- HP-UX Release 7.0: September 1989 



[ENOTTY] 

[EPERM] 

WARNING 

an eid does not refer to a channel device file. 

an attempt is made to unlock when lock is not owned by this user. 

Io_lock provides a mandatory lock enforced by the system and should not be used with any 
interface supporting a system disk or swap device. 

DEPENDENCIES 
Series 300: 

EIO is returned if a timeout occurs. 

AUTHOR 
Io_lock and io_unlock were developed by HP. 

SEE ALSO 
io_timeouLctl(3I), open(2). 

HP-UX Release 7.0: September 1989 -2- (Section 3) 369 



IO_ON_INTERRUPT(3I) IO_ON_INTERRUPT(31) 

NAME 
io_on_interrupt - device interrupt (fault) control 

SYNOPSIS 
#inc1ude <dvio.h> 

int (*io_on_interrupt (eid, causevec, handler»() 
int eid; 
struct interrupt_struct *causevec; 
int (*handler)(); 

handler (eid, causevec) 
int eid; 
struct interrupCstruct *causevec; 

DESCRIPTION 
Eid is an entity identifier of an open HP-IB raw bus, or GPIO device file, obtained from an 
open(2), dup(2), fcntl(2), or creat(2) call. 

Causevec is a pointer to a structure of the form: 

struct interrupt_struct { 
integer cause; 
integer mask; 

}; 

The interrupt_struct structure is defined in the file dvio.h. 

The cause parameter is a bit vector specifying which of the interrupt or fault events will cause 
the handler routine to be invoked. The interrupt causes are often specific to the type of inter­
face being considered. Also, certain exception (error) conditions can be handled using the 
io_on_interrupt capability. Specifying a zero valued cause vector effectively turns off the inter­
rupt for that eid. 

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. Mask is an 
integer that specifies which parallel poll response lines are of interest. The value of mask is 
viewed as an 8-bit binary number where the least significant bit corresponds to line DIOl; the 
most significant bit to line Dl08. For example, to activate an interrupt handler when a response 
occurs on lines 2 or 6, the correct binary number is 00100010. Thus a hexadecimal value of 22 
is the correct argument value for mask. 

When an enabled interrupt condition on the specified eid occurs, the receiving process executes 
the interrupt-handler function pointed to by handler. The entity identifier eid and the interrupt 
condition cause are returned as the first and second parameters respectively. 

When an interrupt that is to be caught occurs during a read, write, open, or ioctl system call on a 
slow device such as a terminal (but not a file), during a pause system call, a sigpause(2) system 
call, or a wait system {:all that does not return immediately due to the existence of a previously 
stopped or zombie process, the interrupt handling function is executed and then the interrupted 
system call returns a -1 to the calling process with errno set to EINTR. 

Interrupt handlers are not inherited across a fork(2). Eids for the same device file produced by 
dup(2) share the same handler. 

An interrupt for a given eid is implicitly disabled after the occurrence of the event. The interrupt 
condition may be re-enabled with io_interrupCctl(3I). 

When an event specified by cause occurs, the receiving process executes the interrupt handler 
function pointed to by handler. When the handler returns, the user process resumes at the point 
of execution left when the event occurred. 

370 (Section 3) -1- HP-UX Release 7.0: September 1989 



IO_ON_INTERRUPT(3I) IO_ON_INTERRUPT(3I) 

Handler will be passed two parameters, the eid associated with the event and a pointer to a 
causevec structure. The cause of the interrupt can be determined by the value returned in the 
cause field of the causevec structure (more than 1 bit can be set, indicating that more than 1 
interrupting condition has occurred). If the interrupt handler was invoked due to a parallel poll 
interrupt, then the mask field of the causevec structure will contain the parallel poll response 
byte. 

HP-IB INTERRUPTS 
This section describes interrupt causes specific to an HP-IB device. For an HP-IB device the 
cause is a bit vector which is used as follows. To enable a given event, the appropriate bit (in 
cause), shown below, must be set to 1: 

SRQ 
TlK 

lTN 

TCT 

IFC 

REN 
DCl 

GET 

PPOll 

GPIO INTERRUPTS 

SRQ and active controller 

Talker addressed 

Listener addressed 

Controller in charge 

IFC has been asserted 

Remote enable 

Device clear 

Group execution trigger 

Parallel poll 

This section describes interrupt causes specific to a GPIO device. For a GPIO device the cause 
is a bit vector which is used as follows. To enable a given event, the appropriate bit (in cause), 
shown below, must be set to 1: 

EIR 
SIEO 
SIEI 

RETURN VALUE 

External interrupt 

Status line 0 

Status line 1 

lo_on_interrupt returns a pointer to the previous handler if the new handler is successfully 
installed; otherwise it returns a -1 and errno is set. 

ERRORS 
lo_on_interrupt can fail for any of the following reasons: 

[EACCES] 

[EBADF] 

[ENOTTY] 

[EFAULT] 

[EFAULT] 

The interface associated with this eid is locked by another process and 
O_NDELAY is sed for this eid (see iolock(3I». 

Eid does not refer to an open file. 

Eid does not refer to a GPIO or a raw HP-IB device file. 

Handler points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

Causevec points to an illegal address. The reliable detection of this error will be 
implementation dependent. 

HP-UX Release 7.0: September 1989 -2- (Section 3) 371 



IO_ON_INTERRUPT(3I) 

DEPENDENCIES 
Series 300 

IO_ON_INTERRUPT(3I) 

For the HP 98622 GPIO interface, only the EIR interrupt is available. For the HP 
98265AjB HP-IB interface, the IFC and GET interrupts are not available. 

Series 800 
For the HP 27114 AFI interface, only the EIR interrupt is available. 

AUTHOR 
Io_on_interrupt was developed by HP. 

SEE ALSO 
pause(2), sigpause(2), iO_interrupCctl(3I). 

372 (Section 3) -3- HP-UX Release 7.0: September 1989 



NAME 
io_reset - reset an I/O interface 

SYNOPSIS 
int io_reset (eid); 
int eid; 

DESCRIPTION 
IOJeset resets the interface associated with the device file that was opened. It also pulses the 
peripheral reset line on the GPIO interface, or the IFC line on the HP-IB. Eid is an entity 
identifier of an open DIL device file obtained from an open(2), dup(2), fcntl(2), or creat(2) call. 

IOJeset also causes an interface to go through its self-test, and returns a failure indication if 
the interface fails its test. 

RETURN VALUE 
IOJeset returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
IOJeset fails under the following circumstances, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] 

[ENOTTY] 

[EIO] 

[EACCES] 

eid does not refer to an open file. 

eid does not refer to a channel device file. 

the interface could not be reset, or failed self-test. 

The interface associated with this eid is locked by another process and 
O_NDELAY is set for this eid (see io_lock(3I». 

DEPENDENCIES 
Series 300 

AUTHOR 

When an HP-IB interface is reset, the interrupt mask is set to 0, the parallel poll response 
is set to 0, the serial poll response is set to 0, the HP-IB address is assigned its powerup 
default value, the IFC line is pulsed (if system controller), the card is put on line, and REN 
is set (if system controller). 

When a GPIO interface is reset, the peripheral reset line is pulled low, the PCTL line is 
placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out lines 
are all cleared. The interrupt enable bit is also cleared. 

Interface self-test is not supported. 

IOJeset was developed by HP. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 373 



IO_SPEED_CTL(31) 

NAME 
io_speed_ctl - inform system of required transfer speed 

SYNOPSIS 
int io_speed_ctl (eid, speed); 
int eid, speed; 

DESCRIPTION 
Io_speed_ctl enables you to select the data transfer speed for a data path used for a particular 
interface. The transfer method (i.e., DMA, fast-handshake) chosen by the system is determined 
by the speed requirements. 

Eid is an entity identifier of an open HP-IB raw bus or GPIO device file obtained from an 
open(2), dup(2), fcntl(2), or creat(2) call. Speed is an integer specifying the data transfer speed in 
K-bytes per second (one K-byte equals 1024 bytes). 

RETURN VALUE 
Io_speed_ctl returns 0 if successful, and -1 otherwise. 

ERRORS 
Io_speed_ctl fails under the following condition, and sets errno to the value enclosed in square 
brackets: 

[ENOTTY] 

[EBADF] 

DEPENDENCIES 
Series 300 

eid does not refer to channel device file. 

eid does not refer to an open file. 

For values of speed less than 7, the system will use an interrupt transfer. For larger 
values, DMA will be used if available; otherwise, the system will use an interrupt transfer. 
The default transfer method is DMA. 

Series 800 
DMA is the only supported transfer method. 

AUTHOR 
Io_speed_ctl was developed by HP. 

374 (Section 3) -1- HP-UX Release 7.0: September 1989 



10_ TIMEOUT _CTL(31) 

NAME 
io_timeout_ctl - establish a time limit for I/O operations 

SYNOPSIS 
int io_timeouLctl (eid, time); 
int eid; 
long time; 

DESCRIPTION 
Io_timeout_ctl enables you to assign a timeout value to the specified entity id. Eid is an entity 
identifier of an· open HP-IB raw bus or GPIO device file obtained from an open(2), dup(2), 
fcntl(2), or creat(2) call. Time is a long integer value specifying the length of the timeout in 
microseconds. A value of 0 for time specifies no timeout (infinity). 

This timeout applies to future read and write requests on this entity id. If a read or write 
request does not complete within the specified time limit, the request is aborted and returns an 
error indication. If an operation is aborted due to a timeout, errno(2) is set to ETIMEDOUT. 

Although the timeout value is specified in microseconds, the resolution of the timeout is 
system-dependent. For example, a particular system might have a resolution of 10 milliseconds, 
in which case the specified timeout value is rounded up to the next 10 msec boundary. A 
timeout value of zero means that the system never causes a timeout. When a file is opened, a 
zero timeout value is assigned by default. 

Entity ids for the same device file obtained by separate open(2) requests have their own timeout 
values associated with them. Entity ids for the same device file obtained by dup(2) or inherited 
by a fork(2) request share the same timeout value. In the latter case, if one process changes the 
timeout, the new timeout is in effect for all such entity ids. 

RETURN VALUE 
Io_timeouCctl returns 0 (zero) if successful, or -1 if an error was encountered. 

ERRORS 
Io_timeout_ctl fails under the following circumstances, and sets errno (see errno(2» to the value 
in square brackets: 

[EBADF] 

[ENOTTY] 

DEPENDENCIES 
Series 300 

eid does not refer to an open file. 

eid does not refer to a channel device file. 

System timeout resolution is 20 msec. 

EIO is returned if an operation is aborted due to a timeout. 

AUTHOR 
Io_timeout_ctl was developed by HP. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 375 



NAME 
io_width_ctl - set width of data path 

SYNOPSIS 
int io_ width_etl (eid, width) 
int eid, width; 

DESCRIPTION 
Io_width_ctl enables you to select the width of the data path to be used for a particular inter­
face. Eid is an entity identifier of an open device file obtained from an open(2), dup(2), fcntl(2), 
or creat(2) call. Width is an integer specifying the width of the data path in bits. 

An error is given if an invalid width is specified. Specifying a width with this function sets the 
width for all users of the device file associated with the given entity id. When first opened, the 
default width is 8 bits. 

For the GPIO interface only widths of 8 and 16 bits are currently supported. For the HP-IB 
interface only a width of 8 bits is supported. 

RETURN VALUE 
Io_width_ctl returns 0 if successful, and -1 if an error was encountered. 

ERRORS 
Io_width_ctl fails under the following circumstances, and sets errno (see errno(2» to the value in 
square brackets: 

[EBADF] 

[ENOTTY] 

[EINVAL] 

AUTHOR 

eid does not refer to an open file. 

eid does not refer to a channel device file. 

the specified width is not supported on this device file. 

Io_width_ctl was developed by HP. 

376 (Section 3) -1- HP-UX Release 7.0: September 1989 



NAME 

Series 300 Only 

is_6801O_present, is_6888Lpresent, is_98635A_present, is_98248A_present - check for pres­
ence of hardware capabilities 

SYNOPSIS 
int is_68010_presentO 

int is_6888LpresentO 

int is_98248A_presentO 

DESCRIPTION 
Each function checks for the presence of a specified hardware capability, returning 1 if it exists 
or 0 if it does not. 

RETURN VALUE 
The value 1 is returned by: 

is_6801O_present if the system has an MC68010 as its cpu. 

is_68881_present if an MC68881 floating-point coprocessor is present. 

is_98635A_present if an HP 98635A floating-point accelerator has been installed. 

is_98248A_present if an HP 98248A floating-point accelerator has been installed. 

AUTHOR 
Is_hw_present was developed by HP. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 377 



ISINF(3M) Series 800 Only ISINF(3M) 

NAME 
isinf - test for INFINITY function 

SYNOPSIS 
#inc1ude <math.h> 

int isinf (x) 
double x; 

DESCRIPTION 
[sin! returns a positive integer if x is +INFINITY , or a negative integer if x is -INFINITY. Other­
wise it returns zero. 

DEPENDENCIES 
Series 300 

This function is not supported. 

SEE ALSO 
isnan(3M}. 

STANDARDS CONFORMANCE 
is in!: XPG2, XPG3 

378 (Section 3) -1- HP-UX Release 7.0: September 1989 



ISNAN(3M) Series 800 Only ISNAN(3M) 

NAME 
isnan - test for NaN function 

SYNOPSIS 
#include <math.h> 

int isnan (x) 
double Xi 

DESCRIPTION 
Isnan returns a nonzero integer if x is NaN (not-a-number). Otherwise it returns zero. 

DEPENDENCIES 
Series 300 

This function is not supported. 

SEE ALSO 
isinf(3M). 

STANDARDS CONFORMANCE 
isnan: XPG2, XPG3 

HP-UX Release 7.0: September 1989 -1- (Section 3) 379 



NAME 
LUD_open, LUD_close, LUD_search, LUD_free, LUD_store, LUD_delete - manage user dic­
tionaries 

SYNOPSIS 
#include <jlib.h> 

UserOict *J_UO_open (filename, mode) 
char *filenamei 
int modei 

int J_UO_close (dp) 
UserOict *dPi 

int J_UO_store (key, kouho, dp) 
unsigned char *keYi 
UOKouho *kouhoi 
UserOict *dPi 

int J_UO_delete (key, kouho, dp) 
unsigned char *keYi 
UDKouho *kouhoi 
UserDict *dPi 

UDKouhogun *J_UD_search (key, dp) 
unsigned char *keYi 
UserOict *dPi 

int J_UO_free (p) 
UDKouhogun *Pi 

DESCRIPTION 
L'JD_open opens the user dictionary named by filename and returns a dictionary pointer to the 
UserDict structure associated with the dictionary. The UserDict structure is declared in the 
<jlib.h> header file. Various operations to a user dictionary can be performed only by a dic­
tionary pointer. The argument mode must be one of the following: 

Open for reading only. RDONLY 

ROWR Open for update (reading and writing). 

If I_UD_open 
tries to open the named dictionary and it does not exist, LUD_open creates a new dictionary. 

Dp is a dictionary pointer obtained from a LUD_open call. LUD_close closes the dictionary 
pointer indicated by dp. 

LUD_store is used to store a word. The arguments to LUD_store are key and kouho. Key is a 
pointer to YOMI about a word to be stored and must be made of HIRAGANA characters. The 
permissible number of characters is 8 at most, counting DAKUTEN and HANDAKUTEN as one 
character. 

The UDKouho structure includes the following fields: 

unsigned char *hyouki; /* HYOUKI (an array of charac­
ters terminated by a null charac­
ter)* / 

int hinshi; /* HINSHI * / 

It is necessary to give hyouki and hinshi in a UDKouho structure before calling 1-UD _store. 
Hyouki points to HYOUKI about the word and must be made of 16-bit Japanese characters. The 
permissible number of characters is 10 at most. A permissible value for Hinshi is as follows: 

380 (Section 3) -1- HP-UX Release 7.0: September 1989 



MEISHI noun 

If a dictionary does not contain a word equal to that to be stored, I_UD_store stores the word 
into the dictionary. 

I_UD_delete is used to delete a word from a user dictionary. The arguments are the same as for 
I_UD_store. If a dictionary does not contain a word equal to that to be deleted, f-UD_delete 
takes no action and no errors are encountered. 

I_UD_search is used to search a word. Key is a pointer to YOM I about the word to be found. 
I_UD_search returns a pointer to a UDKouhogun structure. The UDKouhogun structure is 
declared in the <jIib.h> header file: 

typedef struct { 
int nkouho: 
UDKouho **kouho; 

} UDKouhogun; 

/* number of KOUHOs * / 
/* KOUHO table * / 

Nkouho equal to 0 means there is no word in a dictionary equal to *key (the value pointed to by 
key). The first entry in KOUHO table is the last stored one for the key. 

f-UD_search allocates a space to store a set of KOUHO itself. The argument to I_UD_free is a 
pointer obtained from a f-UD_search call. After f-UD_free is performed, this space is made 
available for further allocation. 

DIAGNOSTICS 
f-UD_open returns a dictionary pointer upon successful completion. Otherwise, a NULL pointer 
is returned and jlib~errno is set to indicate the error: 

[JUDNOSPC) 

[JUDNOENT] 

[JUDBADENT] 

[JUDACCESJ 

[JUDWRONG] 

[JUDINVALJ 

[JUDBADDP] 

[JUDBADDP} 

[JUDACCESJ 

[JUDNOSPC) 

[JUDINVALJ 

[JUDaADDP] 

[JUDACCESJ 

[JUDINVALJ 

The named dictionary cannot be created. 

The named dictionary cannot be opened for reading because it does not 
exist. 

The named file exists but it is not a user dictionary. 

The dictionary exists but permission is denied. 

The format of the dictionary is wrong. 

Mode specifies neither RDONL Y nor RDWR. 

f-UD_close returns a value of 0 upon successful completion. Otherwise, a 
value of -1 is returned and jIib_errno is set to indicate the error. 

Dp is not a valid dictionary pointer. 

f-UD_store returns a value of 0 upon successful completion. Otherwise, a 
value of -1 is returned and jIib_errno is set to indicate the error. 

Dp is not a valid dictionary pointer. 

The dictionary exists and write permission is denied. 

The file system is full. 

Hinshi is invalid. Key includes illegal characters, or key is too long. 

I_UD_delete returns a value of 0 upon successful completion. Otherwise, 
a value of -1 is returned and jIib_errno is set to indicate the error. 

Dp is not a valid dictionary pointer. 

The dictionary exists and write perntission is denied. 

Key includes illegal characters, or key is too long. 

HP-UX Release 7.0: September1989 -2- (Section 3) 381 



I_UD_search returns a pointer to a UDKouhogun structure upon successful completion. Other­
wise, a NULL pointer is returned and jIib_errno is set to indicate the error: 

[JUDBADDP] Dp is not a valid dictionary pointer open for reading. 

rn Tnl\.TOC:PC'l LJ--'" .. _-- -J 

[JUDINVAL] 

Not enough space on memory to return the result. 

Key includes illegal characters, or key is too long. 

I_UD_free returns a value of 0 upon successful completion. Otherwise, a value of -1 is 
returned. 

WARNINGS 
It is recommended to call I_UD_free before a I_UD_search call. 

I_UD_store, I-UD_delete, and I-UD_search do not check a lock for a file access. 

I_UD_open and I-UD_store invoke the command wdutil(1). 

SEE ALSO 
open_ilib(3X), SetUserDict(3X) 

382 (Section 3) -3- HP-UX Release 7.0: September 1989 



JCODE(3X) JCODE(3X) 

NAME 
jistosj, jistouj, sjtojis, sjtouj, ujtojis, ujtosj, cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, cujtosj -
code set conversion routines for 115, Shift 115 and UJIS 

SYNOPSIS 
#include <jcode.h> 

char *jistosj(s1, s2) 
char *s1, *s2; 

char *jistouj(s1, s2) 
char *s1, *s2; 

char *sjtojis(s1, s2) 
char *s1, *s2; 

char *sjtouj(s1, s2) 
char *s1, *s2; 

char *ujtojis(s1, s2) 
char *s1, *s2; 

char *ujtosj(s1, s2) 
char *s1, *s2; 

char *cjistosj(s1, s2) 
char *s1, *s2; 

char *cjistouj(s1, s2) 
char *s1, *s2; 

char *csjtojis(s1, s2) 
char *s1, *s2; 

char *csjtouj(s1, s2) 
char *s1, *s2; 

char *cujtojis(s1, s2) 
char *s1, *s2; 

char *cujtosj(s1, s2) 
char *s1, *s2; 

DESCRIPTION 
Functions, jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj convert a string from one code set to 
another (using 8-bit process code). These routines convert the string pointed to by s2, store the 
converted string to the array pointed to by sl, and return sl. These functions do not check for 
overflow of s1. Validity of the string pointed to by s2 is assumed, and no checks are made for 
invalid code in the string. 
]IS encoded strings for s2 are assumed to include proper control sequences (for character set 
designation). Also, strings converted to ]IS by the routines include proper control sequences 
(for character set designation). 

Jistosj converts ]IS to SJIS. 

Jistouj converts ]IS to VJIS. 

Sjtojis converts S]IS to ]IS. 

Sjtouj converts S]IS to VIIS. 

Ujtojis converts VIIS to JIS. 

Ujtosj converts VJIS to S]IS. 

HP-VX Release 7.0: September 1989 -1- (Section 3) 383 



JCODE(3X) JCODE(3X) 

Each of the functions, cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj converts one Kanji 
character from one code set to another (using 8-bit process code). These routines get one Kanji 
character from the string pointed to by s2, convert it, store the converted character in the array 
po!~;.~d to. ~y sl, and ~etum sl. The con~ents of the. ~rray pointed to by s2 is not checked for 
vauouy . ./"uso, converSIOn to jIS does not mclude addition of control sequences. 

Cjistosj converts JIS to SJIS. 

Cjistouj converts JIS to VJIS. 

Csjtojis converts SJIS to JIS. 

Csjtouj converts SJIS to VJIS 

Cujtojis converts VJIS to JIS. 

Cujtosj converts VJIS to SJIS. 

SEE ALSO 
iconv(3C) 

384 (Section 3) -2- HP-VX Release 7.0: September 1989 



KUTENZENKAKU (3X) 

NAME 
KutenZenkaku - translate characters 

SYNOPSIS 
#include <jlib.h> 

unsigned char *KutenZenkaku (c, s) 
int Ci 
unsigned char *s; 

DESCRIPTION 
The argument c means KUTEN (section-point) code defined as follows: 

c = n * 10000 + x * 100 + y; 

where n is plane number, x is section number and y is point number. 

KUTENZENKAKU (3X) 

KutenZenkaku copies the corresponding 16-bit Japanese character in string 5, terminated by a 
null character. 

DIAGNOSTICS 
KutenZenkaku returns 5 upon successful completion. Otherwise, a NULL pointer is returned. 

SEE ALSO 
open_jlib(3X) 

HP-UX Release 7.0: September 1989 -1- (Section 3) 385 



L3TOL(3C) L3TOL(3C) 

NAME 
13tol, Itol3 - convert between 3-byte integers and long integers 

SYNOPSIS 
void 13tol (lp, cp, n) 
long *IPi 
char *CPi 
int ni 

void Hol3 (cp, Ip, n) 
char *CPi 
long *IPi 
int ni 

DESCRIPTION 
L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into 
a list of long integers pointed to by lp. 

Ltol3 performs the reverse conversion from long integers (lp) to three-byte integers (cp). 

These functions are useful for file-system maintenance where the block numbers are three bytes 
long. 

SEE ALSO 
fs(4). 

WARNINGS 
Because of possible differences in byte ordering, the numerical values of the long integers are 
machine-dependent. 

STANDARDS CONFORMANCE 
13tol: XPG2 

ltol3: XPG2 

386 (Section 3) -1- HP-UX Release 7.0: September 1989 



LANGINFO(3C) LANGINFO(3C) 

NAME 
langinfo, langtoid, idtolang, currlangid - NLS information about native languages 

SYNOPSIS 
#include <nCtypes.h> 
#include <langinfo.h> 

char *langinfo (langid, item) 
int langid; 
nCitem item; 

int langtoid (langname) 
const char *langname; 

char *idtolang (langid) 
int langid; 

int currlangid ( ) 

DESCRIPTION 
Note. All functions defined on this page are obsolete. Use of nUanginfo(3C) is recommended 
as a replacement for langinfo. 

Langinfo returns a pointer to a null-terminated string containing information relevant to a partic­
ular language or cultural area defined in the program's locale (see setlocale(3C)). Langinfo 
effectively calls langinit (see nUnit(3C)) to load the program's locale according to the language 
specified by langid. 

Currlangid looks for a LANG string in the user's environment. If it finds one, currlangid returns 
the corresponding integer listed in lang(S). Otherwise, it returns 0 to indicate a default to 
native-computer, the method used before NLS was available. 

Idtolang takes the integer langid and attempts to return the corresponding character string 
defined in lang(S). If langid is not found, an empty string is returned. 

Langtoid is the inverse of idtolang: it attempts to convert a string to a language ID, returning 0 
to indicate native-computer if no match is found. 

EXTERNAL INFLUENCES 
Locale 

The string returned by langinfo for a particular item is determined by the locale category 
specified for that item in langinfo(S). 

International Code Set Support 
Single- and multi-byte character code sets are supported. 

WARNINGS 
Langinfo returns a pointer to a static area that is overwritten on each call. 

AUTHOR 
Langinfo was developed by HP. 

SEE ALSO 
nUnit(3C), nUanginfo(3C), setlocale(3C), hpnls(S), lang(S), langinfo(S). 

STANDARDS CONFORMANCE 
nUanginfo: XPG2, XPG3 

HP-UX Release 7.0: September 1989 -1- (Section 3) 387 



LDCVT(3C) LDCVT(3C) 

NAME 
_ldecvt, _ldfcvt, _ldgcvt - convert long-double floating-point number to string 

SYNOPSIS 
#inc1ude <stdlib.h> 

char *_ldecvt (value, ndigit, decpt, sign) 
long_double value; 
int ndigit, *decpt, *sign; 

char *_ldfcvt (value, ndigit, decpt, sign) 
long_double value; 
int ndigit, *decpt, *sign; 

char *_ldgcvt (value, ndigit, bu£) 
long_double value; 
int ndigiti 
char *bufi 

DESCRIPTION 
_ldecvt converts value to a null-terminated string of ndigit digits and returns a pointer to the 
string. The high-order digit is non-zero, unless the value is zero. The low-order digit is 
rounded. The position of the radix character relative to the beginning of the string is stored 
indirectly through decpt (negative means to the left of the returned digits). The radix character 
is not included in the returned string. If the sign of the result is negative, the word pointed to 
by sign is non-zero, otherwise it is zero. 

_ldtcvt is identical to _ldecvt, except that the correct digit has been rounded for printf "%U" 
(FORTRAN F-format) output of the number of digits specified by ndigit. 

_ldgcvt converts the value to a null-terminated string in the array pointed to by but and returns 
but. It produces ndigit significant digits in FORTRAN F-format if possible, or E-format otherwise. 
A minus sign, if required, and a radix character will be included in the returned string. Trailing 
zeros are suppressed. The radix character is determined by the currently loaded NLS environ­
ment (see setlocale(3C». If setlocale has not been called successfully, the default NLS environ­
ment, "e" (see lang(S», is used. The default environment specifies a period (.) as the radix 
character. 

DIAGNOSTICS 
NaN is returned for Not-a-Number, and ±INFINITY is returned for Infinity. 

WARNINGS 
The values returned by _ldecvt and _ldtcvt point to a single static data array whose content is 
overwritten by each call. 

AUTHOR 
_ldecvt, _ldtcvt and _ldgcvt were developed by HP 

SEE ALSO 
setlocale(3C), printf(3S), hpnls(S), lang(S). 

EXTERNAL INFLUENCES 
Locale 

The LCNUMERIC category determines the radix character. 

International Code Set Support 
Single-byte character code sets are supported. 

388 (Section 3) -1- HP-UX Release 7.0: September 1989 



LOCALECONV(3C) LOCALECONV(3C) 

NAME 
localeconv - query the numeric formatting conventions of the current locale 

SYNOPSIS 
#inc1ude <locale.h> 

struct lconv *localeconv( ); 

DESCRIPTION 
Localecol1!, sets the components of an object of type struct leonv (defined in <locale.h> ) with 
values appropriate for the formatting of numeric quantities (monetary and otherwise) according 
to the rules of the program's current locale (see setiocaie(3C) ). 

The members of the structure with type char * are strings, any of which (except decimaLpoint) 
can point to "" (the empty string), to indicate that the value is not available in the current 
locale or is of zero length. The members with type char are nonnegative numbers, any of which 
can be CHAR_MAX (defined in <limits.h» to indicate that the value is not available in the 
current locale. The members include the following: 

char *decimaCpoint 
The decimal-point character used to format non-monetary quantities. This will be 
the same value as that returned by a call to nUanginjo(3C) with RADIXCHAR as its 
argument. 

char *thousands_sep 
The character used to separate groups of digits to the left of the decimal-point char­
acter in formatted non-monetary quantities. This will be the same value as that 
returned by a call to nUanginjo(3C) with THOUSEP as its argument. 

char *grouping 
A string whose elements indicate the size of each group of digits in formatted non­
monetary quantities. 

char *int3urcsymbol 
The international currency symbol applicable to the current locale. The first three 
characters contain the alphabetic international currency symbol in accordance with 
those specified in ISO 4217 Codes for the Representation of Currency and Funds. The 
fourth character (immediately preceding the null character) is the character used to 
separate the international currency symbol from the monetary quantity. 

char * currency _symbol 
The local currency symbol applicable to the current locale. This value along with 
positioning information is returned by a call to nUanginfo(3C) with CRNCYSTR as 
its argument. 

char *mon_decimaCpoint 
The decimal-point used to format monetary quantities. 

char *mon_thousands_sep 
The separator for groups of digits to the left of the decimal-point in formatted mone­
tary quantities. 

char *mon_grouping 
A string whose elements indicate the size of each group of digits in formatted mone­
tary quantities. 

char *positive_sign 
The string used to indicate a nonnegative-valued formatted monetary quantity. 

char *negative_sign 
The string used to indicate a negative-valued formatted monetary quantity. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 389 



LOCALECONV (3C) LOCALECONV (3C) 

char inCfrac_digits 
The number of fractional digits (those to the right of the decimal-point) to be 
displayed in an internationally formatted monetary quantity. 

char fracdigits 
The number of fractional digits (those to the right of the decimal-point) to be 
displayed in a locally formatted monetary quantity. 

char p_cs_precedes 
Set to 1 or 0 if the currency _symbol respectively preceeds or succeeds the value for 
a nonnegative formatted monetary quantity. 

char p_sep_by_space 
Set to 1 or 0 if the currency _symbol respectively is or is not separated by a space 
from the value for a nonnegative formatted monetary quantity. 

char n_cs_precedes 
Set to 1 or 0 if the currency _symbol respectively preceeds or succeeds the value for 
a negative formatted monetary quantity. 

char n_sep_by _space 
Set to 1 or 0 if the currency _symbol respectively is or is not separated by a space 
from the value for a negative formatted monetary quantity. 

char p_sign_posn 
Set to a value indicating the positioning of the positive_sign for a nonnegative for­
matted monetary quantity. 

char n_sign_posn 
Set to a value indicating the positioning of the negative_sign for a negative format­
ted monetary quantity. 

The elements of grouping and mon_grouping are interpreted according to the following: 

MAX_CHAR No further grouping is to be performed. 

o The previous element is to be repeatedly used for the remainder of the digits. 

other The value is the number of digits that comprise the current group. The next 
element is examined to determine the size of the next group of digits to the left 
of the current group. 

The value of p_sign_posn and n_sign_posn is interpreted according to the following: 

o Parentheses surround the quantity and currency _symbol. 

1 The sign string preceeds the quantity and currency _symbol. 

2 The sign string succeeds the quantity and currency _symbol. 

3 The sign string immediately preceeds the currency _symbol. 

4 The sign string immediately succeeds the currency _symbol. 

The implementation shall behave as if no library function calls the localeconv function. 

RETURN VALUE 
The localeconv function returns a pointer to the filled-in struct lconv. 

EXAMPLES 
The following table illustrates the formatting used in five languages for monetary quantities. 

390 (Section 3) -2- HP-UX Release 7.0: September 1989 



LOCALECONV(3C) LOCALECONV (3C) 

For these five languages, the respective values for the monetary members of the structure 
returned by localeconv are: 

~:::::::::::::::::::~:i~~~~i~:~:i~ji~~:~:::~~~~::~:i~J~~~~~~:~Jg~~ii~ 
~!I.!.!.-SE.!!:-:.~I!lE2L ____ ...I __ ~!!.?R~~_~_~!'!1-':':~_l-_~~~!-.Q~I __ ...I __ ~'~9~~' __ -L __ ~!.'J_~~ ___ 1 

~£~!:~ep-~:~Y~~~~----~--~~~-----i-~~~~---~-~~~~-----~--~~.!~-----~--~~~------: 
f-~q!!A~£iE!~~-'£'~!l.!---I--~~~-----_f-~~~~---+_-~~~-------I--~IL~------+--~~~------I 
Lp:!q!!=!Q.~1;!~'!.~<!~~~P __ J __ ~~I ______ L~.:.~ ____ L~~~ ______ J __ ~'~~ ______ J ___ ~L'~ _____ J 
~p:!q!!=g!:~1!ELnJL-----J--~1~~----11-~~~---tl _~~\.3~~ ____ ~ __ ~1~~1 _____ -:-__ ~~~~ _____ 11 
I ositive si n I , , , , , , , , , , , , , , , , , , , , 

~p-------:.-g---------...I----------~--------l-----------...I------------L-----------I 

t=f~~]~~~~~~=======j==~=======i=~~=====t==~=======i==i~========t==~~=======: L.!~S-=Elg!!~ __________ L_~ _______ L9 ______ L_~ _______ J __ ~ ________ J ___ ~ _______ J 
I P cs Erecedes I 1 I 1 I 1 I 1 I 0 I 

~p:~~~=~y:~E;£~=====J==Q=======J=9======t==~=======J==9========JC==g========: ~E-=S~=E!:~~~~~-------~--!-------i-l------~--l-------i--l ________ ~--Q-------~ 
f-E-=~~E=PY=~E~£~-----1--Q-------_f-9------+_--1-------_f--~--------+--Q--------I 
LP-=~~~~q~I.!. ________ J __ ! _______ J_l ______ L __ l _______ J __ l ________ J ___ 1 _______ J 
L-E-=~~~~q~I.!. ________ J __ ! _______ j_l ______ L __ ~ _______ J __ ~ ________ J ___ 1 _______ J 

WARNINGS 
The structure returned by localeconv should not be modified by the calling program. Calls to 
the setlocale(3C) function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may 
overwrite the contents of the structure that localeconv points to when it returns. 

AUTHOR 
Localeconv was developed by HP. 

SEE ALSO 
hpnls(S), setlocale(3C), langinfo(3C), buildlang(lM) 

EXTERNAL INFLUENCES 
Locale 

The LC_NUMERIC category influences the decimaL point, thousands_sep, and grouping 
members of the structure referenced by the pointer returned from a call to localeconv. 

The LCMONETARY category influences all of the other members of this structure. 

International Code Set Support 
Single- and multi-byte character code sets are supported. 

STANDARDS-CONFORMANCE 
localeconv: ANSI C 

HP-UX Release 7.0: September 1989 -3- (Section 3) 391 



LOGNAME(3C) 

NAME 
logname - return login name of user 

SYNOPSIS 
char *logname( ) 

DESCRIPTION 

LOGNAME(3C) 

Logname returns a pointer to the null-terminated login name; it extracts the $LOGNAME variable 
from the user's environment. 

WARNINGS 
Logname returns a pointer to static data that is overwritten by each subsequent call. 

This method of determining a login name is subject to forgery. 

FILES 
/etc/profile 

SEE ALSO 
env(l), login(l), profile(4), environ(5). 

STANDARDS CONFORMANCE 
logname: SVID2, XPG2 

392 (Section 3) -1- HP-UX Release 7.0: September 1989 



LSEARCH(3C) LSEARCH(3C) 

NAME 
lsearch, lfind - linear search and update 

SYNOPSIS 
#include <stdio.h> 
#include <search.h> 

char *lsearch «char *)key, (char *)base, nelp, sizeofhkey), compar) 
unsigned *neipi 
int (*compar)( )i 

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar) 
unsigned *nelpi 
int (*compar)( )i 

DESCRIPTION 

NOTES 

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer 
into a table indicating where a datum may be found. If the datum does not occur, it is added at 
the end of the table. 

Key 

Base 

Nelp 

Compar 

points to the datum to be sought in the table. 

points to the first element in the table. 

points to an integer containing the current number of elements in the table. 
The integer is incremented if the datum is added to the table. 

is the name of the comparison function which the user must supply (strcmp, 
for example). It is called with two arguments that point to the elements being 
compared. The function must return zero if the elements are equal and non­
zero otherwise. 

Lfind is the same as Isearch except that if the datum is not found, it is not added to the table. 
Instead, a NULL pointer is returned. 

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data may be contained in 
the elements in addition to the values being compared. 
Although declared as type pointer-to-character, the value returned should be cast into type 
pointer-to-element. 

EXAMPLE 
This fragment will read in :=:; TABSIZE strings of length:=:; ELSIZE and store them in a table, elim­
inating duplicates. 

#include <stdio.h> 

#define T ABSIZE 50 
#define ELSIZE 120 

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch( ); 
unsigned nel = 0; 
int strcmp( ); 

while (fgets(line, ELSIZE, stdin) != NULL && 
nel < T ABSIZE) 

(void) lsearch(line, (char *)tab, &nel, 

HP-UX Release 7.0: September 1989 -1- (Section 3) 393 



LSEARCH(3C) LSEARCH(3C) 

ELSIZE, strcmp); 

SEE ALSO 
bsearch(3C), hsearch(3C), tsearch(3C). 

DIAGNOSTICS 
If the searched for datum is found, both lsearch and lfind return a pointer to it. Otherwise, lfind 
returns NULL and lsearch returns a pointer to the newly added element. 

BUGS 
Undefined results can occur if there is not enough room in the table to add a new item. 

STANDARDS CONFORMANCE 
lsearch: SVID2, XPG2, XPG3 

lfind: SVID2, XPG2, XPG3 

394 (Section 3) -2- HP-UX Release 7.0: September 1989 



LTOSTR(3C) LTOSTR(3C) 

NAME 
ltostr, ultostr, ltoa, ultoa - convert long integers to strings 

SYNOPSIS 
char *ltostr (n, base) 
long n; 
int base; 

char *ultostr (n, base) 
unsigned long n; 
int base; 

char *ltoa (n) 
long n; 

char *ultoa (n) 
unsigned long n; 

DESCRIPTION 
The functions ltostr and ultostr convert a signed or unsigned long integer to the corresponding 
string representation in the specified base. The argument base must be between 2 and 36, 
inclusive. 

The functions ltoa and ultoa convert a signed or unsigned long integer to the corresponding 
base 10 string representation, returning a pointer to the result. 

These functions are smaller and faster than using sprintf(3C) for simple conversions. 

WARNINGS 
The return values point to static data whose content is overwritten by each call. 

ERRORS 
If the value of base is not between 2 and 36, ltostr and ultostr return the value NULL and set the 
external variable ermo to ERANGE. 

AUTHOR 
Ltostr, ultostr, ltoa and ultoa were developed by HP. 

SEE ALSO 
printf(3C), strtol(3C). 

HP-UX Release 7.0: September 1989 -1- (Section 3) 395 



MALLOC(3C) MALLOC(3C) 

NAME 
malloc, calloc, realloc, free - main memory allocator 

SYNOPSIS 
#inc1ude <stdlib.h> 

void *malloc (size) 
size_t size; 

void *calloc (nelem, elsize) 
size_t nelem, elsize; 

void *fealloc (ptr, size) 
void *ptr; 
size_t size; 

void free (ptr) 
void *ptr; 

DESCRIPTION 
The set of malloc functions provide a simple, general-purpose memory allocation package. 

Malloc allocates space for a block of at least size bytes; the space is not initialized. 

Calloc allocates space for an array of nelem elements, each of size elsize bytes; the space is ini­
tialized to zeros. 

Realloc changes the size of the block pointed to by ptr, a pointer to a block previously allocated 
by malloc, calloc, or realloc, to size bytes. The contents will be unchanged up to the lesser of 
the new and old sizes. If no free block of size bytes is available, realloc will call malloc to allo­
cate a block of size bytes and will then move the data to the new space. If ptr is a NULL 
pointer, realloc behaves as malloc(size). If size is zero and ptr is not a NULL pointer, realloc 
behaves as free(ptr). 

Free de allocates the space pointed to by ptr, a pointer to a block previously allocated by malloc, 
calloc, or realloc; the space is made available for further allocation, but its contents are left 
undisturbed. If ptr is a NULL pointer, no action occurs. 

RETURN VALUE 
Malloc, calloc, and realloc return a pointer to space suitably aligned (after possible pointer coer­
cion) for storage of any type of object. 

DIAGNOSTICS 
Any error condition listed for brk(2) is considered to mean no available memory. Malloc, realloc 
and calloc return a NULL pointer if there is no available memory or if the memory being 
managed by malloc has been detectably corrupted. If this happens, the block pointed to by ptr 
may be destroyed. 

WARNINGS 
Results are undefined if the space assigned by the allocation functions is overrun. 

Sbrk (see brk(2» is called, as needed, to get memory from the system. 

Free and realloc do not check their pointer argument for validity. 

Allocation time is proportional to the number of allocated but un-freed objects. If a program 
allocates but never frees, each successive allocation takes longer. For an alternate, more flexible 
implementation, see malloc(3X). 

SEE ALSO 
brk(2), malloc(3X). 

396 (Section 3) -1- HP-UX Release 7.0: September 1989 



MALLOC(3X) MALLOC(3X) 

NAME 
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator 

SYNOPSIS 
#include <malloc.h> 

char *malloc (size) 
unsigned size; 

void free (ptr) 
char *ptr; 

char *realloc (ptr, size) 
char *ptr; 
unsigned size; 

char *calloc (nelem, elsize) 
unsigned nelem, elsize; 

int mallopt (cmd, value) 
int cmd, value; 

struct mallinfo mallinfo () 

DESCRIPTION 
Malloc and free provide a simple general-purpose memory allocation package, which runs con­
siderably faster than the malloc(3C) package. It is found in the library "malloc", and is loaded 
if the option "-lmalloc" is used with cc(l) or ld(l). 

Malloc returns a pointer to a block of at least size bytes suitably aligned for any use. 

The argument to free is a pointer to a block previously allocated by malloc; after free is per­
formed this space is made available for further allocation, and its contents will usually have 
been destroyed (but see mallopt below for a way to change this behavior). 

Undefined results will occur if the space assigned by malloc is overrun or if some random 
number is handed to free. 

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the 
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old 
sizes. If ptr is a null pointer, the realloc function behaves like the malloc function for the 
specified size. If size is zero and ptr is not a null pointer the object it points to is freed and 
NULL is returned. 

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to 
zeros. 

Mallopt provides for control over the allocation algorithm and other options in the malloc(3X) 
package. The available values for cmd are: 

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below the size of max­
fast in large groups and then doles them out very quickly. The default value 
for maxfast is 48. 

M_GRAIN 

Set numlblks to value. The above mentioned "large groups" each contain 
numlblks blocks. Numlblks must be greater than 1. The default value for 
numlblks is 100. 

Set grain to value. The sizes of all blocks smaller than maxfast are considered 
to be rounded up to the nearest multiple of grain. Grain must be greater than 
O. The default value of grain is the smallest number of bytes which will allow 
alignment of any data type. Value will be rounded up to a multiple of the 
default when grain is set. 

HP-UX Release 7.0: September 1989 -1- (Section 3) 397 



MALLOC(3X) MALLOC(3X) 

Preserve data in a freed block until the next malloe, realloe, or ealloe. This 
option is provided only for compatibility with the old version of malloe and is 
not recommended. 

Block all blockable signals in malloe, realloe, ealloe, and free. This option is 
provided for those who need to write signal handlers that allocate memory. 
When set, the malloe(3X) package becomes completely re-entrant. The default 
action is to NOT block all blockable signals. 

M_UBLOCK Don't block all blockable signals in malloe, realloe, ealloe, and free. This option 
cancels signal blocking initiated by the M_BLOCK option. 

These values are defined in the <malloc.h> header file. 

Mallopt may be called repeatedly, but may not be called after the first small block is allocated 
(unless emd is set to M_BLOCK or M_UBLOCK). 

Mallinfo provides instrumentation describing space usage, but may not be called until the first 
small block is allocated. It returns the structure: 

struct mallinfo { 
int arena; 
int ordblks; 
int smblks; 
int hblkhd; 
int hblks; 
int usmblks; 
int fsmblks; 
int uordblks; 
int fordblks; 
int keepcost; 

/* total space in arena * / 
/* number of ordinary blocks * / 
/* number of small blocks * / 
/* space in holding block headers * / 
/* number of holding blocks * / 
/* space in small blocks in use * / 
/* space in free small blocks * / 
/* space in ordinary blocks in use * / 
/* space in free ordinary blocks * / 
/* space penalty if keep option * / 
/* is used * / 

This structure is defined in the <malloc.h> header file. 

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer 
coercion) for storage of any type of object. 

DIAGNOSTICS 
Malloe, realloe and ealloe return a NULL pointer if there is not enough available memory. Any 
error condition listed for brk(2) is considered to mean no available memory. When realloe 
returns NULL, the block pointed to by ptr is left intact. If mallopt is called after any allocation 
of a small block and emd is not set to M_BLOCK or M_UBLOCK or if emd or value are invalid, 
non-zero is returned. Otherwise, it returns zero. 

WARNINGS 
This package usually uses more data space than malloe(3C). 
The code size is also bigger than malloe(3C). 
Note that unlike malloe(3C), this package does not preserve the contents of a block when it is 
freed, unless the M_KEEP option of mallopt is used. 
Undocumented features of malloe(3C) have not been duplicated. 

SEE ALSO 
brk(2), malloc(3C). 

STANDARDS CONFORMANCE 
malloe: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

398 (Section 3) -2- HP-UX Release 7.0: September 1989 



MALLOC(3X) 

calloc: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

free: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C 

mallinfo: SVID2, XPG2 

mallopt: SVID2, XPG2 

realloc: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C 

HP-UX Release 7.0: September 1989 -3-

MALLOC(3X) 

(Section 3) 399 



MATHERR(3M) MATHERR(3M) 

NAME 
matherr - error-handling function 

SYNOPSIS 
#include <math.h> 

int math err (x); 
struct exception *x; 

DESCRIPTION 
Matherr is invoked by functions in the Math Library when errors are detected. Users can define 
their own procedures for handling errors, by including a function named matherr in their pro­
grams. Matherr must be of the form described above. When an error occurs, a pointer to the 
exception structure x is passed to the user-supplied matherr function. This structure, which is 
defined in the <math.h> header file, is as follows: 

struct exception { 
int type; 
char *name; 
double argl, arg2, retval; 

}; 

The element type is an integer describing the type of error that has occurred, from the following 
list of constants (defined in the header file): 

DOMAIN 
SING 
OVERFLOW 
UNDERFLOW 
TLOSS 
PLOSS 

argument domain error 
argument singularity 
overflow range error 
underflow range error 
total loss of significance 
partial loss of significance 

The element name points to a string containing the name of the function that incurred the error. 
The variables argl and arg2 are the arguments with which the function was invoked. Retval is 
set to the default value that will be returned by the function unless the user's matherr sets it to 
a different value. 

If the user's matherr function returns nonzero, no error message will be printed, and errno will 
not be set. 

If matherr is not supplied by the user, the default error-handling procedures, described with the 
math functions involved, will be invoked upon error. These procedures are also summarized in 
the table below. In every case, errno is set to EDOM or ERANGE and the program continues. 

DEPENDENCIES 
Series 800 (ANSI C /lib /libM.a) 

In the ANSI C /lib /libM.a, matherr() has been renamed to _matherr() and no error mes­
sages are printed to the standard error output. 

EXAMPLES 

400 

#include <math.h> 

int 
matherr(x) 
register struct exception *x; 
{ 

switch (x->type) { 

(Section 3) -1- HP-UX Release 7.0: September 1989 



MATHERR(3M) 

case DOMAIN: 
/* change sqrt to return sqrt(-arg1), not 0 */ 
if (!strcmp(x->name, "sqrt")) { 

x->retval = sqrt(-x->arg1); 
return (0); /* print message and set errno * / 

case SING: 
1* all other domain or sing errors; print message and abort */ 
fprintf(stderr, "domain error in %s\n", x->name); 
abort( ); 

case PLOSS: 
/ * print detailed error message * / 
fprintf(stderr, "loss of significance in %s(%g) = %g\n", 

x- > name, x- >arg1, x- >retval); 
return (1); /* take no other action * / 

return (0); / * all other errors, execute default procedure * / 

MATHERR(3M) 

HP-UX Release 7.0: September 1989 -2- (Section 3) 401 



MATHERR(3M) MATHERR(3M) 

1----------------DEF~uLT-EiR()i-HA~DiiN(;PR{)cE[)uiEs-----------------1 

[==============~=====================J.YP!~=~=~2!~======================: ~-----~~-----~P-~~~!~~-~~~-i~~~~~~~-~-~~PE~!~Q~-~-~~~~--i-~~~~~--: 
, errno 1 EDaM I EDaM I ERANGE I ERANGE I ERANGE I ERANGE , 
r--------------T-------~------·----------~------------~-------+--------I 1 BESSEL: 1 - 1 - 1 - 1 - 1 M, 0 1 * 1 
~y~Y]~Y~i~g-~-QL~-~~~-~-~--=---i-----------~-----~------~---~---i---=----: 
~~~~-----------t---=---~--=---~----l!----j-----J------L---~---~---=----I 1 LOG, LOGlO: 1 1 1 1 1 1 1 
1 (arg < 0) 1 M -H 1 - 1 - 1 - 1 - 1 - 1
~J~~-~~L-------l--~=---~~~~-~-t-----------~-----~------~---~---!---=----: 1 pow: 1 1 1 1 1 1 1
1 neg ** non-int: 1 1 ±H 1 0 1 1 1

~~~on~~~~~!~~~~~~-t~~~~-!~~~~~~~~~~~~~~~~~~!~~~l~~~l~~~~~~~1 
~~~~~~~~~~~~~~;I'--~~~--~I --=---~----~-----j-----~------L--~~Q--~---=----II L______________ _ ______________ l __________ l ____________ l _______ l _______ _ 

1--------------------ABB1iEviATIo~s---------------------I

: As much as possible of the value is returned. :
1 M Message is printed (EDOM error) (except for s800 libM.a). 1
1 H HUGE is returned. 1
1 -H -HUGE is returned. 1
1 ±H HUGE or -HUGE is returned. 1
L_Q ____ ~i~~~~~~~~ _______________________________________ J

STANDARDS CONFORMANCE
matherr: SVID2, XPG2

402 (Section 3) -3- HP-UX Release 7.0: September 1989

MEMORY(3C) MEMORY(3C)

NAME
memccpy, memchr, memcmp, memcpy, memmove, memset - memory operations

SYNOPSIS
#include <string.h>

void *memccpy (s1, s2, c, n)
void *s1i
const void *s2i
int Ci
size_t ni

void *memchr (s, c, n)
const void *Si
int Ci
size_t ni

int memcmp (s1, s2, n)
const void *s1, *s2i
size_t ni

void *memcpy (s1, s2, n)
void *s1i
const void *s2i
size_t ni

void *memmove (s1, s2, n)
void *s1i
const void *s2i
size_t ni

void *memset (s, c, n)
void *Si
int Ci
size_t ni

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check for the overflow of
any receiving memory area.

Definitions for all these functions, the type size_t, and the constant NULL are provided in the
<string.h> header.

Memccpy copies characters from the object pointed to by 52 into the object pointed to by 51,
stopping after the first occurrence of character c has been copied, or after n characters have
been copied, whichever comes first. If copying takes place between objects that overlap, the
behavior is undefined. It returns a pointer to the character after the copy of c in 51, or a NULL
pointer if c was not found in the first n characters of 52 .

Memchr locates the first occurrence of c (converted to an unsigned char) in the initial n charac­
ters (each interpreted as unsigned char) of the object pointed to by 5. It returns a pointer to
the located character, or a NULL pointer if the character does not occur in the object.

Memcmp compares the first n characters of the object pointed to by 51 to the first n characters
of the object pointed to by 52. It returns an integer greater than, equal to, or less than zero,
according as the object pointed to by 51 is greater than, equal to, or less than the object pointed
to by 52. The sign of a nonzero return value is determined by the sign of the difference
between the values of the first pair of characters (both interpreted as unsigned char) that differ
in the objects being compared.

HP-UX Release 7.0: September 1989 -1- (Section 3) 403

MEMORY(3C) MEMORY(3C)

Memcpy copies n characters from the object pointed to by 52 into the object pointed to by 51 .
If copying takes place between objects that overlap, the behavior is undefined. It returns the
value of 51.

Memmove copies n characters from the object pointed to by 52 into the object pointed to by 51 .
Copying takes place as if the n characters from the object pointed to by 52 are first copied into a
temporary array of n characters that does not overlap the objects pointed to by 51 and 52, and
then the n characters from the temporary array are copied into the object pointed to by 51. It
returns the value of 51 .

Mem5et copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by 5. It returns the value of 5.

International Code Set Support
These functions support only single-byte character code sets.

WARNING
These functions were previously defined in <memory.h>.

SEE ALSO
string(3C)

STANDARDS CONFORMANCE
memccpy: SVID2, XPG2, XPG3

memchr: SVID2, XPG2, XPG3, ANSI C

memcmp: SVID2, XPG2, XPG3, ANSI C

memcpy: SVID2, XPG2, XPG3, ANSI C

memmove: ANSI C

mem5et: SVID2, XPG2, XPG3, ANSI C

404 (Section 3) -2- HP-UX Release 7.0: September 1989

MKFIFO(3C) MKFIFO(3C)

NAME
mkfifo - make a FIFO special file

SYNOPSIS
#inc1ude <sys/types.h>
#include <sys/stat.h>

int mkfifo (path, mode)
char *path;
mode_t mode;

DESCRIPTION
Mkfifo creates a new named pipe, a FIFO (first-in-first-out) file named by the path name pointed
to by path. The file permission bits of the new FIFO are initialized from mode. The file permis­
sion bits of the mode argument are modified by the process's file creation mask: for each bit set
in the process's file mode creation mask, the corresponding bit in the new file's mode is cleared
(see umask(2». Bits in mode other than the file permission bits are ignored.

The FIFO's owner ID is set to the process's effective-user-ID. The FIFO's group ID is set to the
group ID of the parent directory if the set-group-ID bit is set on that directory. Otherwise the
FIFO's group ID is set to the process's effective group ID.

For details of the IjO behavior of pipes see read(2) and write(2).

The following symbolic constants are defined in the <sys/stat.h> header, and should be used
to construct the value of the mode argument. The value passed should be the bitwise inclusive
OR of the desired permissions:

S_IRUSR
S_IWUSR
S_IRGRP
S_IWGRP
S_IROTH
S_IWOTH

RETURN VALUE

Read by owner.
Write by owner.
Read by group.
Write by group.
Read by other users.
Write by other users.

Upon successful completion a value of zero is returned. Otherwise, a value of -1 is returned,
no FIFO is created, and errno is set to indicate the error.

ERRORS
Mkfifo fails and the new file is not created if one or more of the following is true:

[ENOSPC]

[ENOTDIR]

[ENOENT]

[EROFS]

[EACCES]

[EEXIST]

[EFAULT]

[ENOENT]

Not enough space on the file system.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The directory in which the file is being created is located in a read-only file
system.

A component of the path prefix denies search permission.

The named file exists.

Path points outside the process's allocated address space. The reliable detec­
tion of this error is implementation dependent.

Path is null.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while

HP-UX Release 7.0: September 1989 -1- (Section 3) 405

MKFIFO(3C)

[ELOOP]

SEE ALSO

MKFIFO(3C)

_POSIX_NO_TRUNC is in effect.

Too many symbolic links are encountered in translating the path name.

mknod(lM): chmod(2): exec(2), mknod(2), pipe(2), stat(2), umask(2}, cdf(4), fs(4), mknod(4),
stat(5).

AUTHOR
Mkfifo was developed by HP and conforms to the IEEE Standard POSIX 1003.1-1988.

STANDARDS CONFORMANCE
mkfifo: XPG3, POSIX.1, FIPS 151-1

406 (Section 3) -2- HP-UX Release 7.0: September 1989

MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces the contents of the string pointed to by template by a unique file name, and
returns the address of template. The string in template should look like a file name with six
trailing Xs; mktemp will replace the Xs with a letter and the current process 10. The letter will
be chosen so that the resulting name does not duplicate the name of an existing file. If there
are less than 6 Xs, the letter will be dropped first, and then high order digits of the process 10
will be dropped.

RETURN VALUE
Mktemp returns its argument except when it runs out of letters, in which case the result is a
pointer to the empty string 1111.

SEE ALSO
getpid(2).

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

Mktemp does not check to see if the file name part of template exceeds the maximum length of a
file name.

STANDARDS CONFORMANCE
mktemp: SVID2, XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 407

MONITOR(3C) MONITOR(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#inc1ude <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)()i
WORD *buffer;
int bufsize, nfunci

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for monitor with default
parameters; monitor need not be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil (2). Lowpc and highpc are the addresses of two functions; buffer
is the address of a (user supplied) array of bufsize WORDs (defined in the <mon.h> header file).
Monitor arranges to record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address sampled is that of
lowpc and the highest is just below highpc. Lowpc may not equal ° for this use of monitor. At
most nfunc call counts can be kept; only calls of functions compiled with the profiling option
-p of cc(1) are recorded. (The C Library and Math Library supplied when cc -p is used also
have call counts recorded.)

For results to be significant, especially where there are small, heavily used routines, it is sug­
gested that the buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor «int (*)())2, «int(*)())& etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor «int (*)())O, (int(*)())O, 0, 0, 0);

Prof(1) can then be used to examine the results.

jlib jlibp jlibc.a
jlib jlibp jlibm.a
mon.out

SEE ALSO
cc(1), prof(1), profil(2), end(3C).

STANDARDS CONFORMANCE
monitor: SVID2, XPG2

408 (Section 3) -1- HP-UX Release 7.0: September 1989

MUL TIBYTE(3C) MUL TIBYTE(3C)

NAME
mblen, mbtowc, mbstowcs, wctomb, wcstombs - multibyte characters and strings conversions

SYNOPSIS
#inc1ude <stdlib.h>

int mblen(s, n)
const char *s;
size_f n;

int mbtowc(pwc, s, n)
wchar_t *pwc;
const char *s;
size_t n;

int wctomb(s, wchar)
char *s;
wchar_t wchar;

size_t mbstowcs(pwcs, s, n)
wchar_t *pwcs;
const char *s;
size_l n;

size_t wcstombs(s, pwcs, n)
char *s;
const wchar_t *pwcs;
size_t n;

DESCRIPTION
A multibyte character is composed of one or more bytes that represent a "whole" character in a
character encoding. A wide character (type of wchar -t) is composed of a fixed number of bytes
whose code value can represent any character in a character encoding.

The mblen function determines the number of bytes in the multibyte character pointed to by s.
It is equivalent to

mbtowc«wchact *)0, s, n);

If s is a null pointer, the mblen function returns a nonzero or zero value, depending on whether
the multibyte character encodings do or do not have state-dependent encodings, respectively.
Since no character encodings currently supported by HP-UX are state-dependent, zero is always
returned in this case. However, for maximum portability to other systems, application pro­
grams should not depend on this.

If s is not a null pointer, the mblen function returns the number of bytes in the multibyte char­
acter if the next n or fewer bytes form a valid multibyte character or return -1 if they do not
form a valid multibyte character. If s points to the null character, the mblen function returns O.

The mbtowc function determines the number of bytes in the multibyte character pointed to by s,
determines the code for the value of type wchar _t corresponding to that multibyte character,
and then stores the code in the object pointed to by pwc. The value of the code corresponding
to the null character is zero. At most n characters are examined, starting at the character
pointed to by s.

If s is a null pointer, the mbtowc function returns a nonzero or zero value, depending on
whether the multibyte character encodings do or do not have state-dependent encodings,
respectively. Since no characterencodings currently supported by HP-UX are state-dependent,
zero is always returned in this case. However, for maximum portability to other systems, appli­
cation programs should not depend on this.

HP-UX Release 7.0: September 1989 -1- (Section 3) 409

MULTIBYTE(3C) MUL TIBYTE(3C)

If 5 is not a null pointer, the mbtowc function returns the number of bytes in the converted mul­
tibyte character if the next n or fewer bytes form a valid multibyte character, or -1 if they do
not form a valid multibyte character. If 5 points to the null character, the mbtowc function
returns O. The value returned is never greater than n or the value of the MB_CUR_MAX macro.

The wctomb function determines the number of bytes needed to represent the multibyte charac­
ter corresponding to the code whose value is wchar and stores the multibyte character represen­
tation in the array object pointed to by s. At most MB_CUR_MAX characters are stored.

If 5 is a null pointer, the wctomb function returns a nonzero or zero value, depending on
whether the multibyte character encodings do or do not have state-dependent encodings,
respectively. Since no character encodings currently supported by HP-UX are state-dependent,
zero is always returned in this case. However, for maximum portability to other systems, appli­
cation programs should not depend on this.

H 5 is not a null pointer, the wctomb function returns the number of bytes in the multibyte char­
acter corresponding to the value of wchar, or -1 if the value of wchar does not correspond to a
valid multibyte character. The value returned is never greater than the value of the
MB_CUR_MAX macro.

The mbstowcs function converts a sequence of multibyte characters from the array pointed to by
5 into a sequence of corresponding codes and stores these codes into the array pointed to by
pwcs, stopping after either n codes or a code with value zero (a converted null character) is
stored. Each multibyte character is converted as if by a call to the mbtowc function. No more
than n elements are modified in the array pointed to by pwcs.

If an invalid multibyte character is encountered, the mbstowcs function returns (size_t)-1. Oth­
erwise, the mbstowcs function returns the number of array elements modified, not including a
terminating zero code, if any. The array is not null- or zero-terminated if the value returned is
n.

The wcstombs function converts a sequence of codes corresponding to multibyte characters from
the array pointed to by pwcs into a sequence of multibyte characters and stores them into the
array pointed to by 5, stopping if a multibyte character exceeds the limit of n total bytes or if a
null character is stored. Each code is converted as if by a call to the wctomb function. No more
than n bytes are modified in the array pointed to by s.

If a code is encountered that does not correspond to a valid multibyte character, the wcstombs
function returns (size_t) - 1. Otherwise, the wcstombs function returns the number of bytes
modified, not including a terminating null character, if any. The array is not null- or zero­
terminated if the value returned is n.

Locale
The LC_CTYPE category determines the behavior of the multibyte character and string func­
tions.

WARNINGS
With the exception of ASCII characters, the code values of wide characters (type of wchact) are
specific to the effective locale specified by the LCCTYPE environment variable. These values
may not be compatible with values obtained by specifying other locales which are supported
now, or which may be supported in the future. It is recommended that wide character con­
stants and wide string literals (see the C Reference Manual) not be used and that wide character
code values not be stored in files or devices because future standards may dictate changes in the
code value assignments of the wide characters. However, wide character constants and wide
string literals corresponding to the characters of the ASCII code set can be safely used since
their values are guaranteed to be the same as their ASCII code set values.

AUTHOR
Multibyte was developed by HP.

410 (Section 3) -2- HP-UX Release 7.0: September 1989

MUL TIBYTE(3C)

SEE ALSO
setlocale(3C), nUools_16(3C).

STANDARDS CONFORMANCE
mblen: ANSI C

mbstowcs: ANSI C

mbtowc: ANSI C

wcstombs: ANSI C

wctomb: ANSI C

HP-UX Release 7.0: September 1989

MULTIBYTE(3C)

-3- (Section 3) 411

NDBM(3X) NDBM(3X)

NAME
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,
dbm_error, dbm_clearerr - data base subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

datum;

DBM *dbm_open(file, flags, mode)
char *file;
int flags, mode;

void dbm_close(db)
DBM *db;

datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm_firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm31earerr(db)
DBM *db;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very
large (a billion blocks (block = 1024 bytes» databases and will access a keyed item in one or
two file system accesses. This package replaces the earlier dbm(3X) library, which managed
only a single database. The functions can be accessed by giving the -lndbm option to Id(l) or
cc(l).

Key and content parameters are described by the datum type. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are
allowed. The data base is stored in two files. One file is a directory containing a bit map of
keys and has .dir as its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbm_open. This will open and/or
create the files file .dir and file .pag depending on the flags parameter (see open(2».

Once open, the data stored under a key is accessed by dbm-fetch and data is placed under a key
by dbm_store. The flags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT
will only insert new entries into the database and will not change an existing entry with the

412 (Section 3) -1- HP-UX Release 7.0: September 1989

NDBM(3X) NDBM(3X)

same key. DBM_REPLACE will replace an existing entry if it has the same key. A key (and
its associated contents) is deleted by dbm_delete. A linear pass through all keys in a database
may be made, in an (apparently) random order, by use of dbm-firstkey and dbm_nextkey.
Dbm_firstkey will return the first key in the database. Dbm_nextkey will return the next key in
the database. This code will traverse the data base:

for (key = dbm_firstkey(db); key.dptr 1= NULL; key = dbm_nextkey(db))

Dbmjrror returns non-zero when an error has occurred reading or writing the database.
Dbmjlearerr resets the error condition on the named database.

DIAGNOSTICS
All functions that return an int indicate errors with negative values and success with zero.
Routines that return a datum indicate errors with a null dptr. If dbm_store is called with a flags
value of DBM_INSERT and finds an existing entry with the same key, a value of 1 is returned.

WARNINGS
The .pag file will contain holes so that its apparent size is about four times its actual content.
Some older UNIX systems create real file blocks for these holes when touched. These files can­
not be copied by normal means (such as cp(l), cat(l), tar(1), or ar(l» without expansion.

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block.
Dbm_store will return an error in the event that a disk block fills with inseparable data.

Dbm_delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a hashing function,
not on anything interesting.

AUTHOR
Ndbm(3X) was developed by the University of California, Berkeley.

SEE ALSO
dbm(3X).

HP-UX Release 7.0: September 1989 -2- (Section 3) 413

NAME
nLtoupper, nLtolower - translate characters for use with NLS

SYNOPSIS
int nCtoupper (c, langid)
int c, langid;

int nCtolower (c, langid)
int c, langid;

DESCRIPTION
These routines are extensions of their counterparts in conv(3C). They function in the same way,
but have a langid parameter (see lang(5» whose value represents a supported language. If lan­
gid is not valid, or if the NLS environment corresponding to langid is not available,
"n-computer", the default NLS environment associated with langinit(3C), is used (see
nUnit(3C».

WARNINGS
These routines are provided for historical reasons only. Use of the routines in conv(3C), which
now provide for international support via setlocale(3C), is recommended.

NLtoupper and nl_tolower effectively call langinit to load the NLS environment according to the
language specified by langid.

AUTHOR
NLconv was developed by the Hewlett-Packard Company.

SEE ALSO
conv(3C), nLinit(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the translations to be done.

International Code Set Support
Single-byte character code sets are supported.

414 (Section 3) -1- HP-UX Release 7.0: September 1989

NAME
nl_isalpha, nLisupper, nUslower, nUsdigit, nLisxdigit, nUsalnum, nUs space, nUspunct,
nLisprint, nl_isgraph, nLiscntrl - classify characters for use with NLS

SYNOPSIS
#inc1ude <nLctype.h>

int nLisalpha (c, langid)
int Ci int langid;

DESCRIPTION
These routines classify character-coded integer values by table lookup. Langid corresponds to a
particular NLS environment (see lang(5». Each is a predicate returning nonzero for true, zero
for false. All are defined for the range -1 to 255. If langid is not defined, or if the NLS
environment corresponding to langid is not available, "n-computer", the default NLS environ­
ment associated with langinit(3C), is used (see nCinit(3C».

nCisalpha

nCisupper

nCislower

nCisdigit

nUsxdigit

nCisalnum

nl_isspace

nl_isprint

nl_isgraph

nUscntrl

DIAGNOSTICS

c is a letter.

c is an uppercase letter.

c is a lowercase letter.

c is a decimal digit (in ASCII: characters [0-9]).

c is a hexadecimal digit (in ASCII: characters [0-9], [A-F] or [a-f).

c is an alphanumeric (letters or digits).

c is a character that creates "white space" in displayed text (in ASCII: space,
tab, carriage return, new-line, vertical tab, and form-feed).

c is a punctuation character (in ASCII: any printing character except the space
character (040), digits, letters.)

c is a printing character.

c is a visible character (in ASCII: printing characters, excluding the space char­
acter (040».

c is a control character (in ASCII: character codes less than 040 and the delete
character (0177».

If the argument to any of these is not in the domain of the function, the result is undefined.

WARNINGS
These macros are provided for historical reasons only. Use of the macros in ctype(3C), which
now provide for international support via setlocale(3C), is recommended.

The nl_ctype(3C) macros call langinit to load the NLS environment according to the language
specified by langid.

AUTHOR
NCctype was developed by the Hewlett-Packard Company.

SEE ALSO
ctype(3C), nLinit(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LCCTYPE category determines the classification of character type.

HP-UX Release 7.0: September 1989 -1- (Section 3) 415

International Code Set Support
Single-byte character code sets are supported.

416 (Section 3) -2- HP-UX Release 7.0: September 1989

NAME
nUnit, langinit - initialize the NLS environment of a program

SYNOPSIS
int nLinit(langname)
char *langname;

int langinit(langname)
char *langname;

DESCRIPTION
NUnit initializes the NLS (Native Language Support) environment of a program to the
language specified by langname. If langname is null or points to an empty string, the default­
mode language, "n-computer" (see lang(S», is initialized.

NCinit affects the behavior of the macros and routines defined in eonv(3C), etime(3C),
etype(3C), eevt(3C), langinfo(3C), multibyte(3C), nUanginfo(3C), nCstring(3C), nl_tools_16(3C),
printf(3S), printmsg(3C), seanf(3S), strftime(3C), string(3C), strtod(3C), and vprintf(3S).

Typically, nl_init is used to bind program operation to the end-user's specified language require­
ments. For example,

nUnit(getenv(IILANGII));

Prior to successfully calling nCinit, functions supporting NLS operate as though the default­
mode language "n-computer" had been initialized.

Langinit performs the same initialization of the environment control areas as does nl_init.
However, nl_init and langinit differ in the action taken when the requested language environ­
ment cannot be initialized (see ERRORS below).

RETURN VALUE
o (zero) will be returned if the environment is successfully initialized to the requested language.
Otherwise, -1 will be returned.

ERRORS
NUnit will fail if the string specified by langname does not identify a valid language name (see
lang(3C», or the language is not available on the system.

If nCinit fails but had previously succeeded, operation will continue with the environment ini­
tialized by the last successful call. If nUnii fails and has never been called successfully, the
environment will revert to the default-mode language "n-computer".

If langinit fails, the environment will revert to the default-mode language "n-computer".

WARNINGS
NCinit and langinit are provided for historical reasons only. Use setloeale instead (see
setloeale(3C». While the default processing language for setloeale is "e", the default processing
language for nl_init is "n-computer". This is maintained for backward portability.

Langinit is implicitly called by the macros and routines which use a langid parameter (see
etime(3C), langinfo(3C), nCeonv(3C), nCetype(3C), nCstring(3C), and strtod(3C». Using any
langid parameter routine or macro will initialize the environment of the associated language
name, thus affecting the behavior of other routines that interact with the NLS environment. For
maximum portability and performance, use of macros and routines without the langid parameter
is recommended.

AUTHOR
NUnit was developed by HP.

SEE ALSO
conv(3C), ctime(3C), ctype(3C), ecvt(3C), langinfo(3C), multibyte(3C), nLconv(3C),

HP-UX Release 7.0: September 1989 -1- (Section 3) 417

nLctype(3C), nUanginfo(3C), nl_string(3C), nl_tools_16(3C), printf(3S), printmsg(3C),
scanf(3S), string(3C), strtod(3C), vprintf(3S), environ(5), hpnls(5), lang(5), nUanginfo(5).

STANDARDS CONFORMANCE
nCinit: XPG2

418 (Section 3) -2- HP-UX Release 7.0: September 1989

NL_LANGINFO(3C) NL_LANGINFO(3C)

NAME
nLlanginfo - language information

SYNOPSIS
#include <nLtypes.h>
#include <langinfo.h>

char *nLlanginfo (item)
nLitem item;

DESCRIPTION
NUanginfo returns a pointer to a null-terminated string containing information relevant to a
particular language or cultural area defined in the program's locale (see setlocale(3C». The
manifest constant names and values of item are defined in <langinfo.h>. For example:

nUanginfo(ABDAY_1)

would return a pointer to the string "Dom" if the language identified by the current locale was
Portuguese, and "Sun" if the identified language was Finnish.

If an invalid item is specified, a pointer to an empty string is returned. An empty string can
also be returned for a valid item if that item is not applicable to the language or customs of the
current locale. For example, a thousands separator is not used when writing numbers according
to the customs associated with the Arabic language.

EXTERNAL INFLUENCES
Locale

The string returned for a particular item is determined by the locale category specified for that
item in langinfo(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
NClanginfo returns a pointer to a static area that is overwritten on each call.

AUTHOR
NUanginfo was developed by HP.

SEE ALSO
localeconv(3C), setlocale(3C), hpnls(5), langinfo(5).

HP-UX Release 7.0: September 1989 -1- (Section 3) 419

NAME
strcmp8, strncmp8, strcmp16, strncmp16 - non-ASCII string collation

SYNOPSIS
int strcmp8 (sl, s2, langid, status)
unsigned char *s1, *s2;
int langid,*status;

int strncmp8 (sl, s2, n, langid, status)
unsigned char *sl, *s2i
int n, langid, *status;

int strcmp16 (sl, s2, file_name, status)
unsigned char *sl, *s2, *file_namei
int *statusi

int strncmp16 (sl, s2, n, file_name, status)
unsigned char *sl, *s2, *file_name;
int n, *statusi

DESCRIPTION
Strcmp8 compares string 81 and 82 according to the collating sequence of the NLS environment
specified by langid (see lang(5». If langid is invalid, or if the NLS environment corresponding
to langid is unavailable, "n-computer", the default NLS environment associated with
langinit(3C) is used (see nCinit(3C». An integer greater than, equal to, or less than 0 is
returned, depending on whether 81 is, respectively, greater than, equal to, or less than 82. Trail­
ing blanks in strings 81 and 82 are ignored. Strncmp8 makes the same comparison but looks at a
maximum of n characters.

Strcmp16 compares strings 81 and 82 and returns an integer greater than, equal to, or less than 0
depending on whether 81 is, respectively, greater than, equal to, or less than 82. Strings 81 and
s2 can contain 16-bit characters mixed with 7-bit and 8-bit characters (see hpnls(5». Strings sl
and s2 are compared with 8-bit characters collating before 16-bit characters. Strncmp16 makes
the same comparison, but looks at a maximum of n characters.

NCinit (see nCinit(3C» must be called before the first call to strcmp16 or 8trncmp16.

ERRORS
If an error condition is encountered, the integer pointed to by status is set to one of the non­
zero values (listed below) defined in <langinfo.h>. For ENOCFFILE and ENOLFILE, errno
indicates that a file system call failed.

[ENOCFFILE] Access of the file /usr/lib/nls/config has failed.

[ENOCONV]

[ENOLFILE]

WARNINGS

The entry for the language sought is not in the file /usr/lib/nls/config.

Access of the NLS environment corresponding to langid or file_name has failed.

These routines are provided for historical reasons only. Use the 8trcoll(3C) routine instead (see
8tring(3C». However, note that all characters are significant to strcoll, whereas strcmp8 and
strncmp8 ignore trailing blanks.

Strcmp16 and Strncmp16 do not support a collation sequence table. (A null string must be
passed as file_name to maintain the correct argument count.)

Strcmp8 and strncmp8 call langinit (see nl_init(3C» to load the NLS environment according to
the language specified by langid.

AUTHOR
NC8tring was developed by HP.

420 (Section 3) -1- HP-UX Release 7.0: September 1989

SEE ALSO
nUnit(3C), string(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LCCTYPE category determines the interpretation of the bytes within the string arguments
to the strcmp8, strncmp8, strcmp16 , and strncmp16 functions as single- and/or multi-byte char­
acters.

The LC_COLLATE category determines the coUation ordering used by the strcmp8 and strncmp8
functions. See hpnls(5) for a description of supported collation features. See nlsinJo(l) to view
the collation used for a particular locale.

International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -2- (Section 3) 421

NAME
firstof2, secof2, byte_status, FIRSTof2, SECof2, BYTE_STATUS, CHARAT, ADVANCE,
CHARADV, WCHAR, WCHARADV, PCHAR, PCHARADV - tools to process 16-bit characters

SYNOPSIS

int c;

int secof2(c)
int c;

int byte_status(c, laststatus)
int c, laststatus;

#include <nCctype.h>

FIRSTof2(c)
int c;

SECof2(c)
int c;

BYTE_ST ATUS(c, laststatus)
int c, laststatus;

CHARAT(p)
char *p;

ADVANCE(p)
char *p;

CHARADV(p)
char *p;

WCHAR(c, p)
int c;
char *p;

WCHARADV(c, p)
int c;
char *p;

PCHAR(c, p)
int c;
char *p;

PCHARADV(c, p)
int c;
char *p;

DESCRIPTION
The following macros and routines perform their operations based upon the loaded NLS
environment (see setlocale(3C».

FIRSTof2 takes a byte and returns a non-zero value if it can be the first byte of a two-byte char­
acter according to the NLS environment loaded, and zero if it cannot.

SECof2 takes a byte and returns a non-zero value if it can be the second byte of a two-byte
character according to the loaded NLS environment, and zero if it cannot.

BYTE_STATUS returns one of the following values based on the value of the current byte in c
and the status of the previous byte interpreted in laststatus as returned by the last call to
BYTE_STATUS. These are the status values as defined in <nCctype.h>:

422 (Section 3) -1- HP-UX Release 7.0: September 1989

ONEBYTE
SECOF2
FIRSTOF2

single-byte character
second byte of two-byte character
first byte of two-byte character

To validate a two-byte character, both the first and second bytes must be valid. If the value of
laststatus is FIRSTOF2 but SECof2(c) returns false, BYTE_STATUS(c, laststatus) will return ONE­
BYTE.

For the macros FIRSTof2, SECoj2, and BYTE_STATUS resuits are undefined for vaiues of c iess
than -1 (EOF) or greater than 255.

CHARAT takes as an argument a pointer "p", which is assumed to be pointing at either a one­
byte character or the first byte of a two-byte character. In either case it evaluates to the
unsigned value of the character, and is analogous to "(*p)".

ADVANCE advances its pointer argument by the width of the character it is pointing at (either
one or two bytes), and is analogous to "(p++)".

CHARADV combines the functions of CHARAT and ADVANCE in a single macro that evaluates
to the unsigned value of a character and advances a pointer argument beyond the last byte of
the character. It is analogous to "(*p + +) " .

WCHAR writes one (0<=c<=255) or two (256<=c<=65535) bytes of its integer argument,
more significant byte first, at the location specified by "p". It is analogous to "(*p = c)" and
evaluates to unsigned "c".

WCHARADV writes one (0<=c<=255) or two (256<=c<=65535) bytes of its integer argument,
more significant byte first, at the location specified by "p", and advances "p" past the last byte.
It is analogous to "(*p++ = c)" and evaluates to unsigned "c".

PCHAR places one (0<=c<=255) or two (0<=c<=65535) bytes of its integer argument, more
significant byte first, at the byte location specified by the pointer argument. It is analogous to
"{*p = c;}" and does not evaluate to "c". PCHAR is obsolete; use WCHAR instead.

PCHARADV places one (0<=c<=255) or two (256<=c<=65535) bytes of its integer argument,
more significant byte first, at the byte location specified by the pointer argument, and advances
the pointer past the last byte. It is analogous to ,,{ *p++ = c;}" and does not evaluate to "c".
PCHARADV is obsolete; use WCHARADV instead.

The functions firstof20, secof20, and byte_statusO, are subroutine versions of the corresponding
macros, and can be called from languages other than C.

WARNINGS
For maximum portibility, the use of the routines specified in multibyte(3C) is recommended for
multibyte character processing.

Other nCtools_16(3C) macros cannot be used as the first argument to WCHAR or WCHARADV.
For example, *t++ = *f++ cannot be replaced by WCHARADV(CHARADV(f),t). Use instead,
something such as int c; ... c = CHARADV(f), WCHARADV(c,t).

WCHAR and WCHARADV may produce a "null effect" warning from lint(l) if not used as part
of another expression or as part of a statement. This will not affect the functionality of either
macro.

Note that WCHAR, WCHARADV, PCHAR and PCHARADV are not "replace_char" macros. They
do not prevent the second byte of a two-byte character from being left dangling if WCHAR,
WCHARADV, PCHAR or PCHARADV overwrite the first byte of the two-byte character with a
single-byte character.

CHARAT, ADVANCE, and CHARADV examine the byte following--the location pointed to by the
argument to verify its validity as a SECof2 byte. If it is not a SECof2 byte, the preceding byte

HP-UX Release 7.0: September 1989 -2- (Section 3) 423

will always be treated as a single-byte character.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of single and/or multi-byte characters.

AUTHOR
NCtools_16 was developed by HP.

SEE ALSO
setlocale(3C), hpnls(S).

424 (Section 3) -3- HP-UX Release 7.0: September 1989

NLAPPEND(3X) NLAPPEND(3X)

NAME
nlappend - append the appropriate language identification to a valid MPE file name

SYNOPSIS
void nlappend(filename, langid, err)
char *filename;
short langid;
unsigned short err[2];

DESCRIPTION
This routine replaces the first three blanks found in filename with the language number. The
purpose of nlappend is to identify the language of a file in an operating system-independent
manner.

The arguments to nlappend are used as follows:

filename A string of up to eight ASCII characters terminated by three blanks.

langid A short integer specifying the language 10.

err The. first element contains the error number. The second element is always
zero. If the call is successful, both elements contain zero.

WARNINGS

Error #

2
4

Meaning

Specified language is not configured.
Filename is not terminated by 3 blanks.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlappend was developed by HP.

SEE ALSO
portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 425

NLCOLLATE(3X) NLCOLLATE(3X)

NAME
nlcollate - compare two character strings according to the MPE language-dependent collating
sequence

SYNOPSIS
void nlcollate(string1, string2, length, result, langid, err, collseq)
char *string1, *string2, *collseq;
short length, *result, langid;
unsigned short err[2];

DESCRIPTION
Nlcollate collates two character strings according to the collating sequence of the specified
language. This routine's purpose is to determine a lexical ordering. It is not intended to be used
for searching or matching.

If the collseq parameter points to the null address, and langid is specified as (or defaults to) a
language in which binary collation is appropriate, the binary collation is used to compare the
two indicated strings. Otherwise, the collseq array will be used to determine the string compare
operation (note that this may be a binary collation).

The arguments to nlcollate are used as follows:

stringl One of the character strings to be collated.

string2

length

result

langid

err

collseq

WARNINGS

The second character string to be collated.

The length of the string segments to be collated.

The result of the character collation is stored in the short integer variable to
which result points.

o If stringl collates equal to string2.
-1 If stringl collates before string2.
1 If stringl collates after string2 .

The language ID indicating the collating sequence to be used for the collation.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid collating table entry.
4 Invalid length parameter.

An array containing the collating sequence to be used, as returned from a call
to nlinfo (3X)' s itemnumber 11.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(S) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(S) for HP-UX NLS support.

AUTHOR
Nlcollate was developed by HP.

SEE ALSO
nlinfo(3X), portnls(S).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

426 (Section 3) -1- HP-UX Release 7.0: September 1989

NLCONVCLOCK (3X)

NAME
nlconvclock - check and converts a time string to the MPE internal format

SYNOPSIS
unsigned int nlconvclock(instr, leninstr, langid, err)
char *instr;
short leninstr, langid;
unsigned short err[2];

DESCRIPTION

NLCONVCLOCK (3X)

Nlconvclock converts instr to a general time format as returned by nlinfo(3X) itemnumber 3. This
routine is the inverse of nlfmtclock(3X). Note that the seconds and tenths of seconds are always
set to zero.

The arguments to nlconvclock are used as follows:

instr

leninstr

langid

A character buffer containing the time to be converted.

An unsigned short specifying the length of the buffer.

A short containing the language ID.

err The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid time format.
4 Invalid length.

RETURN VALUE
Nlconvclock returns the time in the format:

Bits 0 7 8 15

Bits 16 23 24 31
,-------------,------------------1
I Seconds J Tenths of Seconds I
-------------- ------------------

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlconvclock was developed by HP.

SEE ALSO
clock(3X), nlfmtclock(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 427

NLCONVCUSTDA(3X) NLCONVCUSTDA(3X)

NAME
nlconvcustda - convert a date string to the MPE packed date format

SYNOPSIS
unsigned short nlconvcustdate(instr, leninstr, langid, err)
char *instr;
short leninstr, langid;
unsigned short err[2];

DESCRIPTION
Nlconvcustda converts instr to a packed date format. This routine is the inverse of
nlfmtcustdate (3X).

The arguments to nlconvcustda are used as follows:

instr

leninstr

langid

err

RETURN VALUE

A character buffer containing the date to be converted.

A positive integer specifying the length of the string (in bytes).

A short containing the language ID number.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.
4 Invalid string length.

The routine returns the date as an unsigned integer in the format:

Bits 0 6 7 15

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlconvcustda was developed by HP.

SEE ALSO
calendar(3X), nlfmtcustdate(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

428 (Section 3) -1- HP-UX Release 7.0: September 1989

NLCONVNUM(3X) NLCONVNUM(3X)

NAME
nlconvnum - convert an MPE native language formatted number to an ASCII number

SYNOPSIS
void nlconvnum(langid, instr, leninstr, outstr, plenoutstr, err, numspec, fmtmask, pde­
cimals)
unsigned short err[2];
short langid, leninstr, *plenoutstr, fmtmask, *pdecimals;
char *instr, *outstr, *numspec;

DESCRIPTION
Nlconvnum converts a native language formatted number to an ASCII number, with an n­
computer decimal separator (.) and thousands separator (,), to use for further conversion to
INTEGER, REAL, etc.

This routine converts the decimal separator and the thousands separators to the n-computer
equivalent, or strips them, according to the value of fmtmask. If fmtmask and
M_NUMBERSONLY is not zero, instr is validated as a number. If it is null, no validation will
take place.

For languages using an alternate set of digits (currently only arabic, which uses HINDI digits),
nlconvnum also converts these digits to ASCII digits so they can be recognized and used as
numeric characters.

The arguments to nlconvnum are used as follows:

langid A language ID number.

instr

leninstr

outstr

plenoutstr

err

numspec

fmtmask

A character buffer containing the native language formatted number to convert.
Leading and trailing spaces are ignored.

Length, in bytes, of instr.

Output buffer; an array containing the converted output. The output is left­
justified in the buffer, and plenoutstr contains the actual length of the converted
number. Outstring may refer to the same address as instr.

A pointer to the length, in bytes, of outstr. After a successful call to nlconv­
num, the short integer to which plenoutstr points contains the actual length of
the converted number.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid length specified (leninstr or plenoutstr).
4 Invalid number specified (instr).
7 Truncation has occurred (outstr is left partially formatted).
8 Invalid numspec parameter.
9 Invalid fmtmask parameter.

A character buffer, as returned from nlnumspec, containing information about
correct formatting. If this parameter is not null, langid is ignored and perfor­
mance is improved (see the description of nlnumspec).

An unsigned short specifying how to format the number. The default value is
zero, which means substitution only, convert thousands separators, convert
decimal separators, and that instr can contain any character.

HP-UX Release 7.0: September 1989 -1- (Section 3) 429

NLCONVNUM(3X)

Value

M_STRIPTHOU

M_NUMBERSONLY

NLCONVNUM(3X)

Description

- Strip thousands separators.

- Strip decimal separators.

- instr contains a number.
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlconvnum was developed by HP.

SEE ALSO
nlfmtnum(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

430 (Section 3) ---2- HP-UX Release 7.0: September 1989

NLFINDSTR(3X) NLFINDSTR(3X)

NAME
nlfindstr - search for a string in another string using the MPE character set definition

SYNOPSIS
short nlfindstr(langid, string1, length 1, string2, length2, err, charset)
short langid, length1, length2;
char *string1, *string2, *charset;
unsigned short err[2];

DESCRIPTION
Nlfindstr searches for the first occurrence of a given string of characters in another character
string.

The arguments to nlfindstr are:

langid The ID number of the desired language.

stringl A pointer to the character buffer to be searched. It can contain one-byte and
two-byte characters.

Length (in bytes) of stringl.

The character buffer for which to search.

length 1

string2

length2

err

Length (in bytes) of string2. The length2 must be less than or equal to lengthl.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid lengthl parameter.
4 Invalid length2 parameter.

charset A byte buffer containing the character set definition for the language to be
used, as returned by nlinfo(3X)'s itemnumber 12.

RETURN VALUE
Offset is a short integer that holds the number of bytes into stringl where string2 was found. A
-1 is returned if the string is not found.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfindstr was developed by HP.

SEE ALSO
nlinfo(3X), mpnls(5) .

. EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 431

NLFMTCAL(3X) NLFMTCAL(3X)

NAME
nlfmtcalendar - format an MPE packed date using a localized format

SYNOPSIS
void nlfmtcalendar(date; outstr, langid; err)
unsigned short date, err[2];
char *outstr;
short langid;

DESCRIPTION
Nlfmtcal formats the specified date in the localized custom version of the date format, but with
no time information (see nlfmtclock(3X». For example:

FRI, OCT 2, 1987

The arguments to nlfmtcal are used as follows:

date An unsigned short indicating the date in the packed date format:

outstr

langid

err

WARNINGS

Bits 0 6 7 15
,-------------------,------------1
LYear of Century I Day of Year I

A character buffer in which the formatted date is returned. This buffer is 18
bytes long, and padded with blanks if necessary.

A short integer specifying the language whose custom is to be used.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfmtcal was developed by HP.

SEE ALSO
calendar(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

432 (Section 3) -1- HP-UX Release 7.0: September 1989

NLFMTCLOCK(3X)

NAME
nlfmtclock - format an MPE time of day using a localized format

SYNOPSIS
void nlfmtclock(time, outstr, langid, err)
unsigned int time;
char *outstr;
short langid;
unsigned short err[2];

DESCRIPTION

NLFMTCLOCK(3X)

Nlfmtclock formats the time of day obtained with the clock routine, according to the clock for­
mat defined for the specified language.

The arguments to nlfmtclock are used as follows:

time An unsigned int obtained from the clock routine:

Bits 0 7 8 15
1----------------1----------------1

I_~~_U!_~~~~ ____ J_~~~~~_~~~~~~J

Bits 16 23 24 31
1-------------1-----------------,
I Seconds j Tenths of Seconds I
-------------- ------------------

outstr An 8-byte buffer in which the formatted time of day is returned.

langid A short integer specifying the language whose clock format is to be used.

err The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

WARNINGS

Error #

2
3

Meaning

Specified language is not configured.
Invalid time format.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfmtclock was developed by HP.

SEE ALSO
clock(3X), nlconvclock(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 433

NLFMTCUSTDATE(3X) NLFMTCUSTDATE(3X)

NAME
nlfmtcustdate - format an MPE packed date using a custom date

SYNOPSIS
void nlfmtcustdate(date, outstr, langid, err)
unsigned short date, err[2];
char *outstr;
short langid;

DESCRIPTION
Nlfmtcustdate converts the packed date format to the language-dependent custom date as
specified in the language definition file. A custom date has an abbreviated format, such as
"10/21/87" or "87.10.21".

The arguments to nlfmtcustdate are used as follows:

date An unsigned short containing the date in the packed date format:

outstr

langid

err

WARNINGS

Bits 0 6 7 15
1-------------------1------------1
L::.:'~_~_~~~~~~ _____ L~~~_o!_~~~~_'

A 13-byte buffer in which the formatted date is returned.

A short integer of the language whose custom date specification is to be used
for the format.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfmtcustdate was developed by HP.

SEE ALSO
calendar(3X), nlconvcustdate(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

434 (Section 3) -1- HP-UX Release 7.0: September 1989

NLFMTDATE(3X) NLFMTDATE(3X)

NAME
nlfmtdate - format MPE date and time in a localized format

SYNOPSIS
void nlfmtdate(date, time, outstr, langid, err)
unsigned short date, err[2];
unsigned long time;
char *outstr;
short langid;

DESCRIPTION
Nlfmtdate formats the specified date and time in a localized custom version. For example:

SUN, FEB 7, 1988 9:00 AM

The arguments to nlfmtdate are used as follows:

date An unsigned short indicating the date to be formatted in the packed date for­
mat:

time

outstr

langid

err

WARNINGS

Bits 0 6 7 15

An unsigned int indicating the time to be formatted. The double word is in the
clock format:

Bits 0 7 8 15

Bits 16 23 24 31

I I I

I Seconds j Tenths of Seconds I
-------------- ------------------

A 28-byte buffer in which the formatted date is returned.

A short containing the language ID indicating the custom to be used.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.
4 Invalid time format.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfmtdate was developed by HP.

SEE ALSO
calendar(3X), clock(3X), nlfmtcal(3X), nlfmtclock(3X), portnls(5).

HP-UX Release 7.0: September 1989 -1- (Section 3) 435

NLFMTDATE(3X)

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

436 (Section 3) -2-

NLFMTDATE(3X)

HP-UX Release 7.0: September 1989

NLFMTLONGCAL(3X) NLFMTLONGCAL(3X)

NAME
nlfmtlongcal - format an MPE packed date using a long calendar format

SYNOPSIS
void nlfmtlongcal(date, outstr, langid, err)
unsigned short date, err[2];
char *outstr;
short langid;

DESCRIPTION
Nlfmtlongcal formats the supplied date according to the long calendar format. The formatting is
done according to the template returned by nlinfo(3X), itemnumber 30.

The arguments to nlfmtlongcal are used as follows:

date A short integer value containing a date in the packed date format:

Bits 0 6 7 15

I I I
I Year of Century L Day of Year I
-------------------- ------------

outstr A 36-byte buffer to which the formatted long calendar date is returned, padded
with blanks if necessary.

langid An ID number specifying which language-specific format is to be used.

err The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnIs(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
NlfmtlongcaI was developed by HP.

SEE ALSO
calendar(3X), nlfmtcalendar(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 437

NLFMTNUM(3X) NLFMTNUM(3X)

NAME
nlfmtnum - convert an ASCII number to an MPE language-specific formatted number

SYNOPSIS
void nlfmtnum(langid, instr, leninstr, outstr, plenoutstr, err, numspec, fmtmask, decimals)
short iangid, ieninstr, *plenoutstr, rmtmask, decimals;
unsigned short err[2J;
char *instr, *outstr, *numspec;

DESCRIPTION
Nlfmtnum converts a string containing an ASCII number to a language-specific formatted
number using the currency name/symbol, decimal separator and thousands separators defined
for the language. The string may contain the n-computer decimal separator (.), thousands
separator (,) and a dollar sign ($).

This routine operates in two modes, substitution mode and formatting mode. The substitution
mode (if fmtmask is zero) substitutes the native equivalent for "." and "," and, for arabic, the
alternate set of digits for ASCII digits. The input is not validated as a number, and can contain
several individual numbers. No justification takes place, and the output is left-truncated if
outstr is shorter than instr (for example, 1,234.56 becomes 234,56).

If fmtmask is not zero, the formatting mode formats the input according to fmtmask in addition
to performing the substitution. In this mode the input is validated as a number and only ASCII
digits and "_", "+", "$", "." and "," are allowed. Only one sign and one "$" is allowed and
must be the first character(s) in instr. Even if insertion (of thousands separators, etc.) is
specified in fmtmask, thousands separators and a decimal separator are still valid characters in
the input. In this case they are substituted. If no justification is specified, the output is right­
justified with the same number of trailing spaces as the input. Note that for languages written
right-to-Ieft, trailing spaces in the input are preserved as leading spaces in the output. If the
output is truncated, it is left-truncated (for example, 1,234.56 becomes .234,56).

The arguments to nlfmtnum are used as follows:

langid A language ID number specifying which language's formatting specifications to
use for the formatting.

instr

leninstr

outstr

plenoutstr

err

438 (Section 3)

A byte array containing the n-computer formatted ASCII number to be con­
verted, for example, 123,456.78. Leading and trailing spaces are allowed.

Length, in bytes, of instr.

A byte buffer where the language-specific formatted number is returned. The
decimal separator, thousands separator and currency symbol/name are
replaced according to the language definition if present or inserted, or if
specified by fmtmask. Qutstr may reference the same address as instr.

Length, in bytes, of outstr. After a successful call, if specified by fmtmask (the
two bits starting with bit 12 (from highest to lowest) are equal to 3), plenoutstr
returns the actual length, in bytes, of the formatted number.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured,
3 Invalid length specified (leninstr or *plenoutstr).
4 Invalid number specified (instr).
5 Invalid decimal point in number specified (instr).

-1- HP-UX Release 7.0: September 1989

NLFMTNUM(3X)

numspec

fmtmask

decimals

WARNINGS

NLFMTNUM(3X)

6 Invalid thousand separators in number specified (instr).
7 Truncation has occurred (outstr is left partially formatted).
8 Invalid numspec parameter.
9 Invalid fmtmask parameter.
10 Invalid decimals parameter.

A byte array, as returned from nlnumspec(3X), containing formatting
specifications for the specified language (currency symbol/name, decimal
separator, etc.). If this parameter is not null, langid is ignored, and perfor­
mance is improved. (See the description of nlnumspec(3X».

A short integer value specifying any formatting to be done on the input. The
default value is zero, which means a simple substitution.

Value Description

NULL

M_INSTHOU
M_INSDEC
M_CURRENCY
M_LEFTJUST
M_RIGHTJUST
M_RETLENGTH

Do not insert thousands separators.
Do not insert decimal separator.
No justification of the output.

Insert thousands separators.
Insert decimal separator.
Insert currency name/symbol.
The output is left-justified.
The output is right-justified.
The output is left-justified and plenoutstr returns the
actual length of the formatted number.

An integer specifying where to insert the decimal separator. The value is
ignored if fmtmask and M_INSDEC is zero, or a decimal separator is present in
the number.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlfmtnum was developed by HP.

SEE ALSO
nlconvnum(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -2- (Section 3) 439

NLGETLANG(3X) NLGETLANG(3X)

NAME
nlgetlang - return the current user, data, or system default language

SYNOPSIS
short nlgetIang(function, err)
short fu~ction; .
unsigned short err[2];

DESCRIPTION
Nlgetlang looks for a LANG string in the user's environment. If it finds it, it returns the
corresponding integer listed in langid (5). Otherwise, or if the value of function is not valid, it
returns 0 and sets the err parameter.

The arguments to nlgetlang are used as follows:

function A short integer that specifies which language is returned.

Value Description

1 User language
2 Data language
3 System default language

err The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.
Error # Meaning
1 Native Language Support file(s) not found
2 Specified language not configured
3 Invalid function value
4 No language specified for NLGETLANG to access

RETURN VALUE
Nlgetlang returns the language ID as a short integer. In case of error, zero is returned.

WARNINGS
This routine is provided for compatibility with MPE, another HP. operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlgetlang was developed by HP.

SEE ALSO
getenv(3C), currlangid(3C), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

440 (Section 3) -1- HP-UX Release 7.0: September 1989

NLINFO(3X) NLINFO(3X)

NAME
nlinfo - return MPE language-dependent information

SYNOPSIS
void nlinfo(itemnumber, item value, langid, error)
short itemnumber;
int *itemvalue;
short *langid;
unsigned short error[2];

DESCRIPTION
Nlinfo returns such information as the format of the date, the radix character, the direction of
the language, etc.

The item number indicates the type of information the user has requested. The data is passed
back in itemvalue.

The arguments to nlinfo are used as follows:

item number

itemvalue

langid

err

Item numbers

A short integer of the item desired. This number specifies which item value is
to be returned. See below for a list of item numbers.

A pointer to an integer that contains the value of the item specified by the
corresponding item number. The data type of the item value depends on the
item itself.

A pointer to a short integer containing the language 10, or for itemnumber 22,
the location in which the language 10 is returned.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

1 Native Language Support file(s) not found
2 Specified language is not configured.
3 Specified character set is not configured.
10 ltemnumber is out of range.

The following is a list of the currently defined item numbers and the information returned.

ltemnumber

1

2

3

4

5

6

7

Description

An 18-byte buffer in which the calendar format is returned.

A 13-byte buffer in which the custom date format is returned.

An 8-byte buffer in which the clock specification is returned.

A 48-byte buffer in which the month denotation abbreviation table is returned.
The abbreviation of each month is 4 bytes long (with blank padding if neces­
sary). The first 4 bytes are the abbreviation for January.

A 144-byte array in which the month denotation table is returned. Each month
denotation is 12 bytes long. The table starts with January.

A 21-byte array in which the day of the week denotation abbreviation table is
returned. Each weekday abbreviation is three bytes long. The first three bytes
are the abbreviation for Sunday.

An 84-byte array in which the day of the week denotation table is returned.
Each weekday denotation is 12 bytes long. The table starts with Sunday.

HP-UX Release 7.0: September 1989 -1- (Section 3) 441

NLINFO(3X)

8

9

10

11

12

15

16

17

18

21

22

26

27

28

29

442 (Section 3)

NLINFO(3X)

A 12-byte array in which the YES/NO responses are returned. The first 6
bytes contain the (upshifted) "YES" response; the second 6 bytes contain the
(upshifted) "NOli response.

A 2-byte array in which the symbols for decimal point and thousands indicator
are returned. The first byte contains the decimal point, the second contains the
thousands indicator.

A 6-byte array in which the currency signs are returned. The first byte con­
tains the currency sign used in the business formats, the second byte is either a
numeric zero, which indicates that the currency symbol precedes the value, or
a one, which indicates that a symbol follows the value. The next 4 bytes con­
tain the fully qualified currency sign.

An array in which the collating sequence table is returned. To determine the
size of this array, the length must be determined by a call to nlinfo with item­
number 27.

A 256-byte array in which the character set definition is returned. Each byte
has numeric identification of the character type:

o numeric character
1 Alphabetic lowercase character
2 Alphabetic uppercase character
3 Undefined graphic character
4 Special character
5 Control code
6 First byte of a two-byte character

A 256-byte array in which the upshift table is returned.

A 256-byte array in which the downshift table is returned.

An array of unsigned shorts in which the language numbers of all configured
languages are returned. The first element of this array contains the number of
configured languages. The second word contains the language number of the
first configured language, etc. The system default language is returned (the
langid parameter, if specified, is insignificant).

A short int in which true (-1) is returned if the specified language is supported
(configured) on the system. Otherwise, false (0) is returned.

A 16-byte array in which the (uppercase) name of the specified language is
returned. If the name contains less than 16 bytes, it is padded with blanks.

The itemvalue contains a byte buffer containing a language name or language
number (ASCII digits) terminated by a blank. The array must contain less than
or equal to 16 bytes. The langid (third) parameter is assigned the associated
language ID number.

A short integer in which the class number of the specified language is returned.

An integer in which the length (in two-byte units) of the collating sequence
table corresponding to the specified language is returned.

A short integer in which the length (in two-byte units) of the national depen­
dent information table is returned, If no national table exists for the specified
language, an error is returned.

A byte buffer in which the national dependent information table is returned.
To determine the size of this array, the length must be obtained via a prior call
to nlinfo with itemnumber 28.

-2- HP-UX Release 7.0: September 1989

NLINFO(3X)

30

31

32

33

34

NLINFO(3X)

A 36-byte array in which the long calendar format is returned. It may contain
arbitrary text, as well as the following descriptors:

o 1 through 3 of these are to be replaced by that many bytes from the

W

M

o

mm
yy
yyyy
Nyy

day abbreviation.
1 through 12 of these are to be replaced by that many bytes from
the day of the week.
1 through 4 of these are to be replaced by that many bytes from the
month abbreviation.
1 through 12 of these are to be replaced by that many bytes from
the month of the year.
Numeric month of the year.
Numeric year of the century.
Numeric year of the century.
National year.

In addition, a special literal character II-II (tilde) can be used to indicate that the
following character should be taken literally in the format, even if it is one of
the special characters above.

For example, a format could be:

"WWWWWWWWW, 000000000 dd, A.-D. yyyy ..

This format in n-computer would result in the following:

"WEDNESDAY, NOVEMBER 21, A.D. 1984 "

A 16-byte array in which the currency name is returned.

An 8-byte array, containing information about an Alternate set of digits.
(Currently only used by arabic).

Byte Description

0-1 Alternate digit indicator
o - No Alternate digits defined
1 - Alternate digits defined

2 The Alternate digit "0"
3 The Alternate digit "9"
4 The "+" used with Alternate digits
5 The "-" used with Alternate digits
6 The decimal separator used with Alternate digits
7 The thousands separator used with Alternate digits

A 4-byte array, containing information about the direction of the language.

Byte Description

0-1 Language direction
o - Direction is "left-to-right"
1 - Direction is "right-to-Ieft"

2 The "right-to-Ieft" space
3 Undefined

An unsigned short that returns the data ordering of the language.

o Keyboard order
1 Left-to-Right screen order

HP-UX Release 7.0: September 1989 -3- (Section 3) 443

NLlNFO(3X) NLlNFO(3X)

2 Right-to-Left screen order

35 An unsigned short that returns the size of the character used by the language.

o One-byte characters (8 bits)
1 Two-byte characters (16 bits)

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlinto was developed by HP.

SEE ALSO
hpnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

444 (Section 3) -4- HP-UX Release 7.0: September 1989

NLIST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (file-name, nl)
char *file-namei
struct nlist *nli

REMARKS
The use of symbol table type and value information is inherently non-portable. Use of nlist
should reduce the effort required to port a program which uses such information, but complete
portability across all implementations of HP-UX cannot be expected.

DESCRIPTION
Nlist examines the name list in the executable file whose name is pointed to by file-name, and
selectively extracts a list of values and puts them in the array of nlist structures pointed to by
nl. The array of nlist structures initially contains only the names of variables. Once nlist has
been called, the variable names are augmented with types and values. The list is terminated by
a null name, which consists of a null string in the variable name position of the structure. The
name list of the file is searched for each variable name. If the name is found, type and value
information from the file is inserted into the name list structure. If the name is not found, type
and value fields are set to zero. The structure nlist is defined in the include file <nlist.h>. See
a.out(4) and nlist(4) for further description of the symbol table structure.

The file must have the organization and symbol table described for an a.out file in a.out(4). The
information is extracted from the symbol table used by the loader, Id(l).

On machines which have such a file, this subroutine is useful for examining the system name
list kept in the file /hp-ux. In this way programs can obtain system addresses that are up to
date.

RETURNS

NOTES

All nlist structure fields are set to 0 if the file cannot be found or if it is not a valid object file
containing a linker symbol table.

Nlist returns -1 upon error; otherwise it returns O.

The <nlist.h> header file is automatically included by <a.out.h> for compatibility. However, if
the only information needed from <a.out.h> is for use of nlist, then including <a.out.h> is
discouraged. If <a.out.h> is included, the line "#undef n_name" may need to follow it.

SEE ALSO
a.out(4), nlist(4).

STANDARDS CONFORMANCE
nlist: SVID2

HP-UX Release 7.0: September 1989 -1- (Section 3) 445

NLJUDGE(3X) NLJUDGE(3X)

NAME
nljudge - judge whether a character is a one-byte or multi-byte Asian character using the MPE
character definition table

SYNOPSIS
short nljudge(langid, instr, length, judge£!ag, er!', charset>
short langid, length;
char *instr, *judgeflag, *charset;
unsigned short err[];

DESCRIPTION
Nljudge judges whether or not a character is a one-byte or multi-byte Asian character. If it is a
multi-byte character, judgeflag is set to 1 or 2. If it is a one-byte character, judgeflag is set to O.

Any language number can be specified as the langid parameter. However, if the language
specified uses only one-byte characters (see nlinfo(3X)'s itemnumber 35), the judgeflag returns all
zeroes.

The arguments to nljudge are used as follows:

langid The ID number for the desired language.

instr

length

judgeflag

err

charset

RETURN VALUE

The character buffer to be judged.

A short integer value specifying the number of bytes in instr.

A pointer to a char whose value is set to:

o One-byte character
1 First byte of a two-byte character
2 Second byte of a two-byte character
3 Invalid two-byte character

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid string length.
7 Invalid characters found in instr.

A character buffer containing the character set definition for the language to be
used, as returned by nlinfo(3X)'s item number 12. If it doesn't point to a null
address, the langid parameter is ignored, and this routine is more efficient.

Nljudge returns the number of multi-byte Asian characters that could be used to check if a
string of character contains any Asian characters.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nljudge was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES

446 (Section 3) -1- HP-UX Release 7.0: September 1989

NLJUDGE(3X) NLJUDGE(3X)

International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -2- (Section 3) 447

NLKEYCOMPARE(3X) NLKEYCOMPARE(3X)

NAME
nlkeycompare - determine if a character array (keyl) is almost equal to another (key2) using
the MPE language-dependent collation table

SYNOPSIS
void nlkeycompare(keyl, length1, key2, length2, presult, laiigid, err, l;ullseq)
char *keyl, *key2;
short lengthl, length2, langid, *presult;
unsigned short err[2J, collseq[];

DESCRIPTION
Nlkeycompare determines if a character array (keyl) is almost equal to another character array
(key2). Two character arrays are considered almost equal when they differ only in case or
accent priorities. For example, the arrays ABC and aBc are almost equal in English.

Nlkeycompare determines if a given character array can be collated before or after another char­
acter array of a different length. For example, nlkeycompare examines the records in a file sorted
in a given language and determines if the character array keyl can be found later on in the file
as the leading substring of the sort key, if the value of the last record read is key2.

The arguments to nlkeycompare are used as follows:

keyl A byte array being compared to the key2.

length 1 The length in bytes of keyl. Lengthl must be less than length2.

key2 A byte array containing a character array to which to compare keyl.

length2 The length in bytes of key2. Length2 must be greater than lengthl.

presult

langid

err

collseq

WARNINGS

A pointer to a short integer variable in which to return the result of the com­
parison.

o The retrieved key2 matches the key1.
1 The retrieved key2 does not match the key1. It is different only in

case or accent priority.
2 The retrieved key2 is less than the keyl (its collating order is before

the desired one).
3 The retrieved key2 is greater than the keyl (it collates after the

desired key).

The language ID number indicating the collating sequence to be used for the
compare.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid collating table entry.
4 Invalid length parameter.
7 Lengthl is greater than length2.

An array containing the collating sequence table as returned by nlinfo(3X)'s
itemnumber 11.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(S) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(S) for HP-UX NLS support.

448 (Section 3) -1- HP-UX Release 7.0: September 1989

NLKEYCOMP ARE (3X)

AUTHOR
Nlkeycompare was developed by HP.

SEE ALSO
nlcollate(3X), nlinfo(3X), portnls(S).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -2-

NLKEYCOMP ARE (3X)

(Section 3) 449

NLNUMSPEC(3X) NLNUMSPEC(3X)

NAME
nlnumspec - return information needed by MPE routines for
formatting and converting numbers

SYNOPSIS
void nlnumspec(langid, numspec, err)
short langid;
char *numspec;
unsigned short err[2];

DESCRIPTION

450

Nlnumspec returns the information needed for formatting and converting numbers. It combines
several calls to nlinfo(3X) in order to simplify the use of native language formatting. By calling
nlnumspec once, and passing the obtained information to nlfmtnum (3X) and nlconvnum (3X),
implicit calls to nlnumspec(3X) from nlfmtnum(3X) and nlconvnum(3X) are avoided and perfor­
mance is improved.

Nlnumspec combines the functions of itemnumber 9, 10,31, 32, and 33 on nlinfo(3X). The infor­
mation is formatted where needed. For example, any spaces in the currency symboljname are
included. The currency symboljname is the shortest non-blank descriptor, as returned from
nlinfo(3X) itemnumber 10 and 31.

Nlnumspec does not, apart from the mentioned formatting, provide any information not obtain­
able with nlinfo(3X), but is included for the convenience of the user. For efficiency, the user of
this routine calls it once, saves the result, and then calls nlfmtnum(3X) and/or nlconvnum(3X)
multiple times.

The arguments to nlnumspec are used as follows:

langid The ID number of the desired language.

numspec

(Section 3)

A character buffer of at least 60 bytes in which the following information is
returned:

Byte

00-01
02-03

04-05

06-07
08
09
10
11
12
13
14
15
16-17

18-19

Description

Language ID number.
Alternate Digit Indicator.
o - No Alternate digits exist.
1 - Alternate digits exist.
Language Direction Indicator.
o - The Language is "left-to-right."
1 - The Language is "right-to-Ieft."
The Alternate digit range ("0", "9").
Decimal separator (ASCII-digits).
Decimal separator (Alternate-digits).
Thousands separator (ASCII-digits).
Thousands separator (Alternate-digits).
"+" Alternate-digits.
" -" Alternate-digits.
"Right-to-Ieft" space.
Reserved.
Currency place.
0- Currency symbol precedes the number.
1 - Currency symbol follows the number.
2 - Currency symbol replaces the decimal separator.
Length of Currency symbol (including any spaces).

-1- HP-UX Release 7.0: September 1989

NLNUMSPEC(3X)

20-37
38-39
40-41
42-59

Currency symbol (including any spaces).
Data ordering of the language.
Size of character used by the language.
Reserved.

NLNUMSPEC(3X)

err The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(S) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(S) for HP-UX NLS support.

AUTHOR
Nlnumspec was developed by HP.

SEE ALSO
nlinfo(3X), portnls(S).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -2- (Section 3) 451

NLREPCHAR(3X) NLREPCHAR(3X)

NAME
nlrepchar - replace non-displayable characters of a string using the MPE character set table

SYNOPSIS
void nlrepchar(instr: outstr: length: repchar: langid: err; charset)
char *instr, *outstr, repchar, *charset;
short length, langid;
unsigned short err[2];

DESCRIPTION
Nlrepchar replaces all non-displayable characters in the input character buffer with the replace­
ment character. Non-displayable characters are those of types 3 and 5, as returned by
nlinfo(3X), itemnumber 12. Native language characters of the supported character set are not
replaced.

The arguments to nlrepchar are used as follows:

instr A character buffer in which the non-displayable characters must be replaced.

outstr

length

repchar

langid

err

charset

AUTHOR

A character buffer to which the replaced character string is returned.

A short integer specifying the length (in bytes) of instr.

A byte specifying the replacement character to be used.

A short integer value specifying the language ID number of the language that
determines the character set to be used.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid replacement character.
4 Invalid length parameter.
S The value of outstr would overwrite instr.
10 Invalid Asian character.

Contains the character set definition for the language to be used, as returned in
nlinfo(3X)'s itemnumber 12. If this parameter is supplied (Le., not NULL), lan­
gid is ignored and this routine is much more efficient.

Nlrepchar was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

452 (Section 3) -1- HP-UX Release 7.0: September 1989

NLSCANMOVE(3X) NLSCANMOVE(3X)

NAME
nlscanmove - move, scan and case shift character strings using the MPE character set definition
table

SYNOPSIS
short int nlscanmove(instr, outstr, flags, length, langid, err, pcharset, pshift)
char *instr, *outstr;
short flags;
int length;
short langid;
unsigned short err[2];
char *pcharset, *pshift;

DESCRIPTION
Niscanmove moves, scans and/or case shifts character strings.

The arguments to nlscanmove are used as follows:

instr

outstr

flags

length

langid

err

A character buffer that acts as the source string of the scan or move functions.

A character buffer that acts as the target. Note that if outstr is equal to instr,
this routine will act as scan. Otherwise, a move will be performed, see err
below.

A flag defining the options for the routine invocation. This parameter defines
the end condition for the scan or move.

Value

M_L

M_U

M_N

M_S

M_WU

Description

Select lowercase alphabetic characters.

Select uppercase alphabetic characters.

Select numeric characters.

Select special characters.

By default nlscanmove will scan or move characters while the
character currently being scanned is one of those selected (i.e.
upper, lower, numeric, special). If M_ WU is used, then
nlscanmove will scan or move characters until the character
currently being scanned is one of those selected.

Shift scanned or moved characters to the uppercase.

Shift scanned or moved characters to the lowercase.

M_OB Select one-byte characters.

M_ TB Select two-byte (Asian) characters.

M_OBorM_TB
Select both one- and two-byte characters.

A short integer indicating the maximum number of valid bytes to be acted
upon during the indicated option.

A short integer containing the language ID number which implies the both the
character set definitions of character attributes and the language specific shift.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

HP-UX Release 7.0: September 1989 -1- (Section 3) 453

NLSCANMOVE(3X)

pcharset

pshift

RETURN VALUE

2
3
4
7
8
9
10

Specified language is not configured.
Overlapping strings, instr overwrites outstr.
Invalid length parameter.
The reserved part of flags is not zero.
Both upshift and downshift request.
Invalid table element.
Invalid Asian character.

NLSCANMOVE(3X)

A pointer to a character buffer containing the character set definition for the
language to be used, as returned nlinfo(3X)'s itemnumber 12. If not zero, the
langid parameter is ignored, and this routine is much more efficient. This
parameter is required for calls in which bits (12:4) of flags is neither 0 nor 15.

A pointer to a character buffer containing shift information for a desired upshift
or downshift (e.g., as returned in nlinfo(3X)'s itemnumber 15 or 16). This
parameter is used when bits (9:2) of flags is not O.

A short containing the number of bytes acted upon in the scan or move operation.

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlscanmove was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

454 (Section 3) -2- HP-UX Release 7.0: September 1989

NLSUBSTR(3X) NLSUBSTR(3X)

NAME
nlsubstr - extract a substring of a string using the MPE character set definition table

SYNOPSIS
void nlsubstr(instring, inlength, outstring, poutlength, start, movelength, langid, flags,
err, charset)
char *instring, *outstring,;
short inlength, *poutlength, start, movelength, langid;
short fiags;
unsigned short err[], charset[];

DESCRIPTION
Nlsubstr extracts a substring from instring and places the result in outstring.

The arguments to nlsubstr are used as follows:

instring

inlength

outstring

poutlength

start

movelength

langid

flags

The byte buffer from which the substring is extracted. The string can contain
both one-byte and two-byte (Asian) characters.

Length, in bytes, of instring

Where the sub-string is placed.

Length, in bytes, of outstring. After a successful call, the variable to which
poutlength points will contain the actual length of the sub-string moved to out­
string.

The offset into instring where the sub-string starts. A value of zero is the
beginning point.

Length, in bytes, of the sub-string.

The ID number of the desired language.

This flag word is used primarily with Asian languages. It is meaningless with
one-byte oriented languages. Flags is used to indicate the treatment of the case
when the first byte of the sub-string is the second byte of a two-byte Asian
character and in the case where the last byte in the sub-string is the first byte
of a two-byte Asian character.
Selection of nlsubstr's behavior if the first character is the second byte of an
Asian character:

Value Description

F _RETURNERR Return an error condition.

Start from start+ 1.

Start from start -1.

Start from start, but replace the character with a
blank in outstring.

F _SP Start from start, regardless of the value of the first
character.

Selection of nlsubstr's behavior if the last character is the first byte of an Asian
character:

Value

F_LMPl

F_LMMl

Description

Move until movelength + 1 is reached.

Move until movelength -1 is reached.

HP-UX Release 7.0: September 1989 -1- (Section 3) 455

NLSUBSTR(3X)

WARNINGS

NLSUBSTR(3X)

Move until movelength is reached, but replace the
character with a blank in outstring.

Move until movelength is reached, regardless of the
value of the last byte.

err The first element of this array contains the errOr number. The second
element is always zero. If the call is successful, both elements contain

charset

zero.

Error # Meaning

2 Specified language is not configured.
7 Invalid in length .
8 Invalid start.
9 Invalid move length.
11 Invalid value in flags bits (8:4).
12 Invalid value for flags bits (12:4).
13 The start position is the second byte of an Asian character, or

an underflow condition occurred because of flags.
14 The end position is the first byte of an Asian character, or an

overflow condition occurred because of flags.

An array containing the character set definition for the language to be
used, as returned nlinfo(3X)'s itemnumber 12.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nlsubstr was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

456 (Section 3) -2- HP-UX Release 7.0: September 1989

NLSWITCHBUF(3X) NLSWITCHBUF (3X)

NAME
nlswitchbuf - convert a string of characters between phonetic order and screen order using the
MPE character set definition table

SYNOPSIS
void nlswitchbuf(langid, instr, outstr, length, lefttoright, err)
char *instr, *outstr;
short length, langid;
unsigned short lefitoright, err[2J;

DESCRIPTION
Nlswitchbuf is useful for handling data from languages written from right-to-left (e.g., Middle
Eastern languages). It is used by a program to convert a buffer that is in phonetic order (Le.,
the order in which the characters would be typed at a terminal or spoken by a person) to screen
order (Le., the order in which the characters are displayed on a terminal screen or piece of
paper), or vice-versa. Screen order is defined as right-to-Ieft if the primary mode of the termi­
nal or printer is from right-to-Ieft (as when it is used principally for entering or displaying data
from a right-to-Ieft language). Otherwise, screen order is defined as left-to-right.

Phonetic order and screen order are, in general, not the same if USASCII text is mixed with that
from a right-to-Ieft language. The relationship between phonetic order and screen order is
further complicated by the Hindi digits in Arabic, which playa third role intermediate between
ASCII characters and characters of the right-to-Ieft language.

Note that this is a somewhat special purpose native language support routine. Niswitchbuf is
useful only for languages that are written from right-to-Ieft, and which may occasionally mix
left-to-right text (e.g., English) with right-to-Ieft. Nonetheless, it can be used by a general­
purpose (not specifically for handling right-to-Ieft data) program. Such a program calls
nlswitchbuf to convert data from phonetic order to screen order and back again. (For example,
an editor that wants to track cursor movement on a terminal against a buffer of text in memory
needs to do this.) If the data is not that of a right-to-Ieft language, this routine simply returns
the same text unchanged, since for all other languages phonetic order and screen order are the
same.

langid

instr

outstr

le'1gth

lefttoright

err

WARNINGS

The ID number for the desired language.

The character buffer in phonetic order to be converted to screen order.

The buffer in which the result of the conversion to screen order is returned.
Outstr and instr can reference the same address.

The length, in characters, of the buffer to be converted.

An unsigned short integer that specifies whether the implied primary mode of
the data (Le., the way it would be displayed on a terminal) is left-to-right
(TRUE) or right-to-Ieft (FALSE). This determines what the opposite language is
and, therefore, strings of which characters get switched.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid string length.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

HP-UX Release 7.0: September 1989 -1- (Section 3) 457

NLSWITCHBUF (3X)

AUTHOR
Niswitchbuf was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

458 (Section 3) -2-

NLSWITCHBUF(3X)

HP-UX Release 7.0: September 1989

NLTRANSLATE(3X) NL TRANSLA TE (3X)

NAME
nltranslate - translate ASCII strings to EBCDIC using the MPE conversion table

SYNOPSIS
void nltranslate(code, instr, outstr, length, langid, err, table)
short code, length, langid;
char *instr, *outstr, *table;
unsigned short err[2];

DESCRIPTION
Nltranslate translates a string of bytes from EBCDIC to ASCII or ASCII to EBCDIC, using the
appropriate native language table.

The arguments to nltranslate are used as follows:

code 1 - Specifies EBCDIC to ASCII conversion.
2 - Specifies ASCII to EBCDIC conversion.

instr

outstr

length

langid

err

table

WARNINGS

The byte buffer to be translated.

A byte buffer to which is returned the translated string. The parameters instr
and outstr can specify the same array.

A short integer specifying the number of bytes of instr to be translated.

A short integer containing the 10 number of the language whose translation
tables are to be used.

The first element of this array contains the error number. The second element
is always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid code specified.
4 Invalid length parameter.

A 256-byte array that holds a translation table. Each byte contains the transla­
tion of the byte whose value is its index. This table is provided by the user.

This routine is provided for compatibility with MPE, another HP operating system. See
portnls(5) for more information on the use of this routine. Use the Native Language Support
routines for C programmers described on hpnls(5) for HP-UX NLS support.

AUTHOR
Nltranslate was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 7.0: September 1989 -1- (Section 3) 459

OPEN_JLIB(3X) OPEN_JLIB(3X)

NAME
open_jlib, close_jlib - enable or disable Japanese specific facilities

SYNOPSIS
#include <jlib.h>

int open_jlib (langname)
char *langname;

int close_jlib ()

DESCRIPTION
The arguments to open_jlib are langname, which is used to bind operation to the end-user's
specified language requirements. For example,

open_jlib (getenv ("LANG"»;

Once open_jlib is invoked, the following facilities are available. Those marked with an asterisk
are provided by a server process. Note that once open_jlib is invoked, another one must not be
invoked until close_jlib is invoked.

RomajiHiragana (sl, s2)*
RomajiKatakana (sl, s2)*
RomajiHankakuKatakana (sl, s2)*

HiraganaKatakana (sl, s2)
KatakanaHiragana (sl, s2)
HankakuZenkaku (sl, s2, mode)
ZenkakuHankaku (sl, s2)
KutenZenkaku (c, s)

LUD_open (filename, mode)*
LUD_close (dp)*
LUD_store (key, kouho, dp)*
LUD_delete (key, kouho, dp)*
LUD_search (key, dp)*
LUD_free (p)*

open_kana_kan (filename)*
close_kana_kan (ed)*

Henkan (ed, string, len, buf, size, mode)*
JiKouho (ed, pb, nb)*
Kakutei (ed, pb, nb, nk)*
HenkanOwari (ed, pb)*
SetUserDict (ed, dp, mode)*

ROMAJI to HIRAGANA
ROMAJI to KATAKANA
ROMAJI to HANKAKU KATAKANA

HIRAGANA to KATAKANA
KATAKANA to HIRAGANA
HANKAKUtoZENKAKU
ZENKAKU to HANKAKU
KUTEN (section-point) code to ZENKAKU

open a user dictionary
close a user dictionary
store a word into a user dictionary
delete a word from a user dictionary
search a word in a user dictionary
free a space allocated by I_UD_search

initialize KANA to KANJI conversion
terminate KANA to KANJI conversion

perform KANA to KANJI conversion
get all KOUHOs
update HINDO information
free a space allocated by Henkan
enable or disable to consult a user dictionary

When these facilities are no longer needed, invoke close_jlib to close them.

DIAGNOSTICS
Open_jlib returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno is set
to indicate the error:

[JUNAVAIL]

[JUNAVAIL]

Cannot connect to server. Above facilities marked with an asterisk are
not available.

Open_jlib has been invoked.

Close_jlib returns 0 upon successful completion. Otherwise, -1 is returned.

460 (Section 3) -1- HP-UX Release 7.0: September 1989

OPEN_JLIB(3X) OPEN_JLIB(3X)

GLOSSARY
Here is a glossary of terms used in the description of each man page entry for Japanese-specific
facilities shown above.

BUNSETSU

HINDO

ROMAJI

KANA

HIRAGANA

KATAKANA

KUTEN

ZENKAKU

HANKAKU

YOMI

DAKUON

DAKUTEN

HANDAKUON

HANDAKUTEN

HYOUKI

HINSHI

SEE ALSO

a small group of words

the frequency of use

a way of spelling Japanese by Roman character

a character to express a syllable developed in Japan based on KANJI.
There are two kinds of KANA, HIRAGANA and KATAKANA.

characters from 04-01 to 04-83 in section-point code

characters from 05-01 to 05-86 in section-point code

code a one of expression for KANJI characters

character a character two times as large as a HANKAKU character

character a character in the KANA8 character set

show how to pronounce a KANJI

sound to express KANA that is written preceding DAKUTEN

a symbol to express DAKUON

sound to express KANA that is written preceding HANDAKUTEN; i.e.,
sound of PA, PI, PU, PE, and PO.

a symbol to express HANDAKUON

show how to spell a Japanese word

a part of speech

RomajiHiragana(3X), RomajiKatakana(3X), RomajiHankakuKatakana(3X),
HiraganaKatakana(3X), KatakanaHiragana(3X), HankakuZenkaku(3X), ZenkakuHankaku(3X),
KutenZenkaku(3X), LUD_open(3X), LUD_close(3X), LUD_store(3X), LUD_delete(3X),
L UD _search(3X), L UD _free(3X), open_kana_kan(3X), close_kana_kan(3X), Henkan(3X),
JiKouho(3X), Kakutei(3X), HenkanOwari(3X), SetUserDict(3X)

HP-UX Release 7.0: September 1989 -2- (Section 3) 461

NAME
open_kana_kan, close_kana_kan - initialize KANA to KANJI conversion

SYNOPSIS
#inc1ude <jlib.h>

int open_kana_kan (filename)
char *filename;

int c1ose_kana_kan (ed)
int ed;

DESCRIPTION
Open_kana_kan initializes and sets up the environment for KANA to KANJI conversion. The file
named filename is used to update and store HINDO information. If the file does not exist, it is
created. If a NULL pointer is specified, it is disabled to update and store HINDO information.

Open_kana_kan returns an environment descriptor which is used in calling the following func­
tion:

Henkan (ed, string, len, buf, size, mode) perform KANA to KANJI conversion
JiKouho (ed, pb, nb) get all KOUHOs
Kakutei (ed, pb, nb, nk) update HINDO information
HenkanOwari (ed, pb) free a space allocated by Henkan
SetUserDict (ed, dp, mode) enable or disable to consult a user dictionary

Close_kana_kan closes the environment descriptor indicated by ed, which is obtained from an
open_kana_kan call.

DIAGNOSTICS
Open_kana_kan returns an environment descriptor upon successful completion. Otherwise, -1 is
returned and jlib_errno is set to indicate the error:

[JSDACCES]

[JSDWRONG]

[JSDNOENT]

[JSDBADENT]

[JHTACCES]

[JHTWRONG]

[JHTBADENT]

[JMENV]

The system dictionary exists but permission is denied.

The system dictionary has an incorrect format

The system dictionary does not exist.

The file having the same path name as the system dictionary exists.

The file named filename exists but permission is denied.

The format of the file named filename is wrong.

The named file exists but it is not the file to update and store HINDO
information.

The maximum allowed number of environment descriptors are already
open.

Close_kana_kan returns 0 upon successful completion. Otherwise, -1 is returned and jlib_errno
is set to indicate the error.

[JBADED]

WARNINGS

Ed is not a valid environment descriptor.

The maximum number of environment descriptors allowed is 1.

462 (Section 3) -1- HP-UX Release 7.0: September 1989

PERROR(3C) PERROR(3C)

NAME
perror, strerror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
#inc1ude <string.h>

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

void perror (s)
const char *s;

char *strerror (errnum)
int errnum;

DESCRIPTION
Perror writes a language-dependent message to the standard error output, describing the last
error encountered during a call to a system or library function. The argument string s is printed
first, followed by a colon, a blank, the message, and a new-line. To be most useful, the argu­
ment string should include the name of the program that incurred the error. The error number
is taken from the external variable errno, which is set when errors occur but not cleared when
non-erroneous calls are made. The contents of the message is identical to those returned by the
strerror function with errno as the argument. If given a NULL string, the perror function prints
only the message and a new-line.

To simplify variant formatting of messages, the strerror function and the sys_errlist array of
message strings are provided. The strerror function maps the error number in errnum to a
language-dependent error message string and returns a pointer to the string. The message
string is returned without a new-line. Errno can be used as an index into sys_errlist to get an
un translated message string without the new-line. Sys_nerr is the largest message number pro­
vided for in the table; it should be checked because new error codes might be added to the sys­
tem before they are added to the table. The strerror function must be used to retrieve messages
when translations are desired.

EXTERNAL INFLUENCES
Environment Variables

The language of the message returned by strerror and printed by perror is specified by the
LANG environment variable. If the language-dependent message is not available, or if LANG
is not set or is set to the empty string, the default version of the message associated with the c
language is used.

International Code Set Support
Single and multi-byte character code sets are supported.

RETURN VALUE
The perror function returns no value.

If the errnum message number is valid, strerror returns a pointer to a language-dependent mes­
sage string. The array pointed to should not be modified by the program, and might be
overwritten by a subsequent call to the function. If a valid errnum message number does not
have a corresponding language-dependent message, strerror uses errnum as an index into
sysjrrlist to get the message string. If the errnum message number is invalid, strerror returns a
pointer to a NULL string.

SEE ALSO
errno(2), c(5), environ(5).

HP-UX Release 7.0: September 1989 -1- (Section 3) 463

PERROR(3C) PERROR(3C)

STANDARDS CONFORMANCE
perror: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

strerror: XPG3, ANSI C

sys_errlist: SVID2: XPG2

sys_nerr: SVID2, XPG2

464 (Section 3) -2- HP-UX Release 7.0: September 1989

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate pipe I/O to/from a process

SYNOPSIS
#inc1ude <stdio.h>

FILE *popen <command, type)
char * command, *type;

int pclose {stream}
FILE * stream;

DESCRIPTION
Papen creates a pipe between the calling program and the command to be executed.

The arguments to papen are pointers to null-terminated strings containing, respectively, a shell
command line and an I/O mode, either r for reading or w for writing.

Papen returns a stream pointer such that one can write to the standard input of the command, if
the I/O mode is w, by writing to the file stream; and one can read from the standard output of
the command, if the I/O mode is r, by reading from the file stream.

A stream opened by papen should be closed by pelase, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w
command as an output filter.

RETURN VALUE
Papen returns a NULL pointer if files or processes cannot be created. The success of the com­
mand execution can be checked by examining the return value of pelase.

Pelase returns -1 if stream is not associated with a "papened" command.

WARNINGS
If the original and "papened" processes concurrently read or write a (:ommon file, neither
should use buffered I/O, because the buffering will not work properly. Problems with an out­
put filter may be forestalled by careful buffer flushing, e.g., with jflush; see felose(3S).

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

STANDARDS CONFORMANCE
papen: SVID2, XPG2, XPG3

pelase: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 3) 465

PRINTF(3S) PRINTF(3S)

NAME
printf, nLprint£, fprintf, nLfprint£' sprint£, nLsprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg]
const char *formati

int nCprintf (format [, arg] ...
const char *formati

int fprintf (stream, format [, arg] ...)
FILE *streami
const char *formati

int nCfprintf (stream, format [, arg] ...)
FILE *streami
const char *formati

int sprintf (s, format [, arg] ...)
char *Si
const char *formati

int nCsprintf (s, format [, arg] ...)
char *Si
const char *formati

DESCRIPTION
Printf and nCprintf place output on the standard output stream stdout.

Fprintf and nCfprintf place output on the named output stream.

Sprintf and nCsprintf place "output", followed by the null character (\0), in consecutive bytes
starting at *s. It is the user's responsibility to ensure that enough storage is available.

Each function converts, formats, and prints its args under control of the format. The format is a
character string containing two types of objects: plain characters that are copied to the output
stream, and conversion specifications, each of which results in fetching zero or more args. The
results are undefined if there are insufficient args for the format. If the format is exhausted
while args remain, excess args are ignored.

Each conversion specification is introduced by the character % or %n$, where n is a decimal
integer in the range (1-{NL_ARGMAX}) (NL_ARGMAX is defined in <limits.h». The %n$
construction indicates that this conversion should be applied to the nth argument, rather than to
the next unused one.

An argument may be referenced by a %n$ specification more than once. The two forms of
introducing a conversion specification, % and %n$, may not be mixed within a single format
string. Improper use of %n$ in a format string will result in a negative return value.

After the % or %n$, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional string of decimal digits to specify a minimum field width in bytes. If the
converted value has fewer characters than the field width, it will be padded on the left
(or right, if the left-adjustment flag "-", described below, has been given) to the field
width. If the field width is preceded by a zero, the string is right adjusted with zero­
padding on the left (see the leading-zero flag" " described below).

A precision that gives the minimum number of digits to appear for the d, i, 0, u, x, or X
conversions, the number of digits to appear after the radix character for the e and f

466 (Section 3) -1- HP-UX Release 7.0: September 1989

PRINTF(3S) PRINTF(3S)

conversions, the maximum number of significant digits for the g conversion, or the
maximum number of bytes to be printed from a string in the 8 conversion. The preci­
sion takes the form of a period (.) followed by a decimal digit string; a null digit string
is treated as zero.

An optional 1 (the letter "ell"), specifying that a following d, i, 0, U, X, or X conversion
character applies to a long integer arg; an optional 1 specifying that a following n
conversion character applies to a pointer to a long integer arg; an optional h, specifying
that a following d, i, 0, u, x, or X conversion character applies to a short integer arg; an
optional h specifying that a following n conversion character applies to a pointer to a
short integer arg; an optional L specifying that a following e, E, f, g, or G conversion
character applies to a long double arg. An I, h or L before any other conversion charac­
ter is ignored.

A conversion character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is
not fetched until the conversion letter is seen, so the args specifying field width or precision
must appear in that order before the arg to be converted. Format strings containing %n$
conversion specifications may also indicate a field width or precision by the sequence *n$. The
n indicates the position of an integer argo With the *n$ sequence, the args specifying field width
or precision can appear before or after the arg to be converted.

The flag characters and their meanings are:

+
blank

o

The resulting conversion will be left-justified within the field.

The resulting signed conversion will always begin with a sign (+ or -).

If the first character of a signed conversion is not a sign, a blank will be
prefixed to the result. This implies that if the blank and + flags both appear,
the blank flag will be ignored.

This flag specifies that the value is converted to an "alternate form." For c, d,
i, 8, n, and u conversions, the flag has no effect. For 0 conversion, it increases
the precision to force the first digit of the result to be a zero. For x or X
conversion, a non-zero result will have Ox or OX prefixed to it. For a p conver­
sion, a non-zero result will have Ox prefixed to it. For e, E, f, g, and G conver­
sions, the result will always contain a radix character, even if no digits follow
the radix (normally, a radix character appears in the resulting conversions only
if followed by a digit). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

Leading zeros (following any indication of sign or base) are used to pad to the
field width for all conversion characters. No space padding is performed. If
both the 0 and - appear, the 0 flag will be ignored. For d, i, 0, U, p, x, and X,
conversions, if a precision is specified, the 0 flag will be ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d and i are identical), unsigned
octal (0), decimal (u), or hexadecimal notation (x and X), respectively; the
letters abcdef are used for x conversion and the letters ABCDEF for X conver­
sion. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding with lead­
ing zeroes may alternatively be specified by prepending a zero to the field
width. This does not imply an octal value for the field width.) The default

HP-UX Release 7.0: September 1989 -2- (Section 3) 467

PRINTF(3S) PRINTF(3S)

f

e,E

g,G

c

s

p

n

precision is 1. The result of converting a zero value with a precision of zero is
a null string.

The double arg is converted to decimal notation in the style " [-]dddrddd",
where r is the radix character. The number of digits after the radix character is
equal to the precision specification. If the precision is missing, six digits are
output. If the precision is explicitly zero, no radix character appears.

The double arg is converted in the style "[-]drddde±ddd", where r is the radix
character. There is one digit before the radix character and the number of
digits after it is equal to the precision; when the precision is missing, six digits
are produced; if the precision is zero, no radix character appears. The E format
code will produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

The double arg is printed in style for e (or in style E in the case of a G format
code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent
resulting from the conversion is less than -4 or greater than or equal to the
precision. Trailing zeroes are removed from the fractional part of the result; a
radix character appears only if it is followed by a digit.

The int arg is converted to an unsigned char, and the resulting character is
printed.

The arg is taken to be a string (character pointer) and characters from the string
are printed until a null character (\0) is encountered or the number of bytes
indicated by the precision specification is reached. If the precision is missing, it
is taken to be infinite, so all characters up to the first null character are printed.
A NULL value for arg will yield undefined results.

The value of a pointer to void arg is printed as a sequence of unsigned hexade­
cimal numbers. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it will
be expanded with leading zeroes. The default precision is 1. The result of
converting a zero value with a precision of zero is a null string.

A pointer to an integer arg is expected. This pointer is used to store the
number of bytes printed on the output stream so far by this call to the func-
tion. No argument is converted.

% Print a %; no argument is converted.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

Characters generated by print[, [print[, nCprint[, and nl_[print[are printed as if putc(3S) had
been called.

EXTERNAL INFLUENCES
Locale

468

The LC_CTYPE category affects the following features:

Plain characters within format strings are interpreted as single and/or multi-byte char­
acters.

Field width is given in terms of bytes. As characters are placed on the output stream,
they are interpreted as single or multi-byte characters and the field width is decre­
mented by the length of the character.

(Section 3) -3- HP-UX Release 7.0: September 1989

PRINTF(3S) PRINTF(3S)

Precision is given in terms of bytes. As characters are placed on the output stream,
they are interpreted as single or multi-byte characters and the precision is decremented
by the length of the character.

The return value is given in terms of bytes. As characters are placed on the output
stream, they are interpreted as single or multi-byte characters and the byte count that
makes up the return value is incremented by the length of the character.

The LC_NUMERIC category determines the radix character used to print floating-point
numbers.

International Code Set Support
Single-byte character code sets are supported. Multi-byte character code sets are also supported
as described in the LC_CTYPE category above.

RETURN VALUES
Each function returns the number of bytes transmitted (excluding the \0 in the case of sprintf
and nCsprintf), or a negative value if an output error was encountered. Improper use of %n$ in
a format string will result in a negative return value.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0»;

To create a language independent date and time printing routine write:

printf(format,weekday,month,day,hour,min,2,2);

For American usage, format would point to the string:

"%l$s, %2$s %3$d, %4$*6$.*7$d:%5$*6$.*7$d"
and result in the output:

Sunday, July 3, 10:02

For German usage, the string:

"%l$s, %3$s %2$d, %4$*6$.*7$d:%5$*6$.*7$d"

results in the output:

Sonntag, 3 Juli 10:02

WARNINGS
Nl_printf, nCfprintf and nCsprintf are provided for historical reasons only. Their use is not
recommended. Use printf, fprintf and sprintf instead.

Notice that with the c conversion character, an int arg is converted to an unsigned char. Hence,
whole multi-byte characters can not be printed using a single c conversion character.

A precision with the s conversion character might result in the truncation of a multi-byte char­
acter.

AUTHOR
Printf, fprintf and sprintf were developed by AT&T and HP. NCprintf, nCfprintf and nCsprintf
were developed by HP.

SEE ALSO
ecvt(3C), setlocale(3C), putc(3S), scanf(3S), stdio(3S).

HP-UX Release 7.0: September 1989 -4- (Section 3) 469

PRINTF(3S)

STANDARDS CONFORMANCE
printf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151~1, ANSI C

fprintf: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

nl_fprintf: XPG2

nCprintf: XPG2

nCsprintf: XPG2

sprintf: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

PRINTF(3S)

470 (Section 3) -5- HP-UX Release 7.0: September 1989

PRINTMSG(3C) PRINTMSG(3C)

NAME
printmsg, fprintmsg, sprintmsg - print formatted output with numbered arguments

SYNOPSIS
#include <stdio.h>

int printmsg (format [, arg] ...)
char *format;

int fprintmsg (stream, format [, arg]
FILE *stream;
char *format;

int sprintmsg (s, format [, arg] ...)
char *s, *format;

DESCRIPTION
Printmsg, fprintmsg, and sprintmsg are derived from their counterparts in printf(3S). The
conversion character % can be replaced by %digits$. Digits are decimal digits representing a
number n in the range (1-{NL_ARGMAX}) (NL_ARGMAX is defined in <limits.h», and indi­
cates that this conversion should be applied to the nth argument, rather than to the next
unused one. All other aspects of formatting are unchanged. All conversion specifications must
contain the %digits$ sequence and the user must ensure correct numbering. All parameters
must be used exactly once.

EXAMPLES
To create a language-independent date and time printing routine, write

printmsg(format, weekday, month, day, hour, min);

For American usage format would point to the string:

"%1$s, %2$s %3$d, %4$d:%5$.2d"

resulting in the output:

Sunday, July 3, 10:02

For German usage, the string:

"%1$s, %3$d %2$s %4$d:%5$.2d"

results in the following output:

Sonntag, 3 Juli 10:02

provided that the proper strings have been read.

WARNINGS
These routines are provided for historical reasons only. Use of the printf(3S) equivalent
routines printf, fprintf and sprintf is recommended.

AUTHOR
Printmsg was developed by HP.

SEE ALSO
catgetmsg(3C), setlocale(3C), printf(3S), hpnls(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category affects the follOWing features:

Plain characters within format strings are interpreted as single and/or multi-byte
characters.

HP-UX Release 7.0: September 1989 -1- (Section 3) 471

PRINTMSG(3C) PRINTMSG(3C)

Field width is given in terms of bytes. As characters are placed on the output
stream, they are interpreted as single or multi-byte characters and the field width is
decremented by the length of the character.

Precision is given in terms of bytes. As characters are placed on the output stream,
they are interpreted as single or multi-byte characters and the precision is
decremented by the length of the character.

The return value is given in terms of bytes. As characters are placed on the output
stream, they are interpreted as single- or multi-byte characters and the byte count
that makes up the return value is incremented by the length of the character.

The LCNUMERIC category determines the radix character used to print floating-point numbers.

International Code Set Support

472

Single-byte character code sets are supported. Multi-byte character code sets are also supported
as described in the LC_CTYPE category above.

(Section 3) -2- HP-UX Release 7.0: September 1989

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int pute (e, stream)
int e;
FILE *slreami

int putehar (e)
int e;

int £pute (e, stream)
int e;
FILE *slreami

int putw (w, stream)
int w;
FILE *slreami

DESCRIPTION
Pute writes the character e onto the output stream at the position where the file pointer, if
defined, is pointing. Putehar(e) is defined as pute(e, stdout). Pute and putehar are defined as
both macros and functions.

Fpute behaves like pute, but is a function rather than a macro; it may therefore be used as an
argument. Fpute runs more slowly than pute, but it takes less space per invocation and its
name can be passed as an argument to a function.

Putw writes the word (i.e., int in C) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by default buffered
if the output refers to a file and line-buffered if the output refers to a terminal. The standard
error output stream, stderr, is by default unbuffered, but use of freopen (see fopen(3S» will cause
it to become buffered or line-buffered. Setbuf(3S) or setvbuf (see setbuf(3S» may be used to
change the stream's buffering strategy.

RETURN VALUE
On success, pute, fpute, and putehar each return the value they have written. On failure, they
return the constant EOF. This will occur if the file stream is not open for writing or if the out­
put file cannot be grown. The function putw returns non-zero when an error has occurred; oth­
erwise the function returns O.

WARNINGS
The pute and putehar routines are implemented as both library functions and macros. The macro
versions, which are used by default, are defined in <stdio.h>. To obtain the library function
either use a #undef to remove the macro definition or, if compiling in ANSI-C mode, enclose
the function name in parenthesis or use the function address. For following example illustrates
each of these methods :

#include <stdio.h>
#undef putc

mainO
{

int (*put_char()) 0;

HP-UX Release 7.0: September 1989 -1- (Section 3) 473

PUTC(3S) PUTC(3S)

return_ val=putc(c,fd);

return_ val=(putc)(c,fd 1);

put_char = putchar;
};

Line buffering may cause confusion or malfunctioning of programs that use standard I/O rou­
tines but use read(2) themselves to read from standard input. When a large amount of compu­
tation is done after printing part of a line on an output terminal, it is necessary to !flush (on
{close(3S» the standard output before beginning the computation.

The macro version of pute incorrectly treats the argument stream with side effects. In particular,
the followng call may not work as expected:

putc(c, *£++)i

The function version of pute or {pute should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), getc(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

STANDARDS CONFORMANCE
pute: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

{pute: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

putehar: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

putw: SVID2, XPG2, XPG3

474 (Section 3) -2- HP-UX Release 7.0: September 1989

PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION

PUTENV(3C)

String points to a string of the form "name=value." Putenv makes the value of the environment
variable name equal to value by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via malloe for an expanded
environment, otherwise zero.

WARNINGS
Putenv manipulates the environment pointed to by environ, and can be used in conjunction
with getenv. However, envp (the third argument to main) is not changed.
This routine uses malloe(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the cal­
ling function while string is still part of the environment.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of characters in string as single- and/or
multi-byte characters.

International Code Set Support
Single- and multi-byte character code sets are supported.

ST ANDARDS CONFORMANCE
putenv: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 3) 475

PUTPWENT(3C) PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (P, f)
struet passwd *Pi
FILE *fi

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure as created by
getpwent (or getpwuid or getpwnam), putpwent writes a line on the stream I, which matches the
format of /etc/passwd.

Putpwent ignores the audit 10 and audit flag in the passwd structure; and does not create the
corresponding entries used in the secure password file (f.secure/ete/passwd). Putspwent(LlBC)
which produces entries that match the secure password file format, must be used to create these
entries.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.

SEE ALSO
getpwent(3C), putspwent(3C), passwd(4), spasswd(4).

STANDARDS CONFORMANCE
putpwent: SVID2, XPG2

476 (Section 3) -1- HP-UX Release 7.0: September 1989

PUTS(3S) PUTS(3S)

NAME
puts, {puts - put a string on a stream

SYNOPSIS
#inc1ude <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line character, to the
standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character. Note that puts appends a new-line char­
acter, but [puts does not.

RETURN VALUE
Both routines return EOF on error. This will happen if the routines try to write on a file that has
not been opened for writing. A non-negative number is returned on success.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while [puts does not.

STANDARDS CONFORMANCE
puts: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

[puts: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 3) 477

PUTSPWENT(3C)

NAME
putspwent - write secure password file entry

SYNOPSIS
#inc1ude <pwd.h>

int putspwent (P, f)
strud s_passwd *p;
FILE *f;

DESCRIPTION

PUTSPWENT(3C)

Putspwent is the inverse of getspwent(3C). Given a pointer to a s_passwd structure, as created
by getspwent(3C), putspwent writes a line on the stream /' which matches the format of
j.securejetcjpasswd.

RETURN VALUE
Putspwent returns non-zero if it detects an error during its operation; otherwise it returns a
value of zero.

AUTHOR
Putspwent was developed by HP.

SEE ALSO
getpwent(3C), getspwent(3C), putpwent(3C), spasswd(4).

478 (Section 3) -1- HP-UX Release 7.0: September 1989

QSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
#include <stdlib.h>

void qsort (base, nel, size, compar)
void *base;
size_i nel;
size_t size;
int (*compar)();

DESCRIPTION

NOTES

Qsart is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

Base points to the element at the base of the table. NeZ is the number of elements in the table.
Size is the size of each element in the table. Campar is the name of the comparison function,
which is called with two arguments that point to the elements being compared. The function
passed as campar must return an integer less than, equal to, or greater than zero as a conse­
quence of whether its first argument is to be considered less than, equal to, or greater than the
second. This is the same return convention that strcmp(3C) uses.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-void.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), string(3C).

BUGS
If size is zero, a divide-by-zero error may be generated.

STANDARDS CONFORMANCE
qsart: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 3) 479

RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

RAND(3C)

Rand uses a multiplicative congruential random-number generator with period 232 that returns
successive pseudo-random numbers in the range from 0 to 215_1.

NOTE

Srand can be called at any time to reset the random-number generator to a random starting
point. The generator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired. Drand48(3C) provides a much
better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

STANDARDS CONFORMANCE
rand: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

srand: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

480 (Section 3) -1- HP-UX Release 7.0: September 1989

REGCMP(3X) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *fegcmp (stringl [, string2, ... J, (char *)0)
char *stringl, *string2, ... ;

char *fegex (re, subject[, retO, ... J)
char *fe, *subject, *fetO, ... ,

extern ehar * __ loct;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. Malloc(3C) is
used to create space for the vector. It is the user's responsibility to free unneeded space so allo­
cated. A NULL return from regcmp indicates an incorrect argument.

Regex executes a compiled pattern against the subject string. Additional arguments are passed
to receive values back. Regex returns NULL on failure or a pointer to the next unmatched char­
acter on success. A global character pointer __ loct points to where the match began. Regcmp
and regex were largely borrowed from the editor, ed(I); however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their associated mean­
ings:

[] *.'
$

+

These symbols retain their current meaning.

Matches the end of the string; \n matches a new-line.

Used within brackets the hyphen signifies a character range. For example,
[a-zJ is equivalent to [abed ... xyz). The - can represent itself only if used as
the first or last character. For example, the character class expression [J-]
matches the characters J and -.

A regular expression followed by + means one or more times. For example,
[0-9J+ is equivalent to [0-9][O-9J*.

{m} {m,} {m,u} Integer values enclosed in { } indicate the number of times the preceding regu­
lar expression can be applied. The value m is the minimum number and u is a
maximum number, which must be no greater than 256. The syntax {m} indi­
cates the exact number of times the regular expression can be applied. The
syntax {m,} is analogous to {m, infinity}. The plus (+) and star (*) operations
are equivalent to {I,} and {O,} respectively.

(•••)$n

(...)

The value of the enclosed regular expression is returned. The value is stored in
the (n+ 1)th argument following the subject argument. A maximum of ten
enclosed regular expressions are allowed. Regex makes its assignments uncon­
ditionally.

Parentheses are used for grouping. An operator, such as *, +, or {}, can work
on a single character or a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$O.

Since all of the above defined symbols are special characters, they must be escaped to be used
as themselves.

This routine is kept in /lib/libPW.a.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp(" '\n ", 0», cursor);

HP-UX Release 7.0: September 1989 -1- (Section 3) 481

REGCMP(3X) REGCMP(3X)

free(ptr);

This example matches a leading new-line in the subject string to which the cursor points.

Example 2:
char rctO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zO-9_HO,7})$0", 0);
newcursor = regex{name, "123Testing321", retO);

This example matches through the string ITesting3" and returns the address of the character
after the last matched character (cursor+ll). The string ITesting3" will be copied to the char­
acter array reW.

WARNINGS
The user program might run out of memory if regcmp is called iteratively without freeing the
vectors that are no longer required.

SEE ALSO
ed(l), malloc(3C).

482 (Section 3) -2- HP-UX Release 7.0: September 1989

REGEXP(3X) REGEXP(3X)

NAME
compile, step, advance - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETCO <getc' code>
#define PEEK CO <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#inc1ude <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

int advance (string, expbuf)
char *string, *expbuf;

extern char *loc1, *loc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION
These functions are general-purpose regular expression matching routines to be used in pro­
grams that perform Basic Regular Expression (see regexp(5» matching. These functions are
defined in <regexp.h>.

The functions step and advance do pattern matching given a character string and a compiled
regular expression as input. The function compile takes as input a Basic Regular Expression and
produces a compiled expression that can be used with step and advance.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the #inc1ude <regexp.h> statement. These macros are
used by the compile routine.

GETC()

PEEKCO

Return the value of the next byte in the regular expression pattern. Successive
calls to GETC() should return successive bytes of the regular expression.

Return the next byte in the regular expression. Successive calls to PEEKC()
should return the same byte (which should also be the next byte returned by
GETC(».

UNGETC(c) Cause the argument c to be returned by the next call to GETCO (and
PEEKC(». No more than one byte of pushback is ever needed and this byte is
guaranteed to be the last byte read by GETC(). The value of the macro
UNGETC(c) is always ignored.

RETURN(pointer)

ERROR(val)

This macro is used on normal exit of the compile routine. The value of the
argument pointer is a pointer to the character after the last character of the
compiled regular expression. This is useful to programs that have memory
allocation to manage.

This is the abnormal return from the compile routine. The argument val is an
error number (see table below for meanings). This call should never return.

HP-UX Release 7.0: September 1989 -1- (Section 3) 483

REGEXP(3X) REGEXP(3X)

484

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number.
II \ digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \ { \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuC endbuf, eo£)

The first parameter instring is never used explicitly by the compile routine but is useful for pro­
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of «char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled reg­
ular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expres­
sion can be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. For example,
in ed(l), this character is usually a I.
Each program that includes this file must have a #define statement for INIT. This definition is
placed right after the declaration for the function compile and the opening curly brace {. It is
used for dependent declarations and initializations. Most often it is used to set a register vari­
able to point to the beginning of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to declare
external variables that might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(l).

The function step also performs actual regular expression matching in this file. The call to step
is as follows:

step(string, expbu£)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter expbuf is the compiled regular expression that was obtained by a call of
the function compile.

The function step returns non-zero if the given string matches the regular expression, and zero
if the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to step. The variable set in step is 10c1. This is a pointer to the first char­
acter that matched the regular expression. The variable loc2, which is set by the function
advance, points to the character after the last character that matches the regular expression.
Thus, if the regular expression matches the entire line, 10c1 points to the first character of string
and loc2 points to the null at the end of string.

(Section 3) -2- HP-UX Release 7.0: September 1989

REGEXP(3X) REGEXP(3X)

Step uses the external variable eire!, which is set by compile if the regular expression begins
with A. If this is set, step tries to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled before the first is executed, the
value of eire! should be saved for each compiled expression and eire! should be set to that
saved value before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step
is to step through the string argument and call advance until advance returns non-zero, which
indicates a match, or until the end of siring is reached. To constrain string to the beginning of
the line in all cases, step need not be called; simply call advance.

When advance encounters a * or \ {\} sequence in the regular expression, it advances its pointer
to the string to be matched as far as possible and recursively calls itself, trying to match the rest
of the string to the rest of the regular expression. As long as there is no match, advance backs
up along the string until it finds a match or reaches the point in the string that initially matched
the * or \{ \}. It is sometimes desirable to stop this backing up before the initial point in the
string is reached. If the external character pointer locs is equal to the point in the string at
sometime during the backing up process, advance breaks out of the loop that backs up and
returns zero. This is used by ed(l) and sed(l) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions such as s/y*/ /g do not loop for­
ever.

The additional external variables sed and nbra are used for special purposes.

EXTERNAL INFLUENCES
Locale

The LC_COLLATE category determines the collating sequence used in compiling and executing
regular expressions.

The LC_CTYPE category determines the interpretation of text as single and/or multi-byte char­
acters, and the characters matched by character class expressions in regular expressions.

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following is an example of how the regular expression macros and calls look from grep(l):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZE), '\0');

SEE ALSO

if (step(linebuf, expbuf)
succeed();

grep(l), setlocale(3C), regexp(5).

ST ANDARDS CONFORMANCE
regexp: SVID2, XPG2, XPG3

advance: SVID2, XPG2, XPG3

HP-UX Release 7.0: Septem1:;>er 1989 -3- (Section 3) 485

REGEXP(3X)

compile: SVID2, XPG2, XPG3

loe1: SVID2, XPG2, XPG3

loe2: SVID2, XPG2, XPG3

ioes: SVID2, XPG2, XPG3

step: SVID2, XPG2, XPG3

486 (Section 3)

REGEXP(3X)

-4- HP-UX Release 7.0: September 1989

REMOVE(3C)

NAME
remove - remove a file

SYNOPSIS
#include <stdio.h>

int remove (path)
const char *pathi

DESCRIPTIOt..J

REMOVE(3C)

Remove removes the file named by path. If path does not name a directory, remove(path) is
equivalent to unlink(path). If path names a directory, remove(path) is equivalent to
rmdir(path).

SEE ALSO
rmdir(2), unlink(2).

STANDARDS CONFORMANCE
remove: XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -1- (Section 3) 487

ROMAJIHIRAGANA(3X) ROMAJIHIRAGANA(3X)

NAME
RomajiHiragana, RomajiKatakana, RomajiHankakuKatakana- translate characters

SYNOPSIS
#include <jIib.h>

unsigned char *RomajiHiragana (sl, s2)
char *sl;
unsigned char *s2;

unsigned char *RomajiKatakana (sl, s2)
char *sl;
unsigned char *s2;

unsigned char *RomajiHankakuKatakana (sl, s2)
char *sl;
unsigned char *s2;

DESCRIPTION
The arguments 81 and 82 point to strings (arrays of characters terminated by a null character).
The string 81 is ROMAJI, which is an alphabetic representation of Japanese characters. Each
character included in 81 must be an 8-bit alphabet.

RomajiHiragana translates 81 to string 82 spelled by HIRAGANA. RomajiKatakana translates 81 to
string 82 spelled by KATAKANA. RomajiHankakuKatakana translates 81 to string 82 spelled by
HANKAKU KATAKANA.

Translation is performed based on romaji(5} which shows how Japanese is spelled using Roman
characters.

DIAGNOSTICS
Each function returns a NULL pointer upon successful completion.

If string 81 contains illegal or undetermined ROMAJI spelling, each function returns a pointer to
the first character of the ROMAJI spelling and jlib_errno is set to indicate translation result.

[JNEEDMORE] The string 81 is undetermined ROMAJI.

[JNOTFOUND] The string 81 is unacceptable ROMAJI.

[JNOTRESPOND] A server does not respond.

WARNINGS
Each function cannot check for overflow of any receiving string. The length of the resultant
string is twice the length of 81 at most. NULL destinations cause errors. NULL sources are
treated as zero-length strings.

SEE ALSO
open_jIib(3X}, romaji(5}

488 (Section 3) -1- HP-UX Release 7.0: September 1989

SCANF(3S) SCANF(3S)

NAME
scan£, fscanf, sscanf, nLscanf, nLfscanf, nLsscanf - formatted input conversion, read from
stream file

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...)
const char *format;

int fscanf (stream, format [, pointer] ...)
FILE *stream;
const char * format;

int sscanf (s, format [, pointer] ...)
char *s;
const char * format;

int nLscanf (format [, pointer] ...)
const char *format;

int nLfscanf (stream, format [, pointer] ...)
FILE *stream;
const char *format;

int nLsscanf (s, format [, pointer] ...)
char *s;
const char *format;

DESCRIPTION
Scanf and nLscanf read from the standard input stream stdin.

Fscanf and nLfscanf read from the named input stream.

Sscanf and nLsscanf read from the character string s.

Each function reads characters, interprets them according to the control string format argument,
and stores the results in its pointer arguments. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess argu­
ments are ignored. The control string contains conversion specifications and other characters
used to direct interpretation of input sequences. The control string contains:

White-space characters (blanks, tabs, newlines, or formfeeds) that cause input to be read
up to the next non-white-space character (except in two cases described below).

An ordinary character (not %) that must match the next character of the input stream.

Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum-field width, an optional 1 (ell),
h or L indicating the size of the receiving variable, and a conversion code.

The conversion specification may alternatively be prefixed by the character sequence
%n$ instead of the character %, where n is a decimal integer in the range (1-
{NL_ARGMAX}) (NL_ARGMAX is defined in <limits.h». The %n$ construction indi­
cates that the value of the next input field should be placed in the nth argument, rather
than to the next unused one. The two forms of introducing a conversion specification,
% and %n$, may not be mixed within a single format string with the following excep­
tiort: Skip fields (see below) can be designated as %* or %n$*. In the latter case, n is
ignored.

Unless the specification contains the n conversion character (described below), a conversion
specification directs the conversion of the next input field. The result of a conversion

HP-UX Release 7.0: September 1989 -1- (Section 3) 489

SCANF(3S) SCANF(3S)

490

specification is placed in the variable to which the corresponding argument points, unless *
indicates assignment suppression. Assignment suppression provides a way to describe an input
field to be skipped. An input field is defined as a string of non-space characters; it extends to
the next inappropriate character or until the field width, if specified, is exhausted. For all
descriptors except "[" and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer
argument must be of a restricted type. For a suppressed field, no pointer argument is given.
The following conversion codes are legal:

% A single % is expected in the input at this point; no assignment is done.

d A decimal integer is expected; the corresponding argument should be an
integer pointer.

u An unsigned decimal integer is expected; the corresponding argument should
be an unsigned integer pointer.

o An octal integer is expected; the corresponding argument should be an
unsigned integer pointer.

x,X A hexadecimal integer is expected; the corresponding argument should be an
unsigned integer pointer. The x and X conversion characters behave the same.

n

e,E,f,g,G

s

c

(Section 3)

An integer is expected; the corresponding argument should be an integer
pointer. The value of the next input item, interpreted according to C conven­
tions, will be stored; a leading 0 implies octal, a leading Ox implies hexade­
cimal; otherwise, decimal is assumed.

Cause the total number of bytes (including white space) scanned since the
function call to be stored; the corresponding argument should be an integer
pointer. No input is consumed. The function return value does not include
%n assignments in the count of successfully matched and assigned input items.

A floating-point number is expected; the next field is converted accordingly and
stored through the corresponding argument, which should be a pointer to a
float. The input format for floating-point numbers is an optionally signed
string of digits, possibly containing a radix character, followed by an optional
exponent field consisting of an E or an e, followed by an optional +, -, or
space, followed by an integer. The conversion characters E and G behave the
same as, respectively, e and g.

A character string is expected; the corresponding argument should be a charac­
ter pointer pointing to an array of characters large enough to accept the string
and a terminating \0, which is added automatically. The input field is ter­
minated by a white-space character. Scant will not read a null string.

A character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to read
the next non-space character, use %1s. If a field width is given, the
corresponding argument refers to a character array; the indicated number of
characters is read.

Indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, called the scan­
set, and a right bracket; the input field is the maximal sequence of input char­
acters consisting entirely of characters in the scanset. The circumflex (A), when
it appears as the first character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not contained in the
remainder of the scanset string. Construction of the scanset follows certain

-2- HP-UX Release 7.0: September 1989

SCANF(3S) SCANF(3S)

conventions. A range of characters may be represented by the construct
first-last, enabling [0123456789] to be expressed [0-9]. Using this convention,
first must be lexically less than or equal to last; otherwise, the dash stands for
itself. The dash also stands for itself when it is the first or the last character in
the scanset. To include the right square bracket as an element of the scan set, it
must appear as the first character (possibly preceded by a circumflex) of the
scanset, in which case it will not be interpreted syntactically as the closing
bracket. The corresponding argument must point to a character array large
enough to hold the data field and the terminating \0, which are added
automatically. At least one character must match for this conversion to
succeed.

p A sequence of unsigned hexadecimal numbers is expected. This sequence may
be produced by the p conversion character of print!. The corresponding argu­
ment shall be a pointer to a pointer to void into which the value represented
by the hexadecimal sequence is stored. The behavior of this conversion is
undefined for any input item other than a value converted earlier during the
same program execution.

The conversion characters d, i and n can be preceded by 1 or h to indicate that a pointer to a
long int or short int rather than to an int is in the argument list. Similarly, the conversion
characters u, 0, x and X can be preceded by 1 or h to indicate that a pointer to unsigned long
int or unsigned short int rather than to an unsigned int is in the argument list. Finally, the
conversion characters e, E, f, g and G can be preceded by 1 or L to indicate that a pointer to a
double or long double rather than to a float is in the argument list. The 1 , L or h modifier is
ignored for other conversion characters.

The scan! functions terminate their conversions at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the offending character is
left unread in the input stream.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of ordinary characters within format
strings as single and/or multi-byte characters. Field width is given in terms of bytes. Charac­
ters received from the input stream are interpreted as single or multi-byte characters as deter­
mined by the LC_ TYPE category and the field width is decremented by the length of the char­
acter.

The LC_NUMERIC category determines the radix character expected within floating-point
numbers.

International Code Set Support
Single and multi-byte character code sets are supported.

RETURN VALUES
If the input ends before the first conflict or conversion, EOF is returned. Otherwise, these func­
tions return the number of successfully assigned input items. This number is a short count, or
even zero, if a conflict ensues between an input character and the control string.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

HP-UX Release 7.0: September 1989 -3- (Section 3) 491

SCANF(3S) SCANF(3S)

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain
thompson\O. Or:

int i: float x: char namefSOl:
(void) scanf(n%2d%f%*cl 0/;[O-9]n, &i, &x, name);

with input:

56789 0123 S6a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar (see getc(3S» will return a.

For another example, to create a language-independent date scanning routine, write:

char month[20]; int day, year;
(void) scanf(format, month, &day, &year);

For American usage, format would point to a string:

n%l$s %2$d %3$d"

The input:

July 3 1986

would assign July to month, 3 to day and 1986 to year.

For German usage, format would point to a string:

"%2$d %1$s %3$d"

The input:

3 Juli 1986

would assign Juli to month, 3 to day and 1986 to year.

The success of literal matches and suppressed assignments can be determined with the %n
conversion specification. Here is an example that checks the success of literal matches:

int i, nl, n2, n3, n4;
nl = n2 = n3 = n4 = -1;
scanf("%nBEGIN%n %d %nEND%n", &nl, &n2, &i, &n3, &n4);
if (n2 - nl == 5) puts("matched BEGIN");
if (n4 - n3 == 3) puts("matched END");

Here is an example that checks the success of suppressed assignments:

int i, nl, n2;
nl = n2 = -1;
scanf("%d %n%*s%n", &i, &nl, &n2);
if (n2 > nl)

printf("successful assignment suppression of %d chars\n", n2 - nl);

WARNINGS
Trailing white space (including a newline) is left unread unless matched in the control string.

Truncation of multi-byte characters may occur if a field width is used with the conversion
character.

NCscanf, nl_fscanf and nCsscanf are provided for historical reasons only. Their use is not
recommended. Use scanf, fscanf and sscanf instead.

DEPENDENCIES

492 (Section 3) -4- HP-UX Release 7.0: September 1989

SCANF(3S)

Series 300
The -i and -n conversion codes are not currently recognized.

AUTHOR
Scanf was developed by AT&T and HP.

SEE ALSO
getc(3S), setlocale(3C), printf(3S), strtod(3C), strtol(3C).

ST ANDARDS CONFORMANCE
scanf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

fscanf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

nCfscanf: XPG2

nCscanf: XPG2

nCsscanf: XPG2

sscanf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -5-

SCANF(3S)

(Section 3) 493

SETACLENTRY(3C) SET ACLENTRY (3C)

NAME
setac1entry, fsetac1entry - add, modify, or delete one entry in file's access control list (ACL)

SYNOPSIS
#inc1ude <unistd.h>
#indude <acUih.h>

int setac1entry (path, uid, gid, mode)
char *path;
int uid, gid;
int mode;

int fsetac1entry (fd, uid, gid, mode)
int fd;
int uid, gid;
int mode;

Remarks:
To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION
Both forms of this call add, modify, or delete one entry in a file's access control list (ACL). Seta­
clentry and fsetaclentry take a path name (path) or open file descriptor (fd) and an entry
identifier (uid, gid). They change the indicated entry's access mode bits to the given value
(mode), meanings of which are defined in <unistd.h>. Modes are represented as R_OK, W_OK,
and X_OK. Irrelevant bits in mode values must be zero.

If the file's ACL does not have an entry for the given uid and gid, the entry is created and
added to the ACL. If mode is MODE_DEL (defined in <acllib.h», the matching entry is deleted
from the file's ACL if it is an optional entry, or its mode bits are set to zero (no access) if it is a
base entry.

Uid or gid can be ACL_NSUSER or ACLNSGROUP (defined in <sys/ac1.h», respectively, to
represent non-specific entries u.%, %.g, or %.%. The file's u.% or %.g base entries can be
referred to using ACL_FILEOWNER or ACLFILEGROUP (defined in <acllib.h», for the file's
owner or group ID, respectively.

Setaclentry and fsetadentry read the file's ACL with getacl(2) or fgetacl(2) and modify it with
setad (2) or fsetacl (2), respectively.

RETURN VALUE
If successful, setaclentry and fsetaclentry return zero.

ERRORS
If an error occurs, setaclentry and fsetaclentry return the following negative values and set errno:

-1 Unable to perform getad or fgetad on the file. Errno indicates the cause.

-2 Unable to perform stat or fstat on the file. Errno indicates the cause.

-3 Cannot add a new entry because the ACL already has NACLENTRIES (defined in
<sys/ac1.h» entries.

-4 Cannot delete a nonexisting entry.

-5 Unable to perform setacl or fsetad on the file. Errno indicates the cause.

EXAMPLES
The following code fragment adds an entry to file "work/list" for user ID lIS, group ID 32, or
modifies the existing entry for that user and group, if any, with a new access mode of read
only. It also changes the owner base entry to have all access rights, and deletes the entry, if

494 (Section 3) -1- HP-UX Release 7.0: September 1989

SETACLENTRY(3C)

any, for any user in group 109.

#include <unistd.h>
#include <acllib.h>

char *filename = "work/list";

setaclentry (filename, 115, 32, R_OK);

SETACLENTRY(3C)

setaclentry (filename, ACL_FILEOWNER, ACL_NSGROUP, R_OK I W_OK I X_OK);
setadentry (filename; ACL_NSUSER, 109; MODE_DEL);

DEPENDENCIES
RFA and NFS

Setaclentry and [setaclentry are not supported on remote files.

AUTHOR
Setaclentry and [setaclentry were developed by HP.

SEE ALSO
getacl(2), setacl(2), stat(2), acltostr(3C), cpacl(3C), chownacl(3C), strtoacl(3C), acl(S).

HP-UX Release 7.0: September 1989 -2- (Section 3) 495

SETBUF(3S) SETBUF(3S)

NAME
setbuL setvbuf - assign buffering to a stream file

SYNOPSIS
#inc1ude <stdio.h>

void setbuf (stream, buf)
FILE *streami
char *bufi

int setvbuf (stream, buf, type, size)
FILE *streami
char *bufi
size_t type, sizei

DESCRIPTION
Setbuf may be used after a stream has been opened but before it is read or written. It causes
the array pointed to by bUf to be used instead of an automatically allocated buffer. If buf is the
NULL pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but before it is read or written. Type
determines how stream will be buffered. Legal values for type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be flushed when a newline is
written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

When an output stream is unbuffered, information is queued for writing on the destination file
or terminal as soon as written; when it is buffered, many characters are saved up and written as
a block. When it is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character is written or
terminal input is requested). Fflush can also be used to explicitly write the buffer.

If buf is not the NULL pointer, the array it points to will be used for buffering, instead of an
automatically allocated buffer (from malloc). Size specifies the size of the buffer to be used.
The constant BUFSIZ in <stdio.h> is suggested as a good buffer size. If input/output is
unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTE

If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the
value returned will be zero.

A common source of error is allocating buffer space as an "automatic" variable in a code block,
and then failing to close the stream in the same block.

STANDARDS CONFORMANCE
setbuf: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

setvbuf: SVID2, XPG2, XPG3, ANSI C

496 (Section 3) -1- HP-UX Release 7.0: September 1989

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp, sigsetjmp, siglongjmp - non-local goto

SYNOPSIS
#inc1ude <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

int _setjmp(env)
jmp_buf env;

void _longjmp(env, val)
jmp_buf env;
int val;

int sigsetjmp (env, savemask)
sigjmp_buf env;
int savemask;

void siglongjmp (env, val)
sigjmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Setjmp saves its stack environment in env (whose type, jmp_buf, is defined in the <setjmp.h>
header file) for later use by longjmp. It returns the value O.

Longjmp restores the environment saved by the last call of setjmp with the corresponding env
argument. After longjmp is completed, program execution continues as if the corresponding call
of setjmp (which must not itself have returned in the interim) had just returned the value val.
Longjmp cannot cause setjmp to return the value O. If longjmp is invoked with a second argu­
ment of 0, setjmp returns 1. All accessible data have values as of the time longjmp is called.

Upon the return from a setjmp call caused by a longjmp, the values of any non-static local vari­
ables belonging to the routine from which setjmp was called are undefined. Code which
depends on such values is not guaranteed to be portable.

The two pairs of functions, _setjmp and _longjmp and sigsetjmp and siglongjmp behave identi­
cally to setjmp and longjmp except in the handling of the process' signal mask (see sigaction(2)
and sigvector(2». This distinction is only significant for programs which use sigaction(2), sig­
procmask(2), sigvector(2), sigblock(2), and/or sigsetmask(2). Setjmp and longjmp always save and
restore the signal mask. _setjmp and _longjmp never manipulate the signal mask. Sigsetjmp
saves the signal mask if and only if savemask is non-zero. Siglongjmp restores the signal mask if
and only if it is saved by sigsetjmp. The names setjmp and longjmp are used in a generic sense
to describe all three variants.

If a longjmp is executed and the environment in which the setjmp is executed no longer exists,
errors can occur. The conditions under which the environment of the setjmp no longer exists
include exiting the procedure that contains the setjmp call, and exiting an inner block with tem­
porary storage (such as a block with declarations in C or a with statement in Pascal). This con­
dition might not be detectable, in which case the longjmp occurs, and if the environment no
longer exists, the contents of the temporary storage of an inner block are unpredictable. This

HP-UX Release 7.0: September 1989 -1- (Section 3) 497

SETJMP(3C) SETJMP(3C)

condition might also cause unexpected process termination. If the procedure has been exited
the results are unpredictable.

Passing longjmp a pointer to a buffer not created by setjmp, passing _longjmp a pointer to a
buffer not created by either setjmp or _setjmp, passing siglongjmp a pointer to a buffer not
created by sigsetjmp or passing any of these three functions a buffer that has been modified by
the user, can cause all the problems listed above, and more.

Some implementations of Pascal support a "try jrecover" mechanism, which also creates stack
marker information. If a longjmp operation occurs in a scope which is nested inside a
try jrecover, and the corresponding setjmp is not inside the scope of the try jrecover, the recover
block will not be executed and the currently active recover block will become the one enclosing
the setjmp, if one exists.

WARNINGS
A call to longjmp to leave the guaranteed stack space reserved by sigspace(2} might remove the
guarantee that the ordinary execution of the program will not extend into the guaranteed space.
It might also cause the program to forever lose its ability to automatically increase the stack
size, and the program might then be limited to the guaranteed space.

The result of using setjmp within an expression can be unpredictable.

If longjmp is called even though env was never primed by a call to setjmp, or when the last
such call was in a function that has since returned, absolute chaos is guaranteed.

AUTHOR
Setjmp was developed by AT&T and HP.

SEE ALSO
sigaction(2}, sigblock(2}, signal(5}, sigprocmask(2}, sigsetmask(2}, sigspace(2}, sigsuspend(2},
sigvector(2}.

STANDARDS CONFORMANCE
setjmp: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

longjmp: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

siglongjmp: XPG3, POSIX.1, FIPS 151-1

sigsetjmp: XPG3, POSIX.1, FIPS 151-1

498 (Section 3) -2- HP-UX Release 7.0: September 1989

SETLOCALE(3C) SETLOCALE(3C)

NAME
setlocale, getlocale - set and get the locale of a program

SYNOPSIS
#include <locale.h>

char *setlocale(category, locale)
const int category;
const char *locale;

struct locale_data *getlocale(type)
int type;

DESCRIPTION
Setlocale will set, query or restore that aspect of a program's locale as specified by the category
argument. A program's locale refers to those areas of the program's Native Language Support
(NLS) environment for which the following values of category have been defined:

LC_ALL affects the behavior of all categories below as well as all nUanginfo(3C)
items. Note that some nUanginfo items are only affected by the setting
of the LC_ALL category.

LC_COLLATE

LC_CTYPE

affects the behavior of regular expressions and the NLS string collation
functions (see string(3C), and regexp(5».

affects the behavior of regular expressions, character classification and
conversion functions (see ctype(3C), conv(3C), and regexp(5». The
LC_CTYPE category also affects the behavior of all routines which pro­
cess multibyte characters (see multibyte(3C) and nCtools_16(3C».

affects the behavior of functions which handle monetary values (see
localeconv(3C)).

affects the handling of the radix character in the formatted input/output
functions (see printf(3C), scanf(3C) and vprintf(3C» and the string conver-
sion functions (see ecvt(3C) and strtod(3C». LC_NUMERIC also affects
the numeric values found in the localeconv structure.

LC_ TIME affects the behavior of time conversion functions (see strftime(3C».

All nUanginfo(3C) items are affected by the setting of one of the categories listed above. See
langinfo(S) to determine which category affect each item.

The value of the locale argument will determine the action taken by setlocale. Locale is a pointer
to a character string.

Setting the Locale of a Program
To set the program's locale for category, setlocale will accept one of the following values as the
locale argument: locale name ,"C", or "" (the empty string). The actions prescribed by these
values are as follows:

locale name If locale is a valid locale name (see lang(5», setlocale will set that part of the
NLS environment associated with category as defined for that locale.

If the value of locale is set to "C", setlocale will set that part of the NLS
environment associated with category as defined for the "C" locale (see lang(5».
The "C" locale is the default prior to successfully calling setlocale.

If the value of locale is the empty string, the setting of that part of the NLS
environment associated with category will depend on the setting of the follow­
ing environment variables in the user's environment (see environ(5)) :

HP-UX Release 7.0: September 1989 -1- (Section 3) 499

SETLOCALE (3C)

LANG

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

SETLOCALE(3C)

If category is any defined value other than LC_ALL, setlocale will set that
category as specified by the value of the corresponding environment variable. If
the environment variable is not set or set to the empty string, setlocale will set
the category as specified by the value of the LANG environment variable. If
LANG is not set or is set to the empty string , then set locale will set the
category to the "C" locale. For example, setlocale(LC_ TIME,"") will set the
program's NLS environment associated with the LC_ TIME category to the value
specified by the user's LC_ TIME environment variable. All other aspects of the
NLS environment will be unaffected.

If category is LC_ALL, then all categories will be set corresponding to the value
of LANG, except for those categories in which the corresponding environment
variable is set to a valid language name (see lang(5)). In this case the value of
the environment variable will override the value of LANG for that category. If
the value of LANG is not set or is set to the empty string, then the "C" locale
is used.

The following usage of setlocale will result in the program's locale being set
according to the the user's language requirements:

setlocale(LC_ALL,"");

Querying the Locale of a Program
Setlocale will query the current NLS environment pertaining to category if the value of locale is
NULL. The query operation will not change the environment. The purpose of performing a
query is to save that aspect of the user's current NLS environment associated with category, in
the value returned by setlocale, such that it can be restored· with a subsequent call to setlocale.

Restoring the Locale of a Program
To restore a category within the program locale, a setlocale call is made with the same category
argument and the return string of the previous setlocale call given as the locale argument.

The getlocale function will return a pointer to a locale_data structure (see
/usr/include/locale.h). The members of the locale_data structure contain information about
the setting of each setlocale category. Type determines what information is contained in the
locale_data structure. Defined values of type and their behaviour are:

LOCALE_STATUS
The structure member corresponding to each category will contain a string with
the name of the locale currently set for that ~ategory. The string will not include
modifier information.

MODIFIER_STATUS
The structure member corresponding to each category will contain a string with
the name of the modifier currently set for that category. If no modifier is set then
the entry will contain an empty string.

ERROR_STATUS
The structure member will contain information about errors which occurred

500 (Section 3) -2- HP-UX Release 7.0: September 1989

SETLOCALE(3C) SETLOCALE(3C)

during the previous call to setlocale. If setlocale could not satisfy a request
corresponding to a particular category, the structure member for that category will
contain a string with the name of the invalid locale. In all other cases the
member for the category will contain an empty string.

RETURN VALUE
If the pointer to a string is given for locale and the selection can be honored, the setlocale func­
tion returns a pointer to the string associated with the specified category for the new locale. The is
LC_BUFSIZ bytes (see <iocaie.h». If the selection cannot be honored, the setiocaie function
returns a null pointer and the program's locale is not changed.

A null pointer for locale causes setlocale to return a string associated with the category for the
program's current locale.

The string returned by setlocale is such that a subsequent call with that string as the locale argu­
ment and its associated category will restore that part of the program's locale.

ERRORS
If a language name given through the locale argument does not identify a valid language name
or the language is not available on the system (see lang(S» a null pointer is returned and the
program's locale is not changed. The same behavior will occur when the call :

setlocale(LC_ALL, getenv("LANG"»;

is made and any category related environment variable in the user's environment identifies an
invalid language name or a language that is not available on the system.

If the category argument is not a defined category value a null pointer is returned and the
program's locale is not changed.

Setlocale returns a string which reflects the current setting of that aspect of the NLS environ­
ment corresponding to the category argument. If this return string is used in a subsequent setlo­
cale call and the category arguments of the two calls do not match, the locale remains
unchanged and a null pointer is returned.

WARNINGS
The use of the getenvO function as the locale argument is not recommended. An example of
this usage is :

setlocale(LC_ALL, getenv(II LANG "»;

Getenv will return a character string which may be a language name, an empty string or a null
pointer depending on the setting of the user's LANG environment variable. Each of these
values as the locale argument define a specific action to be taken by setlocale. Therefore the
action taken by setlocale will depend upon the value returned from the getenv call. To ensure
setlocale will set the program's locale based upon the setting of the user's environment variables
the following usage is recommended :

setlocale(LC_ALL, 1111);

The value returned by set locale points to a static area that will be overwritten with the next call
to setlocale. It is recommended that these values be copied to another area if they are to be used
after a subsequent setlocale call.

The structure which is returned through a call to getlocale will be overwritten with the next call
to getlocale. It is recommended that these values be saved if they are to be used after a subse­
quent getlocale call.

EXAMPLES
To set a program's entire locale based on the language requirements specified via the user's
environment variables:

HP-UX Release 7.0: September 1989 -3- (Section 3) 501

SETLOCALE(3C) SETLOCALE(3C)

setlocale(LC_ALL, "");

If, in the previous example, the user's environment variables were set as follows:

LANG= " german "
LC_ COLLATE="spanish@nofold"
LC_MONETARY=""
LC_ TIME=" american"

the LC_ALL, LC_CTYPE, LC_MONETARY, and LC_NUMERIC category items would be set to
correspond to the "german" language definition, the LC_COLLATE category items would be set
to correspond to the "spanish" language definition for unfolded collation (see hpnls(5» and the
LC_TIME category items would be set corresponding to the "american" language definition.

Using the same example, if the following call was made:

struct locale_data *locale_info=getlocale(LOCALE_ST ATUS);

the contents of *locale_info would be :

locale_info-> LC_ALL_D=" german"
locale_info-> LC_ COLLA TE_D=" spanish"
locale_info-> LC_ CTYPE_D=" german"
locale_info-> LC_MONET ARY _D=" german"
locale_info-> LC_NUMERIC_D=" german"
locale_info-> LC_ TIME_D=" american"

Continuing with the same example, if the following call was made:

struct locale_data *modifiecinfo=getlocale(MODIFIER_STATUS);

the contents of *modifiecinfo would now be :

modifiecinfo-> LC_ALLD= ""
modifier _info-> LC_ COLLA TE_D=" nofold"
modifiecinfo-> LC_ CTYPE_D= ""
modifiecinfo-> LC_MONETARY _D=""
modifiecinfo-> LC_NUMERIC_D= ""
modifiecinfo-> LC_ TIME_D= ""

The calls:

setlocale(LC_ALL," ");
struct locale_data *errocinfo=getlocale(ERROR_STATUS);

with the following settings in the users environment:

LANG=german
LC_ COLLATE=junk

where "junk" is an invalid language, would result in the contents of *errocinfo being:

_errocinfo-> LC_ALL_D= ""
errocinfo-> LC COLLATE_D= "junk"
_errocinfo-> LC_CTYPE_D= " "
_errocinfo-> LC_MONETARY _D= ""
_errocinfo->LC_NUMERIC_D=" "
errocinfo-> LC TIME_D=" "

To set the date/time formats to French:

502 (Section 3) -4- HP-UX Release 7.0: September 1989

SETLOCALE(3C)

setlocale(LC_ TIME, "french");

To set the collating sequence to the "C" locale:

setlocale(LC_COLLATE, "C");

SETLOCALE (3C)

To set monetary handling to the value of the user's LC_MONETARY environment variable:

setlocale(LC_MONETARY, '"');

(Note that if the LC_MONETARY environment variable is not set or empty the value of the
user's LANG environment variable will be used.)

To query a user's locale :
char *ch = setlocale(LC_ALL, NULL);

To restore the locale saved in the above example:
setlocale(LC_ALL, ch);

To query just that part of the user's locale pertaining to the LC_NUMERIC category:
char *ch = setlocale(LC_NUMERIC, NULL);

To restore the LC_NUMERIC category of the user's locale saved in the above example:
setlocale(LC_NUMERIC, ch);

AUTHOR
Setlocale was developed by HP.

SEE ALSO
nlsinfo(l), buildlang(lM), conv(3C), ctype(3C), ecvt(3C), langinfo(3C), multibyte(3C),
nLtools_16(3C), printf(3S), scanf(3S), strcoll(3C), strftime(3C), string(3C), strtod(3C),
vprintf(3S), hpnls(S), environ(S), langinfo(S).

STANDARDS CONFORMANCE
setlocale: XPG3, POSIX.1, FIPS lSI-I, ANSI C

HP-UX Release 7.0: September 1989 -5- (Section 3) 503

SIGSETOPS(3C) SIGSETOPS(3C)

NAME
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - initialize, manipulate, and test signal
sets

SYNOPSIS
#include <signal.h>

int sigemptyset (set)
sigset_t *set;

int sigfillset (set)
sigseCt *set;

int sigaddset (set, signo)
sigseCt *set;
int signo;

int sigdelset (set, signo)
sigseCt *set;
int signo;

int sigismember (set, signo)
sigset_t *set;
int signo;

DESCRIPTION
Sigemptyset initializes the signal set pointed to by set, to exclude all signals supported by HP­
UX.

Sigfillset initializes the signal set pointed to by set, to include all signals supported by HP-UX.

Applications must call either sigemptyset or sigfillset at least once for each object of type sigset_t
before using that object for anything else, including cases where the object is returned from a
function (for example, the oset argument to sigprocmask(2».

Sigaddset adds the signal specified by signo to the signal set pointed to by set.

Sigdelset deletes the signal specified by signo from the signal set pointed to by set.

Sigismember tests whether the signal specified by signo is a member of the signal set pointed to
by set.

RETURN VALUE
Upon successful completion, sigismember returns a value of 1 if the specified signal is a member
of the specified set, or a value of 0 if it is not. The other functions return a value of 0 upon suc­
cessful completion. For all of the above functions, if an error is detected, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
Sigaddset, sigdelset, and sigismember fail if the following is true:

[EINVAL]

WARNINGS

The value of the signo argument is out of range. The reliable detection of this
error is not guaranteed.

The above functions do not detect a bad address passed in for the set argument. A segmentation
fault is the most likely result.

AUTHOR
Sigfillset, sigemptyset, sigaddset, sigdelset, and sigismember were derived from the IEEE Standard
POSIX 1003.1-1988.

504 (Section 3) -1- HP-UX Release 7.0: September 1989

SIGSETOPS(3C)

SEE ALSO
sigaction(2), sigsuspend(2), sigpending(2), sigprocmask(2), signal(5).

STANDARDS CONFORMANCE
sigaddset: XPG3, POSIX.1, FIPS 151-1

sigdelset: XPG3, POSIX.1, FIPS 151-1

sigemptyset: XPG3, POSIX.1, FIPS 151-1

sigfillset: XPG3, POSIX.1, FIPS 151-1

sigismember: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2-

SIGSETOPS(3C)

(Section 3) 505

SINH (3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double Xi

double cosh (x)
double Xi

double tanh (x)
double Xi

DESCRIPTION

SINH(3M)

Sinh, cosh, and tanh return respectively the hyberbolic sine, cosine and tangent of their argu­
ment.

DEPENDENCIES
Series 800 (jlib /libm.a and ANSI C /lib /libM.a)

When x is ±INFINITY , sinh returns ±INFINITY respectively.

When x is ±INFINITY , cosh returns + INFINITY .

When x is ±INFINITY , tanh returns ±1.0 respectively.

ERRORS
Series 300

Sinh and cosh return HUGE_VAL (and sinh may return -HUGE_VAL for negative x) and set
ermo to ERANGE when the correct value would overflow.

Series 800 (jlib/libm.a and ANSI C /lib/libM.a)
Sinh and cosh return HUGE_VAL (and sinh may return -HUGE_VAL for negative x) and set
ermo to ERANGE when the correct value would overflow.

Sinh, cosh and tanh return NaN and set errno to EDOM when x is NaN.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
isinf(3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
sinh: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

cosh: SVID2, XPG2, XPG3, POSIX.1, PIPS 151-1, ANSI C

tanh: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

506 (Section 3) -1- HP-UX Release 7.0: September 1989

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned int sleep (seconds)
unsigned int seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be less than that requested for two reasons: (1)
Because scheduled wakeups occur at fixed I-second intervals, (on the second, according to an
internal clock) and (2) because any caught signal will terminate the sleep following execution of
that signal's catching routine. Also, the suspension time may be longer than requested by an
arbitrary amount due to the scheduling of other activity in the system. The value returned by
sleep will be the "unslept" amount (the requested time minus the time actually slept) in case
the caller had an alarm set to go off earlier than the end of the requested sleep time, or prema­
ture arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other sig­
nal) occurs. The previous state of the alarm signal is saved and restored. The calling program
may have set up an alarm signal before calling sleep. If the sleep time exceeds the time until
such an alarm signal, the process sleeps only until the alarm signal would have occurred. The
caller's alarm catch routine is executed just before the sleep routine returns. If the sleep time is
less than the time till such alarm, the prior alarm time is reset to go off at the same time it
would have without the intervening sleep.

Seconds must be less than 232.

SEE ALSO
alarm(2), pause(2), signal(5).

STANDARDS CONFORMANCE
sleep: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 3) 507

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
void sputl (value: buffer)
long value;
char * buffer;

long sgetl (buffer)
char * buffer;

DESCRIPTION
Sputl takes the four bytes of the long integer value and places them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer and returns
the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of storing long
numeric data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access routine library
Ubld.a.

STANDARDS CONFORMANCE
sputl: SVID2

sgetl: SVID2

508 (Section 3) -1- HP-UX Release 7.0: September 1989

SSIGNAL(3C) SSIGNAL(3C)

NAME
ssignal, gSignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action»()
int sig, (*action)()i

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal (5). This facility is used by the
Standard C Library to enable users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. A call to ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a software signal causes the action
established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user-defined)
action function or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal
returns the action previously established for that signal type; if no action has been established
or the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value
o and takes no other action.

SEE ALSO
signal(S).

NOTES
There are some additional signals with numbers outside the range 1 through 15 which are used
by the Standard C Library to indicate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere with the operation of the Stan­
dard C Library.

STANDARDS CONFORMANCE
ssignal: SVID2, XPG2

gsignal: SVID2, XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 509

STATFSDEV(3C) ST ATFSDEV(3C)

NAME
statfsdev, fstatfsdev - get file system statistics

SYNOPSIS
#ifidude <syS/types.h>
#include <sys/vfs.h>

int statfsdev(path, buf)
char *path;
struct statfs *buf;

int fstatfsdev(fildes, buf)
int fildes;
struct statfs *buf;

DESCRIPTION
Statfsdev returns information about the file system on the file specified by path.

Buf is a pointer to a statfs structure into which information is placed concerning the file system.
The contents of the structure pointed to by buf include the following members:

long Lbavai1; /* free blocks available to non-superuser * /
long Lbfree; /* free blocks * /
long Lblocks; /* total blocks in file system * /
long Lbsize; /* fundamental file system block size in bytes * /
long Lffree; /* free file nodes in file system * /
long Lfiles; /* total file nodes in file system * /
long Ltype; /* type of info, zero for now * /
fsid_ t Lfsid; /* file system ID * /
Fields that are undefined for a particular file system are set to -l.

Fstatfsdev returns the same information as above, but about the open file referred to by file
descriptor fildes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
Statfsdev fails if one or more of the following is true:

[EACCES]

[EAGAIN]

[EFAULT]

[ELOOP]

[EMFILE]

Search permission is denied for a component of the path prefix.

The file exists, enforcement mode file/record locking is set, and there are out­
standing record locks on the file.

Path points to an invalid address.

Too many symbolic links are encountered in translating the path name.

The maximum number of file descriptors allowed are currently open.

[ENAMETOOLONG]
The path name is too long.

[ENFILE] The system file table is full.

[ENOENT]

[ENOTDIR]

[ENXIO]

510 (Section 3)

The named file does not exist.

A component of the path prefix is not a directory.

The device specified by the named special file does not exist.

-1- HP-UX Release 7.0: September 1989

ST ATFSDEV (3C)

Fstatfsdev fails if one or more of the following is true:

[EBADF]

[ESPIPE]

Fildes is not a valid open file descriptor.

file des points to an invalid address.

Both fstatfsdev and statfsdev fail if one or more of the following is true:

ST ATFSDEV(3C)

[EAGAIN] Enforcement-mode record locking was set, and there was a blocking write lock.

[EDEADLK] A resource deadlock would occur as a result of this operation.

A system call was interrupted by a signal. [EINTR]

[EINVAL] The file specified by path or filedes does not contain a file system of any known
type.

[ENOLOCK] The system lock table was full, so the read could not go to sleep until the
blocking write lock was removed.

AUTHOR
Statfsdev and fstatfsdev were developed by HP.

FILES
jusrjinc1udejsysjmount.h

SEE ALSO
bdf(lM), df(1M), stat(2), statfs(2).

HP-UX Release 7.0: September 1989 -2- (Section 3) 511

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input/output stream file package

SYNOPSIS
#include <stdio.h>

FILE *stdin, *stdout, *stderri

DESCRIPTION
The functions described in the entries of sub-class (3S) of this manual constitute an efficient,
user-level I/O buffering scheme. The routines gete(3S) and pute(3S) handle characters quickly.
The routines fgete, fgets, fprintf, fpute, fputs, fread, fseanf, fwrite, getehar, gets, getw, printf,
putehar, puts, putw, and seanf all use or act as if they use gete and pute; they can ,be freely
intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to desig­
nate the stream in all further transactions. The Section (3S) library routines operate on this
stream.

At program startup, three streams, standard input, standard output and standard error, are
predefined and do not need not be explicitly opened. When opened, the standard input and
standard output streams are fully buffered if the output refers to a file and line-buffered if the
output refers to a terminal. The standard error output stream is be default unbuffered. These
three streams have the following constant pointers declard in the <stdio.h> header file:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer functions
that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular implementa­
tion (see setbuf(3S)).

Any program that uses this package must include the header file of pertinent macro definitions,
as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class (3S) of this manual are
declared in that header file and need no further declaration.

A constant _NFILE defines the maximum number of open files allowed per process.

SEE ALSO
close(2), Iseek(2), open(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S), fgetpos(3S), fileno(3S), fopen(3S), fread(3S), fseek(3S), fsetpos(3S), getc(3S), gets(3S),
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S), tmpfile(3S),
tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including program termina­
tion. Individual function descriptions describe the possible error conditions.

STANDARDS CONFORMANCE
stdio: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

stderr: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

512 (Section 3) -1- HP-UX Release 7.0: September 1989

STDIO(3S)

stdin: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

stdout: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2-

STDIO(3S)

(Section 3) 513

STDIPC(3C) STDIPC(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key _t ftok(path, id)
char *pathi
char idi

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the
msgget(2), semget(2), and shmget(2) system calls to obtain interprocess communication
identifiers. One suggested method for forming a key is to use the ftok subroutine described
below. Another way to compose keys is to include the project ID in the most significant byte
and to use the remaining portion as a sequence number. There are many other ways to form
keys, but it is necessary for each system to define standards for forming them. If some standard
is not adhered to, it will be possible for unrelated processes to unintentionally interfere with
each other's operation. Therefore, it is strongly suggested that the most significant byte of a
key in some sense refer to a project so that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget
system calls. Path must be the path name of an existing file that is accessible to the process. ld
is a character which uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same id and that it will return different keys when called with
the same file name but different ids.

DIAGNOSTICS
Ftok returns (key _t) -1 if path does not exist or if it is not accessible to the process.

EXAMPLES
The following call to ftokO returns a key associated with the file myfile and id 'A':

key _t mykey;

mykey = ftok ("myfile", 'A');

WARNINGS
If the file whose path is passed to ftok is removed when keys still refer to the file, future calls to
ftok with the same path and id will return an error. If the same file is recreated, then ftok is
likely to return a different key than it did the original time it was called.

In the HP Clustered environment, ftok may return a different key (using the same file name)
when executed on different members of the cluster if any component of the file path name is a
CDF.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2), cdf(4).

514 (Section 3) -1- HP-UX Release 7.0: September 1989

STRFTIME(3C) STRFTIME(3C)

NAME
strftime - convert date and time to string

SYNOPSIS
#inc1ude <time.h>

size_t strftime (s, maxsize, format, timeptr)
char *s;
size_t maxsize;
const char *format;
const struct tm *timeptr;

DESCRIPTION
The strftime function converts the contents of a tm structure (see ctime(3C» to a formatted date
and time string.

The strftime function places characters into the array pointed to by s as controlled by the string
pointed to by format. The format string consists of zero or more directives and ordinary charac­
ters. A directive consists of a % character, an optional field width and precision specification,
and a terminating character that determines the directive's behavior. All ordinary characters
(including the terminating null character) are copied unchanged into the array. No more than
maxsize characters are placed into the array. Each directive is replaced by the appropriate char­
acters as described in the following list. The appropriate characters are determined by the
program's locale, by the values contained in the structure pointed to by timeptr, and by the TZ
environment variable (see External Influences below).

Directives
The following directives, shown without the optional field width and precision specification, are
replaced by the indicated characters:

%a
%A
%b
%B
%c

%d
%E
%H
%1
%j

%m
%M
%n
%N
%0

%p
%5
%t
%U

%w

%W

locale's abbreviated weekday name
locale's full weekday name
locale's abbreviated month name
locale's full month name
locale's appropriate date and time representation

day of the month as a decimal number [01,31]
locale's combined Emperor/Era name and year
hour (24-hour clock) as a decimal number [00,23]
hour (12-hour clock) as a decimal number [01,12]
day of the year as a decimal number [001,366]

month as a decimal number [01,12]
minute as a decimal number [00,59]
new-line character
locale's Emperor/Era name
locale's Emperor/Era year

locale's equivalent of either AM or PM
second as a decimal number [00,61]
tab character
week number of the year (the first Sunday as the first day of week 1)
as a decimal number [00,53]
weekday as a decimal number [O(Sunday),6]

week number of the year (the first Monday as the first day of week 1)
as a decimal number [00,53]

HP-UX Release 7.0: September 1989 -1- (Section 3) 515

STRFTIME(3C)

%x
%X
%y
%y

%Z
%%

locale's appropriate date representation
locale's appropriate time representation
year without century as a decimal number [00,99]
year with century as a decimal number

STRFTIME(3C)

time zone name (or by no characters if no time zone exists)
%

The following directives are provided for backward compatibility with the directives supported
by date(l) and the ctime(3C) functions. It is recommended that the directives above be used in
preference to those below.

%D date in usual US format (%m/%d/%y) (use %x instead)
%F locale's full month name (use %B instead)
%h locale's abbreviated month name (use %b instead)
%r time in 12-hour US format (%I:%M:%S [AM I PM]) (use %X instead)
%T time in 24-hour US format (%H:%M:%S) (use %X instead)
%z time zone name (or by no characters if no time zone exists) (use %Z

instead)

If a directive is not one of the above, the behavior is undefined.

Field Width and Precision
An optional field width and precision specification can immediately follow the initial % of a
directive in the following order:

[-IO]w the decimal digit string w specifies a minimum field width in which the result
of the conversion is right- or left-justified. It is right-justified (with space pad­
ding) by default. If the optional flag '-' is specified, it is left-justified with
space padding on the right. If the optional flag '0' is specified, it is right­
justified and padded with zeros on the left.

.p the decimal digit string p specifies the minimum number of digits to appear for
the d, H, I, j, m, M, 0, S, U, w, W, y and Y directives, and the maximum
number of characters to be used from the a, A, b, B, c, D, E, F, h, n, N, p, r, t,
T, x, X, Z, Z and % directives. In the first case, if a directive supplies fewer
digits than specified by the precision, it will be expanded with leading zeros.
In the second case, if a directive supplies more characters than specified by the
precision, excess characters will truncated on the right.

If no field width or precision is specified for a d, H, I, m, M, S, U, W, Y or j directive, a default
of ".2" is used for all but j for which ".3" is used.

EXTERNAL INFLUENCES
Locale

The LC_ TIME category determines the characters to be substituted for those directives described
above as being from the locale.

The LC_CTYPE category determines the interpretation of the bytes within format as single
and/or multi-byte characters.

The LC_NUMERIC category determines the characters used to form numbers for those directives
that produce numbers in the output. If ALT_DIGITS (see langinfo(5» is defined for the locale,
the characters so specified are used in place of the default ASCII characters.

Environment Variables
TZ determines the time zone name substituted for the %Z and %z directives. The time zone
name is determined by calling the function tzset which sets the external variable tzname (see
ctime(3C».

516 (Section 3) -2- HP-UX Release 7.0: September 1989

STRFTIME(3C) STRFTIME(3C)

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
If the total number of resulting characters including the terminating null character is not more
than maxsize, strftime returns the number of characters placed into the array pointed to by s, not
including the terminating null character. Otherwise, zero is returned and the contents of the
array are indeterminate.

EXAMPLES
If the timeptr argument contains the following values:

timeptr-+tm_sec = 4;
timeptr-+tm_min = 9;
timeptr-+tm_hour = 15;
timeptr-+tm_mday = 4;
timeptr-+tm_mon = 6;
timeptr-+tm_year = 88;
timeptr-+tm_ wday = 1;
timeptr-+tm_yday = 185;
timeptr-+tm_isdst = 1;

the following combinations of the LC_ TIME category and format strings produce the indicated
output:

LC_ TIME format string output

american
german
american
french
anyt
anyt
anyt

%x
%x
%X
%X
%H:%M:%S
%.lH:%.lM:%.lS
%2.1H:%-3M:%03.1S

Mon, Jul 4, 1988
Mo., 4. Juli 1988
03:09:04 PM
15h0904
15:09:04
15:9:4
15:9 :004

t The directives used in these examples are not affected by the LC_TIME category of the locale.

WARNINGS
If the arguments s and format are defined such that they overlap, the behavior is undefined.

The function tzset is called upon every invocation of strftime (whether or not the time zone
name is copied to the output array).

The range of values for %S ([0,61]) extends to 61 to allow for the occasional one or two leap
seconds. However, the system does not accumulate leap seconds and the tm structure gen­
erated by the functions localtime and gmtime (see ctime(3C)) never reflects any leap seconds.

Results are undefined if values contained in the structure pointed to by timeptr exceed the
ranges defined for the tm structure (see ctime(3C)) or are not consistent. For example, the
tm_yday element set to 0, indicating the first day of January, while the tm_mon element is set
to II, indicating a day in December).

AUTHOR
Strftime was developed by HP.

SEE ALSO
date(l), ctime(3C), setlocale(3C), environ(5), langinfo(5), hpnls(5).

STANDARDS CONFORMANCE
strftime: XPG3, POSIX.1, FIPS lSI-I, ANSI C

HP-UX Release 7.0: September 1989 -3- (Section 3) 517

STRING(3C) STRING(3C)

NAME
strcat, stmcat, strcmp, strncmp, strcpy, stmcpy, strdup, strlen, strchr, strrchr, strpbrk, strspn,
strcspn, strstr, strtok, strcoll, strxfrm, nLstrcmp, nLstmcmp - character string operations

SYNOPSIS

518

#include <string.h>

char *strcat (sl, s2)
char *sl;
const char *s2;

char *strncat (sl, s2, n)
char *sl;
const char *s2;
size_t n;

int strcmp (51, s2)
const char *sl, *s2;

int strncmp (sl, s2, n)
const char *sl, *s2;
size_t n;

char *strcpy (sl, s2)
char *sl;
const char *s2;

char *strncpy (sl, s2, n)
char *sl;
const char *s2;
size_t n;

char *strdup (s)
const char *s;

size_t strlen (s)
const char *s;

char *strchr (s, c)

const char *s;
int c;

char *strrchr (s, c)
const char *s;
int c;

char *strpbrk (sl, s2)
const char *sl, *s2;

size_t strspn (sl, s2)
const char *sl, *s2;

size_t strcspn (sl, s2)
const char *sl, *s2;

char *strstr (sl, s2)
const char *sl, *s2;

char *strtok (sl, s2)
char *sl;
const char *s2;

(Section 3) -1- HP-UX Release 7.0: September 1989

STRING(3C)

int strcoll (sl, s2)
const char *sl, *s2;

size_t strxfrm (sl, s2, n)
char *sl;
const char *s2;
size_t n;

int nLstrcmp (51, 52)
const char *sl, *s2;

int nLstrncmp (sl, s2, n)
const char *sl, *s2;
size_t n;

DESCRIPTION

STRING(3C)

The arguments 51, 52, and 5 point to strings (arrays of characters terminated by a null byte).

Definitions for all these functions, the type size_t, and the constant NULL are provided in the
<string.h> header.

Streat appends a copy of string 52 to the end of string 51. Strneat appends a maximum of n
characters. It copies fewer if 52 is shorter than n characters. Each returns a pointer to the null­
terminated result (the value of 51).

Stremp compares its arguments and returns an integer less than, equal to, or greater than zero,
depending on whether 51 is lexicographically less than, equal to, or greater than 52. The com­
parison of corresponding characters is done as if the type of the characters were unsigned char.
Null pointer values for 51 and 52 are treated the same as pointers to empty strings. Strnemp
makes the same comparison but examines a maximum of n characters (n less than or equal to
zero yields equality).

Strepy copies string 52 to 51, stopping after the null byte has been copied. Strnepy copies
exactly n characters, truncating 52 or adding null bytes to 51 if necessary, until n characters in
all have been written. The result will not be null-terminated if the length of 52 is n or more.
Each function returns 51. Note that 5trnepy should not be used to copy n bytes of an arbitrary
structure. If that structure contains a null byte anywhere, 5trnepy will copy fewer than n bytes
from the source to the destination, and fill the remainder with null bytes. Use the memepy
function (described on memory(3C» to copy arbitrary binary data.

Strdup returns a pointer to a new string which is a duplicate of the string to which 51 points.
The space for the new string is obtained using the malloe(3C) or malloe(3X) function (depending
on which is linked with the program).

Strlen returns the number of characters in 5, not including the terminating null byte.

Strehr (5trrehr) returns a pointer to the first (last) occurrence of character e in string 5, or a null
pointer if e does not occur in the string. The null byte terminating a string is considered to be
part of the string.

Strpbrk returns a pointer to the first occurrence in string 51 of any character from string 52, or a
null pointer if no character from 52 exists in 51.

Str5pn (5tre5pn) returns the length of the maximum initial segment of string 51, which consists
entirely of characters from (not from) string 52.

Str5tr returns a pointer to the first occurrence of string 52 in string 51, or a NULL pointer if 52
does not occur in the string. If 52 points to a string of zero length, 5tr5tr returns 51.

Strtok considers the string 51 to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string 52. The first call (with a non-null
pointer 51 specified) returns a pOinter to the first character of the first token, and will have

HP-UX Release 7.0: September 1989 -2- (Section 3) 519

STRING(3C) STRING(3C)

written a null byte into sl immediately following the returned token. The function keeps track
of its position in the string sl between separate calls, so that subsequent calls made with the
first argument a null pointer will work through the string immediately following that token. In
this way subsequent calls will work through the string sl until no tokens remain. The separator
string s2 may be different from call to can. When no token remains in s1, a nuB pointer is
returned.

Strcoll returns an integer greater than, equal to, or less than zero, according as the string
pointed to by sl is greater than, equal to, or less than the string pointed to by s2. The com­
parison is based on strings interpreted as appropriate to the program's locale (see Locale below).
In the "C" locale strcoll works like strcmp. NCstrcmp is provided for historical reasons only
and is equivalent to strcoll. NCstrncmp, also provided only for historical reasons, makes the
same comparisons as strcoll, but looks at a maximum of n characters (n less than or equal to
zero yields equality).

Strxfrm transforms the string pointed to by s2 and places the resulting string into the array
pointed to by sl. The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to
the result of the strcoll function applied to the same two original strings. No more than n bytes
are placed into the resulting string including the terminating null character. If the transformed
string fits in no more than n bytes, the length of the resulting string is returned (not including
the terminating null character). Otherwise the return value is the number of bytes that the sl
string would occupy (not including the terminating null character), and the contents of the array
are indeterminate.

Strcoll has better performance with respect to strxfrm in cases where a given string is compared
to other strings only a few times, or where the strings to be compared are long but a difference
in the strings that determines their relative ordering usually comes among the first few charac­
ters. Strxfrm offers better performance in, for example, a sorting routine where a number of
strings are each transformed just once and the transformed versions are compared against each
other many times.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of the bytes within the string arguments
to the strcoll, strxfrm, nCstrcmp and nCstrncmp functions as single and/or multi-byte characters.

The LC_COLLATE category determines the collation ordering used by the strcoll, strxfrm,
nCstrcmp and nCstrncmp functions. See hpnls(5) for a description of supported collation
features. See nlsinfo(l) to view the collation used for a particular locale.

International Code Set Support
Single- and multi-byte character code sets are supported for the strcoll, strxfrm, nCstrcmp and
nCstrncmp functions. All other functions support only single-byte character code sets.

WARNINGS
The functions strcat, strncat, strcpy, strncpy, and strtok alter the contents of the array to which
sl points. They do not check for overflow of the array.

Null pointers for destination strings cause undefined behavior.

Character movement is performed differently in different implementations, so moves involving
overlapping source and destination strings may yield surprises.

The transformed string produced by strxfrm for a language using an 8-bit code set will usually
be at least twice as large as the original string and may be as much four times as large (ordinary
characters occupy two bytes each in the transformed string, 1-to-2 characters four bytes, 2-to-1
characters two bytes per original pair, and don't-care characters no bytes). Each character of a
multi-byte code set (Asian languages) will occupy three bytes in the transformed string.

520 (Section 3) -3- HP-UX Release 7.0: September 1989

STRING(3C) STRING(3C)

For the strcoll, strxfrm, nl_strcmp and nCstrncmp functions, the results are undefined if the
languages specified by the LC_COLLATE and LC_CTYPE categories use different code sets.

AUTHOR
String was developed by AT&T and HP.

SEE ALSO
nlsinfo(l), malloc(3C), malloc(3X), memory(3C), setlocale(3C), hpnls(5).

STANDARDS CONFORMANCE
nCstrcmp: XPG2

nCstrncmp: XPG2

strcat: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strchr: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strcmp: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strcoll: XPG3, ANSI C

strcpy: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strcspn: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strdup: SVID2

strlen: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strncat: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strncmp: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strncpy: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strpbrk: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strrchr: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strspn: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strstr: XPG3, POSIX.1, FIPS lSI-I, ANSI C

strtok: SVID2, XPG2, XPG3, POSIX.1, FIPS lSI-I, ANSI C

strxfrm: XPG3, ANSI C

HP-UX Release 7.0: September 1989 -4- (Section 3) 521

STRORD(3C) STRORD(3C)

NAME
strord - convert string data order

SYNOPSIS
#include <nCtypes.h>

char *strord (sl, s2, m)
char *sl, *s2;
nCmode m;

DESCRIPTION
The text orientation (mode) of a file can be right-to-Ieft (non-Latin) or left-to-right (Latin). This
text orientation can affect the way data is arranged in the file. The data arrangements that
result are called screen order and keyboard order (see hpnI5(5) for more details).

The 5trard routine converts the order of characters in 52 from screen to keyboard order or vice
versa and places the result in 51. The arguments sl and 52 point to strings (arrays of characters
terminated by a null character). Strard returns 51.

Strard performs the conversion based on mode information indicated by the argument m. The
argument m is of type nCmade found in the header file <nCtypes.h>. The mode argument
can have two possible values: NL_LATIN and NL_NONLATIN.

If the mode argument is NL_LATIN, the text orientation is left-to-right and all non-Latin sub­
strings are reversed. Non-Latin sub-strings are any number of contiguous right-to-Ieft language
characters. Non-Latin sub-strings are delimited by ASCII characters.

Similarly, if the mode argument is NL_NONLATIN, the text orientation is right-to-Ieft and all
Latin sub-strings are reversed. Latin sub-strings are any number of contiguous printable ASCII
characters. Latin sub-strings are delimited by right-to-Ieft language characters and ASCII con­
trol codes.

Some right-to-Ieft languages have a duplicate set of digits called alternative numbers. Alterna­
tive numbers always have a left-to-right orientation.

WARNINGS
Strard does not check for overflow of the array pointed to by 51.

AUTHOR
Strard was developed by HP.

SEE ALSO
nl_init(3C), hpnls(5), environ(5), forder(l), nljust(l).

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines whether a right-to-Ieft language has alternative numbers.

International Code Set Support
Single-byte character code sets are supported.

522 (Section 3) -1- HP-UX Release 7.0: September 1989

STRTOACL(3C) STRTOACL(3C)

NAME
strtoacl, strtoaclpatt - convert exact or pattern string form to access control list (ACL) structure

SYNOPSIS
#indude <adlib.h>

int strtoad (string, nentries, maxentries, ad, fuid, fgid)
char *string;
int nentries;
int maxentriesi
struct ad_entry ad[]i
int fuid, fgidi

int strtoadpatt (string, maxentries, ad)
char *string;
int maxentries;
struct ad_entry _patt ad[]i

extern char *adentrystart[]i

Remarks:
To ensure continued conformance with emerging industry standards, features described in this
manual entry are likely to change in a future release.

DESCRIPTION
Strtoacl converts an access control list from exact symbolic (string) representation to structure
form. It parses the input string and verifies its validity. Optionally it applies the entries in the
string as a series of changes to an existing ACL.

Strtoaclpatt converts an access control list pattern from symbolic (string) representation to struc­
ture form. It parses the input string and verifies its validity.

The external array aclentrystart[], only valid until the next call of either routine, is useful for
error reporting. See ERRORS below.

The "operator" and "short" symbolic forms of ACLs and ACL patterns (described in acl(5» are
acceptable as input strings. If the first non-whitespace character in string is "(", the ACL or ACL
pattern in string must be in short form. Otherwise operator form is assumed.

Strtoacl takes a pointer to the string to be converted, and a pointer to the. first element of an
array of ACL entries (acl[]) initially containing the indicated number (nentries) of valid entries
(zero or more). This array can grow to the indicated number of entries (maxentries). Strtoacl
also takes file user ID (fuid) and group ID (fgid) values to substitute for @ symbols in string and
returns the resulting number of entries in acl[].

Redundant entries (identical user ID and group ID values after processing @ symbols) are com­
bined, so that acl[] contains unique entries in the order encountered. If a new entry is men­
tioned, it is added to the end of the acl array.

Strtoaclpatt
Strtoaclpatt differs from strtoacl because it processes an ACL pattern instead of an ACL. Since
modification of an existing initial ACL is not useful, it is not supported.

Entries with matching user and group ID values are not combined. Each entry input yields one
entry in the returned array.

The @ symbol for user and group IDs (see acl(5» is converted to special values
(ACL_FILEOWNER or ACL_FILEGROUP, respectively, defined in <acllib.h», not to specific user
or group names provided by the caller. Thus, strtoaclpatt need not be called to.reparse the ACL
pattern for each file, but the caller must handle the special values when comparing an ACL pat­
tern to an ACL.

HP-UX Release 7.0: September 1989 -1- (Section 3) 523

STRTOACL(3C) STRTOACL(3C)

Wildcard user names, group names, and mode values are supported, as are absent mode parts;
see acl(S).

Strtoaclpatt returns a different structure than strtoacl. The acCentry_patt structure contains
onmode and offmode masks rather than a single mode value.

In operator form input, operators have a different effect on strtoaclpatt:

Sets bits in both the onmode and offmode fields appropriately, replacing existing
bits in the entry, including any set by earlier operators.

+ Sets bits in onmode and clears the same bits in offmode.

Sets bits in offmode and clears the same bits in onmode.

In short form input, the mode is treated like the = operator in operator form.

For both routines, a non-specific user or group ID of % is converted to ACLNSUSER or
ACL_NSGROUP, respectively. For strtoaclpatt only, a wildcard user or group ID of * is converted
to ACL_ANYUSER or ACLANYGROUP, respectively. The values are defined in <acllib.h>.

Entries can appear in string in any order. String can contain redundant entries, and in operator
form only, redundant + and - operators for ACL entry mode modifications (in exact form) or
mode bit inclusions/exclusions (in patterns). Entries or modifications are applied left to right.

Suggested Use
To build a new ACL (ACL pattern) array using strtoacl (strtoaclpatt), define acl[] with as many
entries as desired. Pass it to strtoacl (strtoaclpatt) with nentries set to zero (strtoacl only) and
maxentries set to the number of elements in acl[].

To have strtoacl modify a file's existing ACL, define acl[] with the maximum possible number of
entries (NACLENTRIES; see <sys/acl.h». Call getacl(2) to read the file's ACL and stat(2) to get
the file's owner and group IDs. Then pass the current number of entries, the current ACL, and
the ID values to strtoacl with maxentries set to NACLENTRIES.

If strtoacl succeeds, the resulting ACL can be passed safely to setacl(2) because all redundancies
(if any) have been resolved. However, note that since neither strtoacl nor strtoaclpatt validate
user and group ID values, if the values are not acceptable to the system, setacl (2) will fail.

Performance Trick
Normally strtoacl replaces user and group names of @ with specific user and group ID values,
and also combines redundant entries. Therefore, calling stat(2) and strtoacl for each of a series
of files to which an ACL is being applied is simplest, although time consuming.

If string contains no @ symbol, or if the caller merely wants to compare one ACL against
another (and will handle the special case itself), it is sufficient to call strtoacl once, and pointless
to call stat for each file. To determine this, call strtoacl the first time with fuid set to
ACL_FILEOWNER and fgid set to ACL_FILEGROUP. Repeated calls with file-specific fuid and fgid
values are needed only if the special values of fuid and fgid appear in acl[] and the caller needs
an exact ACL to set on each file; see EXAMPLES below.

If @ appears in string and acl[] will be used later for a call to setacl(2), it is necessary to call
strtoacl again to reparse the ACL string for each file. It is possible that not all redundant entries
were combined the first time because the @ names were not resolved to specific IDs. This also
complicates comparisons between two ACLs. Furthermore, the caller cannot do the combining
later because operator information from operator form input might be lost.

RETURN VALUE
If strtoacl (strtoaclpatt) succeeds, it returns the number of entries in the resulting ACL (ACL pat­
tern), always equal to or greater than nentries (zero).

524 (Section 3) -2- HP-UX Release 7.0: September 1989

STRTOACL(3C) STRTOACL(3C)

Strtoaclpatt also sets values in global array aclentrystart[] to point to the start of each pattern
entry it parsed in string, in some cases including leading or trailing whitespace. It only sets a
number of pointers equal to its return value plus one (never more than NACLENTRIES + 1).
The last valid element points to the null character at the end of string. After calling strtoaclpatt,
an entry pattern's corresponding input string may be used by the caller for error reporting by
(temporarily) putting a null at the start of the next entry pattern in string.

ERRORS
If an error occurs, both routines return a negative value and the content of ad is undefined (was
probably altered). To help with error reporting in this case, aclentrystart[O] and aclentrystart[1]
are set to point to the start of the current and next entries, respectively, being parsed when the
error occurred. If the current entry does not start with "(", aclentrystart[1] points to the next
null character or comma at or after aclentrystart[O]. Otherwise, it points to the next null, or to
the character following the next ")".

The following values are returned in case of error:

-1 Syntax error: entry doesn't start with "(" as expected in short form.

-2 Syntax error: entry doesn't end with ")" as expected in short form.

-3 Syntax error: user name is not terminated by a dot.

-4 (strtoacl only) Syntax error: group name is not terminated by an operator in operator
form input or a comma in short form input.

-5 Syntax error: user name is null.

-6 Syntax error: group name is null.

-7 Invalid user name (not found in /ete/passwd file and not a valid number).

-8 Invalid group name (not found in fete/group file and not a valid number).

-9 Syntax error: invalid mode character, other than 0 .. 7, r, w, x, - (allowed in short form
only), * (allowed in patterns only), , (to end an entry in operator form), or) (to end an
entry in short form). Or, 0 .. 7 or * is followed by other mode characters.

-10 The resulting ACL would have more than maxentries entries.

EXAMPLES
The following code fragment converts an ACL from a string to an array of entries using an fuid
of 103 for the file's owner and fgid of 45 for the file's group.

#indude <aellib.h>

int nentries;
struct ad_entry ad [NACLENTRIES];

if «nentries = strtoad (string; 0, NACLENTRIES, ad, 103, 45» < 0)
error (...);

The following code gets the ACL, fuid, and fgid for file " .. /myfile", modifies the ACL using a
description string, and changes the ACL on file " .. /myfile2" to be the new version.

#indude <sys/types.h>
#indude <sys/stat.h>
#indude <aellib.h>

struet stat statbuf;
int nentries;
struet ad_entry ad [NACLENTRIES];

if (stat (" .. /myfile", & statbuf) < 0)
error (...);

HP-UX Release 7.0: September 1989 -3- (Section 3) 525

STRTOACL(3C)

if ((nentries = getad (II •• /myfile ll, NACLENTRIES, ad» < 0)
error (...);

if ((nentries = strtoad (string, nentries, NACLENTRIES, ad,
statbuf.sCuid, statbuf.st_gid» < 0)

error (...);

if (set ad (1 •• /myfile2", nentries, ad) < 0)
error (...);

STRTOACL(3C)

The following code fragment calls strtoacl with special values of fuid and fgid, then checks to
see if they show up in acl[].

#indude <acllib.h>

int perfile = 0; /* need to statO and reparse per file? */
int entrYi

if ((nentries = strtoad (string, 0, NACLENTRIES, ad,
ACL_FILEOWNER, ACL_FILEGROUP» < 0)

error (...)i

for (entry = 0; entry < nentries; entry++)
{

if ((ad [entry] . uid == ACL_FILEOWNER)
II (ad [entry] . gid == ACL_FILEGROUP»

{
perfile = 1;
break;

The following code fragment converts an ACL pattern from a string to an array of pattern
entries.

#indude <acllib.h>

int nentries;
struct ad_entry _patt ad [NACLENTRIES];

if ((nentries = strtoadpatt (string, NACLENTRIES, ad» < 0)
error (...);

The following code fragment inside a "for" loop checks an entry pattern (p*, onmask, and
offmask variable names) against an entry in a file's ACL (a* variable names) using the file's user
and group IDs (h variable names).

indude <unistd.h>
if (((puid == ACL_FILEOWNER) && (fuid != auid»
I I ((puid!= ACL_ANYUSER) && (puid != auid»)

{
continue;

}

if (((pgid == ACL_FILEGROUP) && (fgid != agid»
I I ((pgid!= ACL_ANYGROUP) && (pgid != agid»)

{

526 (Section 3) -4- HP-UX Release 7.0: September 1989

STRTOACL(3C)

continue;

if «« amode) & MODEMASK & onmask) 1= onmask)
I I «e am ode) & MODEMASK & offmask) != offmask»

{
continue;

AUTHOR
Strtoacl and strtoaclpatt were developed by HP.

FILES
/ete/passwd
jete/group

SEE ALSO

STRTOACL(3C)

getacl(2), setac1(2), acltostr(3C), epac1(3C), ehownacl(3C), setac1entry(3C), ac1(5).

HP-UX Release 7.0: September 1989 -5- (Section 3) 527

STRTOD(3C) STRTOD(3C)

NAME
strtod, atof, nl_strtod, nLatof - convert string to double-precision number

SYNOPSIS
#indude <stdlib.h>

double strtod (str, ptr)
char *str, **ptri

double atof (str)
char *stri

double nLstrtod (str, ptr, langid)
char *str, **ptri
int langidi

double nLatof (str, langid)
char *stri
inl langidi

DESCRIPTION
Strtod returns, as a double-precision floating-point number, the value represented by the charac­
ter string pointed to by str. The string is scanned (leading white-space characters as defined by
isspaee in etype(3C) are ignored) up to the first unrecognized character. If no conversion can
take place, zero is returned.

Strtod recognizes characters in the following sequence:

1. An optional string of "white-space" characters which are ignored,
2. An optional Sign,
3. A string of digits optionally containing a radix character,
4. An optional e or E followed by an optional sign or space, followed by an integer.

The radix character is determined by the loaded NLS environment (see setlocale(3C». If setlo­
eale has not been called successfully, the default NLS environment, "C", is used (see lang(5».
The default environment specifies a period (.) as the radix character.

If the value of ptr is not (char **)NULL, the variable to which it points is set to point at the
character after the last number, if any, that was recognized. If no number can be formed, *ptr
is set to str, and zero is returned.

Ato!(str) is equivalent to strtod (str, (char **)NULL).

NCstrtod and nCato! are similar to the above routines, but first call langinit (see nUnit(3C» to
load the NLS environment specified by langid.

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE_ VAL is returned (according to the sign of the
value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

WARNINGS
NCstrtod and nCato! are provided for historical reasons only. Their use is not recommended.
Use strtod and ato! instead.

EXTERNAL INFLUENCES
Locale

The LCNUMERIC category determines the value of the radix character within the currently
loaded NLS environment.

AUTHOR
Strtod was developed by AT&T and HP.

528 (Section 3) -1- HP-UX Release 7.0: September 1989

STRTOD(3C) STRTOD(3C)

SEE ALSO
ctype(3C), setlocale(3C), scanf(3S), strtol(3C), hpnls(5), lang(5).

STANDARDS CONFORMANCE
strtod: SVID2, XPG2, XPG3, ANSI C

atof: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2- (Section 3) 529

STRTOL(3C) STRTOL(3C)

NAME
strtol, atoI, atoi, strtoul - convert string to integer

SYNOPSIS
#include <stdlib.h>

long strtol (str, ptr, base)
char *str, **ptri
int basei

long atol (str)
char *stri

int atoi (str)
char *stri

unsigned long strtoul (str, ptr, base)
char *str, **ptri
int basei

DESCRIPTION
Strtol(strtoul) converts the character string pointed to by str to long int (unsigned long int)
representation. The string is scanned up to the first character inconsistent with the base. Lead­
ing "white-space" characters (as defined by isspace in ctype(3C» are ignored. If no conversion
can take place, zero is returned.

If base is greater than or equal to 2 and less than or equal to 36, it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is
ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional leading sign, a
leading zero indicates octal conversion; a leading "Ox" or "OX" hexadecimal conversion. Other­
wise, decimal conversion is used.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no integer can be formed, the location pointed to
by ptr is set to str, and zero is returned.

Atol(str) is equivalent to strtol (str, (char **)NULL, 10).

Atoi (str) is equivalent to (int) strtol (str, (char **)NULL, 10).

RETURN VALUE
Upon successful completion, all functions return the converted value, if any. If the correct
value would cause overflow, strtal returns LONG_MAX or LONG_MIN (according to the sign of
the value), and sets errno to ERANGE; strtoul returns ULONG_MAX and sets errno to ERANGE.
Overflow conditions are ignored by atol and atoi.

For all other errors, zero is returned and errno is set to indicate the error.

ERRORS
Strtol and strtoul fail and errno is set if one of the following conditions is true:

[ERANGE]

[EINVAL]

The value to be returned would have caused overflow.

The value of base is not supported.

SEE ALSO
ctype(3C), strtod(3C), scanf(3S).

STANDARDS CONFORMANCE
strtal: SVID2, XPG2, XPG3, ANSI C

530 (Section 3) -1- HP-UX Release 7.0: September 1989

STRTOL(3C)

atoi: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

atol: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

strtoul: ANSI C

HP-UX Release 7.0: September 1989 -2-

STRTOL(3C)

(Section 3) 531

STRTOLD(3C) STRTOLD(3C)

NAME
strtold - convert string to long double-precision number

SYNOPSIS
#include <stdlib.h>

long_double strtold (str, ptr)
char *str, **ptri

DESCRIPTION
The function strtald returns as a long double-precision number the value represented by the
character string pointed to by str. The string is scanned up to the first unrecognized character.

strtald recognizes an optional string of "white-space" characters (as defined by isspace in
ctype(3C», then an optional sign, then a string of digits optionally containing a radix character,
then an optional e or E followed by an optional sign or space, followed by an integer. The
radix character is determined by the loaded NLS environment (see nl_init(3C». If nl_init has
not been called successfully, the default NLS environment, "C" (see langid(S», is used. The
default environment specifies a period (.) as the radix character.

If the value of ptr is not (char **)NULL, the variable to which it points is set to point at the
character after the last number, if any, that was recognized. If no number can be formed, *ptr
is set to str, and zero is returned.

DIAGNOSTICS
If the correct value would cause overflow, ±_MAXLDBL is returned (according to the sign of
the value), and errna is set to ERANGE.

If the correct value would cause underflow, zero is returned and errna is set to ERANGE.

AUTHOR
strtald was developed by HP.

SEE ALSO
ctype(3C), nUnit(3C), scanf(3S), hpnls(S), langid(S).

EXTERNAL INFLUENCES
International Code Set Support

Single-byte character code sets are supported.

532 (Section 3) -1- HP-UX Release 7.0: September 1989

SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *toi
int nbytes;

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between byte-swapped and non-byte­
swapped machines. Nbytes should be even and non-negative. If nbytes is odd and positive
swab uses nbytes -1 instead. If nbytes is negative, swab does nothing.

STANDARDS CONFORMANCE
swab: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 3) 533

SYSLOG(3C) SYSLOG(3C)

NAME
syslog, openlog, closelog, setlogmask - control system log

SYNOPSIS
#inc1ude <syslog.h>

syslog(priority, message, parameters, ...)
int priority;
char *message;

openlog(ident, logopt, facility)
char *ident;
int logopt, facility;

c1oselogO

setlogmask(maskpri)

DESCRIPTION
Syslog writes a message onto the system log maintained by syslogd(lM). The message is tagged
with priority. The message is similar to a printf(3S) format string except that %m is replaced by
the error message associated with the current value of errno. A trailing newline is added if
needed. This message is read by syslogd(lM) and written to the system console, log files, or
forwarded to syslogd on another host as appropriate.

Priorities are encoded as a level and a facility. The level is selected from an ordered list:

LOG_WARNING

A panic condition. This is normally broadcast to all users.

A condition that should be corrected immediately, such as a cor­
rupted system database.

Critical conditions such as hard device errors.

Errors.

Warning messages.

Conditions that are not error conditions, but should possibly be
handled specially.

Informational messages.

Messages that contain information normally of use only when
debugging a program.

The facility describes the part of the system generating the message:

LOG_KERN Messages generated by the kernel. These cannot be generated by

LOG_USER

any user processes.

Messages generated by random user processes. This is the
default facility identifier if none is specified.

The mail system.

System daemons, such as ftpd(lM), rwhod(lM), etc.

The authorization system: login(l), su(l), getty(lM), etc.

The line printer spooling system: Ip(l), Ipsched(lM), etc.

Reserved for local use. Similarly for LOG_LOCALl through
LOG_LOCAL7.

If syslog cannot pass the message to syslogd(lM), it attempts to write the message on
/dev /console if the LOG_CONS option is set (see below).

534 (Section 3) -1- HP-UX Release 7.0: September 1989

SYSLOG(3C) SYSLOG(3C)

If special processing is needed, openlog can be called to initialize the log file. The parameter
ident is a string that is precedes every message. Logopt is a mask of bits indicating logging
options. The values for logopt are:

EXAMPLES

LOG_PID
Log the process ID with each message; useful for identifying instantiations of
daemons.

LOG_CONS
Force writing messages to the console if unable to send it to syslogd(lM). This
option is safe to use in daemon processes that have no controlling terminal,
because syslog forks before opening the console.

LOG_NDELAY
Open the connection to syslogd(lM) immediately. Normally, the open is
delayed until the first message is logged. This is useful for programs that need
to manage the order in which file descriptors are allocated.

LOG_NOWAIT
Do not wait for children forked to log messages on the console. This option
should be used by processes that enable notification of child termination via
SIGCLD, as syslog may otherwise block waiting for a child whose exit status has
already been collected.

The facility parameter encodes a default facility to be assigned to all messages written
subsequently by syslog with no explicit facility encoded.

Closelog closes the log file.

Setlogmask sets the log priority mask to maskpri and returns the previous mask. Calls to
syslog with a priority not set in maskpri are rejected. The mask for an individual priority
pri is calculated by the macro LOG_MASK(pri); the mask for all priorities up to and
including toppri is given by the macro LOG_UPTO(toppri). The default allows all priori­
ties to be logged.

This call to syslog logs a message regarding a corrupted who database:

syslog(LOG_ALERT, "who: internal error 23");

This example shows the use of openlog to set up special formatting for the ftp daemon:

openlog("ftpd", LOG_PID, LOG_DAEMON);
setlogmask(LOG_ UPTO(LOG_ERR»;

syslog(LOG_INFO, "Connection from host %d", CallingHost);
syslog(LOG_INFOILOG_LOCAL2, "foobar error: %m");

WARNINGS
A call to syslog(3C) has no effect if the syslog daemon (syslogd(lM» is not running on the sys­
tem.

AUTHOR
Syslog was developed by the University of California, Berkeley.

SEE ALSO
logger(l), syslogd(lM).

HP-UX Release 7.0: September 1989 -2- (Section 3) 535

SYSTEM(3S) SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <sys/wait.h>
#include <stdlib.h>

int system (string)
const char *string;

DESCRIPTION

FILES

System causes the string to be given to sh(l) as input, as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

If the string is a null pointer, system returns 1. Otherwise, system returns the termination status
of s/r(l) in the format specified by waitpid(2).

/bin/sh

SEE ALSO
sh(l), exec(2), waitpid(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's /bin/sh in order to execute string. If
the fork fails, system returns -1 and sets errno. If the exec fails, system returns the status value
returned by waitpid(2) for a process that terminates with a call of exit(127).

STANDARDS CONFORMANCE
system: SVID2, XPG2, XPG3, ANSI C

536 (Section 3) -1- HP-UX Release 7.0: September 1989

TCATTRIBUTE(3C) TCATTRIBUTE(3C)

NAME
tcgetattr, tcsetattr - control tty device

SYNOPSIS
#include <termios.h>

int tcgetattr (fildes, termios_p)
int fildes;
sirud iermios "'iermios_Pi

int tcsetattr (fildes, optionaL actions, termios_p)
int fildes;
int optionaL actions;
struct termios *termios_p;

DESCRIPTION
Tcgetattr gets the parameters associated with fildes and stores them in the termios structure
referenced by termios_p. If the terminal device does not support split baud rates, the input
baud rate stored in the termios structure is zero. This function is allowed from a background
process (See termio(7». However, the terminal attributes may be subsequently changed by a
foreground process.

Tcsetattr sets the parameters associated with fildes (unless support is required from underlying
hardware that is not available) from the termios structure referenced by termios_p as follows:

1. If optionaCactions is TCSANOW, the change is immediate.

2. If optionaCactions is TCSADRAIN, the change occurs after all output written to
fildes is transmitted.

3. If optionaCactions is TCSAFLUSH, the change occurs after all output written to
fildes is transmitted, and all input that has been received but not read is discarded.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
These functions will fail if one or more of the following is true:

[EBADF] Fildes is not a valid file descriptor.

[ENOTTYI

[EINVAL]

WARNINGS

The file associated with fildes is not a terminal.

The optionaCactions argument is not a proper value.

A request to set a hardware parameter to a value that is not supported by the hardware being
used will be ignored. The remaining parameter values of the request which are supported or
which do not affect hardware will be set as requested. For any hardware that does not support
separate input and output baud rates, the requested output baud rate will be used to set the
actual hardware baud rate. Tcgetattr always returns the actual values set in hardware.

SEE ALSO
tccontrol(3C), cfspeed(3C), termio(7).

HP-UX Release 7.0: September 1989 -1- (Section 3) 537

TCCONTROL(3C) TCCONTROL(3C)

NAME
tcsendbreak, tcdrain, tcflush, tcflow - tty line control functions

SYNOPSIS
#inc1ude <termios.h>

int tcsendbreak (fildes, duration)
int fildes;
int duration;

int tcdrain (fildes)
int fildes;

int tcflush (fildes, queue_selector)
int fildes;
int queue_selector;

int tcflow (fildes, action)
int fildes;
int action;

DESCRIPTION
If the terminal is using asynchronous serial data transmission, tcsendbreak causes transmission of
a continuous stream of zero-valued bits for at least 0.25 seconds, but not more than 0.5
seconds. For all HP-UX implementations, duration is ignored.

Tcdrain waits until all output written to fildes has been transmitted.

Tcflush discards data written to fildes but not transmitted or data received but not read, depend­
ing on the value of queue_selector:

(1) If queue_selector is TCIFLUSH, data received but not read is flushed.

(2) If queue_selector is TCOFLUSH, data written but not transmitted is flushed.

(3) If queue_selector is TCIOFLUSH, both data received but not read, and data written
but not transmitted is flushed.

Tcflow suspends transmission of data to fildes or reception of data from fildes, depending on the
value of action:

(1) If action is TCOOFF, output is suspended.

(2) If action is TCOON, suspended output is restarted.

(3) If action is TCIOFF, a STOP character is transmitted which is intended to cause the
terminal to stop transmitting data to the system.

(4) If action is TCION, a START character is transmitted which is intended to cause the
terminal to start transmitting data to the system.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
These functions will fail if one or more of the following is true:

[EBADF]

[ENOTTY]

538 (Section 3)

Fildes is not a valid file descriptor.

The file associated with fildes is not a terminal.

-1- HP-UX Release 7.0: September 1989

TCCONTROL (3C) TCCONTROL(3C)

A signal was received during tcdrain. [EINTR]

[EINVAL]

SEE ALSO

The queue_selector or the action argument is not a proper value.

tcattribute(3C), tccontrol(3C), termio(7).

STANDARDS CONFORMANCE
tcdrain: XPG3, POSIX.1, FIPS 151-1

tcflow: XPG3, POSIX.1, FIPS 151-1

tcflush: XPG3, POSIX.1, FIPS 151-1

tcsendbreak: XPG3, POSIX.1, FIPS 151-1

HP-UX Release 7.0: September 1989 -2- (Section 3) 539

TCGETPGRP(3C) TCGETPGRP(3C)

NAME
tcgetpgrp - get foreground process group id

SYNOPSIS
#include <sys/types.h>

pid_t tcgetpgrp (fildes)
int fildes;

DESCRIPTION
Tcgetpgrp returns the value of the process group ID of the foreground process group associated
with the terminal referenced by fildes. Tcgetpgrp is allowed from a process that is a member of
a background process group (See termio(7); however, the information may be subsequently
changed by a process that is a member of a foreground process group.

RETURN VALUE
Upon successful completion, the value of the process group ID of the foreground process group
associated with the terminal referenced by fildes is returned. Otherwise, a value of -1 is
returned and errna is set to indicate the error.

ERRORS
Tcgetpgrp will fail if one or more of the following is true:

[EBADF]

[ENOTTYJ

[EACCES]

WARNING

Fildes is not a valid file descriptor.

The file associated with fildes is not the controlling terminal or the calling pro­
cess does not have a controlling terminal.

The file associated with fildes is the controlling terminal of the calling process,
however, there is no foreground process group defined for the controlling ter­
minal.

The error EACCES, which is returned if the controlling terminal has no foreground process
group, may not be returned· in future releases, depending on the course taken by the POSIX
standard. Portable applications therefore should not rely on this error condition.

SEE ALSO
tcsetpgrp(3C), termio(7), setpgid(2), setsid(2).

STANDARDS CONFORMANCE
tcgetpgrp: XPG3, POSIX.1, FIPS 151-1

540 (Section 3) -1- HP-UX Release 7.0: September 1989

TCSETPGRP(3C) TCSETPGRP(3C)

NAME
tcsetpgrp - set foreground process group id

SYNOPSIS
#include <sys/types.h>

int tcsetpgrp (fildes, pgrp_id)
int fildes;
pid_t pgrp_id;

DESCRIPTION
If the calling process has a controlling terminal, tcsetpgrp sets the foreground process group ID
associated with the terminal referenced by fildes to pgrp_id. The file associated with fildes must
be the controlling terminal of the calling process and the controlling terminal must be currently
associated with the session of the calling process. The value of pgrp _id must match a process
group ID of a process in the same session as the calling process.

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
Tcsetpgrp will fail if one or more of the following is true:

[EBADF]

[EINVAL]

[ENOTTY]

[EPERM]

SEE ALSO

Fildes is not a valid file descriptor.

The value of the pgrp _id argument is not supported.

The calling process does not have a controlling terminal, or the fildes is not the
controlling terminal, or the controlling terminal is no longer associated with the
session of the calling process.

The value of pgrp _id is a supported value but does not match the process
group ID of a process in the same session as the calling process.

termio(7), tcgetpgrp(3C), ~etsid(2), setpgid(2).

STANDARDS CONFORMANCE
tcsetpgrp: XPG3, POSIX.1, PIPS 151-1

HP-UX Release 7.0: September 1989 -1- (Section 3) 541

."

TERMCAP(3X) TERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - emulate letcltermcap access routines

SYNOPSIS
tgetent(bp, name)
~ha.r *bp, *n.ame;

tgetnum(id)
char *idi

tgetflag(id)
char *idi

char *tgetstr(id, area)
char *id, **areai

char *tgoto(cm, destcol, destline)
char *cmi

tputs(cp, affcnt, outc)
register char *CPi
int affcnt:
int (*outC)()i

DESCRIPTION
The fcrmcap(3X) functions extract and use capabilities from the compiled terminal capability
da.ta rases (see term info (4». They are emulation routines that are provided as a part of the
curses(3X) library.

Tgetent extracts the compiled entry for terminal name into buffers accessible by the programmer.
Unlike previous termcap routines, all capability strings (except cursor addressing and padding
information) are already compiled and stored internally upon return from tgetent. The buffer
pointer bp is redundant in the emulation, and is ignored. It should not be relied upon to point
to meaningful information. Tgetent returns -1 if it cannot access the term info directory, 0 if
there is no capability file for name, and 1 if all goes well. If a TERMINFO environment variable
is set, tgetent first looks for TERMINFO I? /name (where? is the first character of name), and if
that file is not accessible, it looks for /usr/Hb/terminfo/?/name.

Tgetnum gets the numeric value of capability id, returning -1 if it is not given for the terminal.
Tgetnum is useful only with capabilities having numeric values.

Tgetflag returns 1 if the specified capability is present in the terminal's entry, and 0 if it is not.
Tgetflag is useful only with capabilities that are boolean in nature (i.e. either present or missing
in terminfo(4».

Tgetstr returns a pointer to the string value of capability id. In addition, if area is not a NULL
pointer, tgetstr will place the capability in the buffer at area and advance the area pointer. The
returned string capability is compiled except for cursor addressing and padding information.
Tgetstr is useful only with capabilities having string values.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line dest­
line. (Programs which call tgoto should be sure to turn off the TAB3 bit(s), since tgoto may now
output a tab. See termio(7). Note that programs using termcap should in general turn off TAB3
anyway since some terminals use control-I for other functions, such as nondestructive space.)
If a % sequence is given which is not understood, then tgoto returns OOPS.

Tputs decodes the padding information of the string cpo Affcnt gives the number of lines
affected by the operation, or 1 if this is not applicable. Outc is a routine which is called with
each character in turn. The term info variable pad_char should contain a pad character to be

542 (S~'Ction 3) -1- HP-UX Release 7.0: September 1989

TERMCAP(3X) TERMCAP(3X)

used (from the pc capability) if a null C@) is inappropriate.

FILES
/usr/lib/libcurses.a -lcurses library
/usr/lib/terminfo/?/'" data bases

SEE ALSO
ex(1), terminfo(4), termio(7).

HP-UX Release 7.0: September 1989 -2- (Section 3) 543

TMP4(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile 0
DESCRIPTION

TMP4(3S)

Tmpfile creates a temporary file by generating a name through tmpnam(3S), and returns a
corresponding FILE pointer. If the file cannot be opened, an error message is printed using
perror(3C), and a NULL pointer is returned. The file will automatically be deleted when the
process using it terminates. The file is opened for update ("wb+").

NOTES
On HP-UX the "wb+" mode is equivalent to the "w+" mode.

SEE ALSO
creat(2), unlink(2), mktemp(3C), perror(3C), fopen(3S), tmpnam(3S).

STANDARDS CONFORMANCE
tmpfile: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

544 (Section 3) -1- HP-UX Release 7.0: September 1989

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)

char *Si

char *tempnam (dir, pfx)
char *dir, *pfXi

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

Tmpnam always generates a file name using the path-prefix defined as P _tmpdir in the
<stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the contents of the area. If
s is not NULL, it is assumed to be the address of an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in <stdio.h>; tmpnam places its result in that array and returns
s.

Tempnam allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If dir is NULL or points to a string
which is not a name for an appropriate directory, the path-prefix defined as P _tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, jtmp will be used as a last
resort. This entire sequence can be up-staged by providing an environment variable TMPDIR in
the user's environment, whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the pfx argument for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free
(see malloc(3C». If tempnam cannot return the expected result for any reason, i.e. malloc(3C)
failed, or none of the above mentioned attempts to find an appropriate directory was successful,
a NULL pointer will be returned.

Tmpnam and tempnam generate a different file name each time they are called, but they will
start recycling previously used names if called more than TMP _MAX times in a single process.

Files created using these functions and either fopen(3S) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It
is the user's responsibility to use unlink (2) to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), matloc(3C), mktemp(3C), fopen(3S), tmpfile(3S).

Between the time a file name is created and the file is opened, it is possible for some other pro­
cess to create a file with the same name. This can never happen if that other process is using
these functions or mktemp, and the file names are chosen so as to render duplication by other
means unlikely.

STANDARD&CONFORMANCE
tmpnam: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

tempnam: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -1- (Section 3) 545

TRIG(3M) TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#inc1ude <math.h>

double sin (x)
double Xi

double cos (x)
double Xi

double tan (x)
double Xi

double asin (x)
double Xi

double acos (x)
double Xi

double atan (x)
double Xi

double atan2 (y, x)
double y, Xi

DESCRIPTION
Sin, cos, and tan return respectively, the sine, cosine and tangent of their argument, x, measured
in radians.

Asin returns the arcsine of x, in the range -7r /2 to 7r /2.

Acos returns the arccosine of x, in the range 0 to 7r.

Atan returns the arctangent of x, in the range -7r /2 to 7r /2.

Atan2 returns the arctangent of y lx, in the range -7r to 7r, using the signs of both arguments to
determine the quadrant of the return value.

DEPENDENCIES
Series 300

The approximate limit for the values returned by these functions is 1.49'8.

The algorithms used for all functions except atan2 are from HP 9000 BASIC.

Series 800 Ulib/libm.a and ANSI C /lib/libM.a)
When x is ±INFINITY , atan returns ±7r /2 respectively.

Atan2 returns 7r/4 when y and x are +INFINITY.

Atan2 returns -7rj4 when y is +INFINITY and x is -INFINITY.

Atan2 returns 3*7r/4 when y is -INFINITY and x is +INFINITY.

Atan2 returns -3*7r/4 when y and x are -INFINITY.

Atan2 returns 0.0 when y is 0.0 and x is a positive number.

Atan2 returns 7r when y is 0.0 and x is a negative number, or -7r when y is -0.0 and x is a
negative number.

Atan2 returns 7r /2 when y is a positive number and x is 0.0, or -7r /2 when y is a negative
number and x is 0.0.

Atan2 returns ±7r /2 based on the sign of y if Y /x would overflow.

546 (Section 3) -1- HP-UX Release 7.0: September 1989

TRIG(3M) TRIG(3M)

Atan2 returns -7r or 0.0 based on the sign of y if Y jx would underflow.

ERRORS
Series 300

Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0.0 when there would otherwise be a complete
loss of significance. In this case a message indicating TLOSS error is printed on the stan­
dard error output. For less extreme arguments causing partial loss of significance, a PLOSS
error is generated but no message is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both arguments
of atan2 are 0.0, 0.0 is returned and errno is set to EDOM. In addition, a message indicat­
ing DOMAIN error is printed on the standard error output.

Series 800 (flibjlibm.a)
Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0.0 when there would otherwise be a complete
loss of significance. In this case a message indicating TLOSS error is printed on the stan­
dard error output. For less extreme arguments causing partial loss of significance, a PLOSS
error is generated but no message is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both arguments
of atan2 are 0.0, 0.0 is returned and errno is set to EDOM. In addition, a message indicat­
ing DOMAIN error is printed on the standard error output.

Sin, cos, tan, acos, and asin return NaN and set errno to ED OM when x is NaN or
±INFINITY. In addition, a message indicating DOMAIN error is printed on the standard
error output.

Atan returns NaN and sets errno to EDOM when x is NaN. In addition, a message indi­
cating DOMAIN error is printed on the standard error output.

Atan2 returns NaN and sets errno to EDOM when x or y is NaN. In addition, a message
indicating DOMAIN error is printed on the standard error output.

Series 800 (ANSI C jlib jlibM.a)
No error messages are printed on the standard error output.

Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0.0 when there would otherwise be a complete
loss of significance. For less extreme arguments causing partial loss of significance, a
PLOSS error is generated. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, NaN is returned and
errno is set to EDOM.

If both arguments of atan2 are 0.0, 0.0 is returned and errno is set to EDOM.

Sin, cos, tan, acos , and asin return NaN and set errno to ED OM when x is NaN or
±INFINITY.

Atan returns NaN and sets errno to ED OM when x is NaN.

Atan2 returns NaN and sets errno to ED OM when x or y is NaN.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
isinf(3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
acos: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

HP-UX Release 7.0: September 1989 -2- (Section 3) 547

TRIG(3M)

asin: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

atan: SVID2, XPG2, XPG3, POSI,X.1, FIPS 151-1, ANSI C

atan2: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

cos: SVID2"XPG2, XPG3, POSiX.I, FIPS 151-1, At~SI C

sin: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

tan: SVID2, XPG2, XPG3, POSIX.l, FIPS 151-1, ANSI C

548 (Section 3) -3-

TRIG(3M)

HP-UX Release 7.0: September 1989

TSEARCH(3C) TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch «char *) key, (char **) rootp, compar)
int (*compar)()i

char *i:find «char *) key, (char **) rooip, compar)
int (*compar)()i

char *tdelete «char *) key, (char **) rootp, compar)
int (*compar)()i

void twalk «char *) root, action)
void (*action)()i

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user­
supplied routine, compar. This routine is called with two arguments, the pointers to the ele­
ments being compared. It returns an integer less than, equal to, or greater than 0, according to
whether the first argument is to be considered less than, equal to or greater than the second
argument. The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be accessed or
stored. If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to
this found datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which will be at the root
of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. How­
ever, if it is not found, tfind will return a NULL pointer. The arguments for tfind are the same
as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not
found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to
be invoked at each node. This routine is, in tum, called with three arguments. The first argu­
ment is the address of the node being visited. The second argument is a value from an
enumeration data type typedef enum { preorder, postorder, endorder, leaf} VISIT; (defined in the
<search.h> header file), depending on whether this is the first, second or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with the root being level
zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast
to type pointer-to-character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a pointer to each string and

HP-UX Release 7.0: September 1989 -1- (Section 3) 549

TSEARCH(3C) TSEARCH(3C)

a count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { / * pointers to these are stored in the tree * /
char * string;
int length;

};
char string_space[10000];
struct node nodes[500];
struct node *root = NULL;

/ * space to store strings * /
/ * nodes to store * /
/* this points to the root */

main()
{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {

/* set node */
nodeptr-> string = strptr;
nodeptr-> length = strlen(strptr);

/ * put node into the tree * /
(void) tsearch«char *)nodeptr, &root,

node_compare);

/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

}
twalk(root, print_node);

}
/* This routine compares two nodes, based on an

alphabetical ordering of the string field. * /
int
node_compare(node1, node2)
struct node *node1, *node2;
{

return strcmp(node1-> string, node2->string);
}
/* This routine prints out a node, the first time

twalk encounters it. * /
void
print_node(node, order, level)
struct node **node;
VISIT order;
int level;
{

550 (Section 3) -2- HP-UX Release 7.0: September 1989

TSEARCH(3C) TSEARCH(3C)

if (order == preorder II order == leaf) {
(void)printf("string = %20s, length = %d\n",

(*node)->string, (*node)->length);

SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to create a new
node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not, tfind returns NULL,
and tsearch returns a pointer to the inserted item.

WARNINGS

BUGS

The root argument to twalk is one level of indirection less than the rootp arguments to tsearch
and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are visited. Tsearch
uses preorder, postorder and endorder to respectively refer to visting a node before any of its
children, after its left child and before its right, and after both its children. The alternate
nomenclature uses pre order, inorder and postorder to refer to the same visits, which could
result in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

STANDARDS CONFORMANCE
tsearch: SVID2, XPG2, XPG3

tdelete: SVID2, XPG2, XPG3

tfind: SVID2, XPG2, XPG3

twalk: SVID2, XPG2, XPG3

HP-UX Release 7.0: September 1989 -3- (Section 3) 551

TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

TTYNAME(3C)

Ttyname returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

[satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

ERRORS
[satty or ttyname will fail if any of the following is true:

The fildes argument is invalid. [EBADF]

[ENOTTY] An inappropriate IjO control operation has been attempted.

FILES
/dev/* /dev/pty/*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device in directory /dev.

WARNINGS
The return value points to static data whose content is overwritten by each call.

STANDARDS CONFORMANCE
ttyname: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

isatty: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

552 (Section 3) -1- HP-UX Release 7.0: September 1989

TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int tty slot ()

DESCRIPTION

TTYSLOT(3C)

Ttyslot returns the index of the current user's entry in the /etc/utmp file. This is accomplished
by actually scanning the file /etc/inittab for the name of the terminal associated with the stan­
dard input, the standard output, or the error output (0, 1 or 2).

FILES
/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of -1 is returned if an error was encountered while searching for the terminal name or
if none of the above file descriptors is associated with a terminal device.

STANDARDS CONFORMANCE
ttyslot: XPG2

HP-UX Release 7.0: September 1989 -1- (Section 3) 553

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int ci
FILE *slream;

DESCRIPTION
Ungetc inserts the character c (converted to an unsigned char) into the buffer associated with an
input stream. That character, c, will be returned by the next getc(3S) call on that stream. A
successful intervening call to a file positioning function with stream ([seek, fsetpos, or rewind)
erases all memory of the inserted characters.

Ungetc affects only the buffer associated with the input stream. It does not affect the contents of
the file corresponding to stream.

One character of pushback is guaranteed.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

RETURN VALUE
If successful, ungetc returns c and clears the end-of-file indicator for the stream. Ungetc returns
EOF if it cannot insert the character.

SEE ALSO
fseek(3S), fsetpos(3S), getc(3S), setbuf(3S).

STANDARDS CONFORMANCE
ungetc: SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1, ANSI C

554 (Section 3) -1- HP-UX Release 7.0: September 1989

VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#inc1ude <varargs.h>

int vprintf (format, ap)
char *format;
va_iist ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *s, * format;
va_list ap;

DESCRIPTION

VPRINTF(3S)

Vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf respectively, except that
instead of being called with a variable number of arguments, they are called with an argument
list as defined by varargs(5).

EXAMPLE
The following demonstrates how vfprintf could be used to write an error routine:

#include <stdio.h>
#include <varargs.h>

/*
error should be called like

error(function_name, format, argl, arg2 ...);
*/

/*VARARGSO*/
void
error(va_alist)
/* Note that the function_name and format arguments cannot be

* separately declared because of the definition of varargs.
*/

va_dcl
{

va_list args;
char *fmt;

va_start(args);

/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va_arg(args, char *);

/* print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end(args);

HP-UX Release 7.0: September 1989 -1- (Section 3) 555

VPRINTF(3S)

(void)abort();

SEE ALSO
setlocale(3C}, printf(3S), varargs(5).

STANDARDS CONFORMANCE
vprintf: SVID2, XPG2, XPG3, ANSI C

vfprintf: SVID2, XPG2, XPG3, ANSI C

vsprintf: SVID2, XPG2, XPG3, ANSI C

556 (Section 3)

VPRINTF(3S)

-2- HP-UX Release 7.0: September 1989

VSCANF(3S) VSCANF(3S)

NAME
vscanf, vfscanf, vsscanf - formatted input conversion to a varargs argument list, read from
stream file

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vscanf (format, ap)
const char *formati
va_list api

int vfscanf (stream, format, ap)
FILE *streami
const char *formati
va_list api

int vsscanf (s, format, ap)
char *Si
const char *formati
va_list api

DESCRIPTION
Vscant, vtseant, and vsseant are the same as scant, tseant, and sseant respectively, except that
instead of being called with a variable number of arguments, they are called with an argument
list as defined by varargs(5).

SEE ALSO
scanf(3S), setlocale(3C), varargs(5).

HP-UX Release 7.0: September 1989 -1- (Section 3) 557

Index
to

Voiume 2

Index
Volume 2

Description Entry Name(Section)
a641 - convert base-64 value to long integer ASCII string ... A64L(3C)

abort - generate an lOT fault .. ABORT(3C)

absolute value, floor, ceiling, remainder functions .. FLOOR(3M)

absolute value, return integer .. ABS(3C)

abs - return integer absolute value ... ABS(3C)

accelerator, math, check for presence of .. IS_HW]RESENT(3C)

access and modification times, set or update file .. UTIME(2)

access control list (ACL), change owner and/or group in ... CHOWNACL(3C)

access control list (ACL), copy to another file ... CPACL(3C)

access control list (ACL) information, get .. GETACL(2)

access control list (ACL) information, set ... SETACL(2)

access control list (ACL) structure, convert string form to ... STRTOACL(3C)

access control list (ACL) structure, convert to string form ... ACLTOSTR(3C)

access control list; add, modify, or delete entry .. SETACLENTRY(3C)

access - determine accessibility of a file ... ACCESS(2)

accessibility of a file, determine ... ACCESS(2)

access list, get group .. GETGROUPS(2)

access list, initialize group ... INITGROUPS(3C)

access list, set group' SETGROUPS(2)

access long integer data in a machine-independent fashion .. SPUTL(3X)

access mode (permissions) of file, change ... CHMOD(2)

access, open, or close a directory and associated directory stream ~ DIRECTORY(3C)

access or build a binary search tree .. TSEARCH(3C)

access rights to a file, get a user's effective ... GETACCESS(2)

access utmp or wtmp file .. GETUT(3C)

accounting: enable or disable process accounting .. ACCT(2)

acct - enable or disable process accounting ... ACCT(2)

acltostr - convert access control list (ACL) structure to string form ACLTOSTR(3C)

acos - trigonometric arcosine function .. TRIG(3M)

active controllers on HP-IB, change ... HPIB]ASS_CTL(31)

activity on specified HP-IB bus, stop .. HPIB_ABORT(31)

add a swap device for interleaved paging/swapping .. : SWAPON(2)

addmntent - add entry to open file system description file .. GETMNTENT(3X)

add, modify, or delete access control list entry ... SETACLENTRY(3C)

addresses - first locations beyond allocated program regions ... END(3C)

add value to environment ... '.' PUTENV(3C)

ADVANCE - advance pointer to next 8- or 16-bit character .. NL_TOOLS_16(3C)

advance - regular expression substring comparison routines .. REGEXP(3X)

alarm clock, set a process's ... ALARM(2)

alarm - set a process's alarm clock ... ALARM(2)

ALLBASEjHP-UX HP IMAGE programmatic calls ... HPIMAGE(3X)

allocate qata and stack space then lock process into memory ... DATALOCK(3C)

allocated program regions, first locations beyond ... END(3C)

allocation, change data segment space .. BRK(2)

allocator, fast main memory .. MALLOC(3X)

allocator for main memory ... MALLOC(3C)

allow interface to enable SRQ line on HP-IB .. HPIB_RQSLSRVCE(3I)

almanac - return numeric date information in MPE format .. ALMANAC(3X)

arcsine, arccosine, arctangent trigonometric functions ... TRIG(3M)

argument list, print formatted output of a varargs .. VPRINTF(3S)

argument, varargs, formatted input conversion to a .. VSCANF(3S)

HP-UX Release 7.0: September 1989 -1- (Index) 559

Index
Volume 2

Description Entry Name(Section)
argument vector, get option letter from .. GETOPT(3C)

array element, convert floating-point number to string or string .. ECVT(3C)

ASCII, 7 -bit, translate characters to .. CONV(3C)

ASCII string, convert between long integer and base-64 .. A64L(3C)

ASCII string, convert long integer to .. : LTOSTR(::JC)

asctime, nCascxtime - convert tm structure date and time to string ~ CTIME(3C)

as in - trigonometric arcsine function .. TRIG(3M)-

assertion, verify program .. ASSERT(3X)

assert - verify program assertion ... ASSERT(3X)

assign buffering to a stream file .. SETBUF(3S)

atan2 - trigonometric arctangent-and-quadrant function .. TRIG(3M)

atan - trigonometric arctangent function ... TRIG(3M)

atexit - register a function to be called at program termination .. ATEXIT(2)

ATN commands, enable/disable odd parity on .. HPIB_PARITY_CTL(3I)

atof - convert string to double-precision number .. STRTOD(3C)

atoi - convert string to long integer .. STRTOL(3C)

atol - convert string to long integer .. STRTOL(3C)

atomically release blocked signals and wait for interrupt ... SIGPAUSE(2)

attach shared memory to data segment ... SHMOP(2)

Attention line on HP-IB, control ... HPIB_ATN_CTL(3I)

audctl - start or halt auditing system; set or get audit files .. AUDCTL(2)

audit:
get events and system calls currently being audited ... GETEVENT(2)

set current events and system calls to be audited .. SETEVENT(2)

set or clear auditing on calling process ... : SETAUDPROC(2)

set or get audit files ... AUDCTL(2)

start or halt auditing system ... AUDCTL(2)

audit files, set or get ... AUDCTL(2)

audit ID (aid) for current process, get .. GETAUDID(2)

audit ID (aid), set for current process ... SETAUDID(2)

auditing, set or clear on calling process .. SETAUDPROC(2)

auditing, suspend or resume on current process .. AUDSWITCH(2)

auditing system, start or halt ... AUDCTL(2)

audit process flag for calling process, get ... GETAUDPROC(2)

audit record, write for self-auditing process ... AUDWRITE(2)

audswitch: suspend or resume auditing on current process ... AUDSWITCH(2)

audwrite - write audit record for self-auditing process ... AUDWRITE(2)

back into input stream, push character .. UNGETC(3S)

base~64 ASCII string, convert long integer to .. , A64L(3C)

baud rate, tty, set or get .. CFSPEED(3C)

Bessel functions ... BESSEL(3M)

binary input/output to a stream file, buffered .. FREAD(3S)

binary search routine for sorted tables .. BSEARCH(3C)

binary search tree, manage a ... TSEARCH(3C)

blmode - terminal block-mode library interface .. BLMODE(3C)

blocked signals, examine and change .. SIGPROCMASK(2)

blocked signals, release and atomically wait for interrupt .. SIGPAUSE(2)

block-mode terminal I/O library interface ... BLMODE(3C)

block signals ... SIGBLOCK(2)

boot the system .. : .. REBOOT(2)

560 (Index) -2- HP-UX Release 7.0: September1989

Index
Volume 2

Description Entry Name(Section)
break value and file size limits, get or set .. ULIMIT(2)
brk, sbrk - change data segment space allocation .. BRK(2)
BSD-4.2-compatible kill, sigvec, and signal system calls .. '" BSDPROC(2)
bsearch - binary search routine for sorted tables ... BSEARCH(3C)
buffered binary input/output to a stream file ... FREAD(3S)
buffered input/output standard stream file package "" ... "" STDIO(3S)
buffer, flush with or without closing stream ... FCLOSE(3S)
buffering, assign to a stream file ... SETBUF(3S)
buffers, flush to disk ... SYNC(2)
buffers, use to perform I/O with an HP-IB channel ... HPIB.IO(31)
build or access a binary search tree .. TSEARCH(3C)
bus address for an interface, set HP-IB ... HPIB.ADDRESS.CTL(31)
bus .. see HP-IB
bus, stop activity on specified HP-IB .. HPIB.ABORT(31)
bytes over HP-IB, send command ... HPIB_SEND.CMND(31)
bytes, swap ... SWAB(3C)
byte_status, BYTLSTATUS - test for valid 1- or 2-byte character NL.TOOLS.16(3C)
calendar - return MPE calendar date .. CALENDAR(3X)
calling process, get audit process flag for ... GETAUDPROC(2)
calling process, set or clear auditing on .. SETAUDPROC(2)
calloc - allocate memory for array (fast allocator) .. MALLOC(3X)
calloc - allocate memory for array - main memory allocator ... MALLOC(3C)
calls, system, BSD-4.2-compatible kill, sigvec, and signal ... BSDPROC(2)
C and Pascal execution startup routines ... CRTO(3)
capabilities, check for presence of hardware .. IS.HW.PRESENT(3C)
catalog support, RTE/MPE-style message ... CATREAD(3C)
catalogue, get message from an NLS message ... CATGETMSG(3C)
catalogue, get NLS message from a .. GETMSG(3C)
catgetmsg - get message from an NLS message catalogue ... CATGETMSG(3C)
catgets - get an NLS program message ... CATGETS(3C)
catread - MPE/RTE-style message catalog support ... CATREAD(3C)
ceil, floor, fmod, fabs - ceiling, floor, remainder, absolute value functions FLOOR(3M)
ceiling, floor, remainder, absolute value functions .. FLOOR(3M)
cfgetispeed: get tty input baud rate ... CFSPEED(3C)
cfgetospeed: get tty output baud rate .. CFSPEED(3C)
cfsetispeed: set tty input baud rate .. CFSPEED(3C)
cfsetospeed: set tty output baud rate ... CFSPEED(3C)
change access mode (permissions) of file .. CHMOD(2)
change active controllers on HP-IB .. HPIB.PASS.CTL(31)
change data segment space allocation ... BRK(2)
change or add value to environment .. PUTENV(3C)
change or examine blocked signals ... SIGPROCMASK(2)
change or examine signal action ... SIGACTION(2)
change or read realtime priority ... RTPRIO(2}
change owner and group of a file ... CHOWN(2)
change owner and/or group in access control list (ACL) .. CHOWNACL(3C)
change priority of a process .. NICE(2)
change root directory ... CHROOT(2)
change the name of a file .. RENAME(2)
change working directory ... CHDIR(2)

HP-UX Release 7.0: September 1989 -3- (Index) 561

Index
Volume 2

Description Entry Name(SecHon)
channel, create an interprocess ... : PIPE(2)
channel from buffers, perform I/O with an HP-IB ... HPIB_IO(3I)
channel, perform low-overhead i/O on an HP-IBjGPIO ... IO_BURST(3I)
character back into input stream, push .. UNGETC(3S)
character code set, convert to another .. ICONV(3C)
character, compare memory contents with specified .. MEMORY(3C)
character device special file, control ... IOCTL(2)
character, find location of in memory ... MEMORY(3C)
character or data word from a stream file, get .. GETC(3S)
character or word, put on a stream ... PUTC(3S)
characters, classify according to type ... CTYPE(3C)
characters, classify for use with NLS .. NL_CTYPE(3C)
character, set contents of memory area to specified ... MEMORY(3C)
characters, tools to process 16-bit ... NL_TOOLS_16(3C)
characters, translate for use with NLS (obsolete - useCONV(3C» .. NLCONV(3C)
characters, translate .. HANKAKUZENKAKU(3X)
characters, translate ... KUTENZENKAKU(3X)
characters, translate .. ROMAJIHIRAGANA(3X)
characters, translate .. HIRAGANAKATAKANA(3X)
characters, translate to uppercase, lowercase, or 7-bit ASCII ... CONV(3C)
character-string login name of the user, get .. CUSERlD(3S)
character string operations .. STRING(3C)
character string or stream file, read from with formatted input conversion SCANF(3S)
CHARADV - get character and advance pointer to next character NLTOOLS_16(3C)
CHARAT - get value of 8- or 16-bit character ... NL~TOOLS_16(3C)
chdir - change working directory .. CHDIR(2)
check for presence of hardware capabilities ... IS_HW _PRESENT(3C)
child or traced process to stop or terminate, wait for ... WAIT(2)
child process and process times, get ... TIMES(2)
chmod, fchmod - change access mode (permissions) of file ... CHMOD(2)
chownacl - change owner and/or group in access control list (ACL) CHOWNACL(3C)
chown, fchown - change owner and group of a file ... CHOWN(2)
chpi... . .. see hpi ...
chroot - change root directory .. CHROOT(2)
cjistosj, cjistouj - JIS, Shift lIS and UJIS code conversion ...]CODE(3X)
classify characters according to type .. CTYPE(3C)
classify characters for use with NLS ... NL_CTYPE(3C)
clearerr - clear I/O error on stream ... FERROR(3S)
clear or set auditing on calling process ... SETAUDPROC(2)
clock date and time, get or set system ... GETTIMEOFDA Y(2)
clock - report CPU time used .. CLOCK(3C)
clock - return the MPE clock value ... CLOCK(3X)
clock value, MPE, return the .. CLOCK(3X)
close, access, or open a directory and associated directory stream ... DIRECTORY(3C)
close a stream .. FCLOSE(3S)
close - close a file descriptor .. CLOSE(2)
closedir - close a currently open directory .. DlRECTORY(3C)
close_jlib - enable/disable Japanese specific facilities .. OPEN_JLIB(3X)
close_kana_kan - initialize KANA to KANJI conversion .. OPEN_KANA_KAN(3X)
close log - close system log file .. SYSLOG(3C)

562 (Index) -4- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
clese .or .open pipe I/O te .or frem a precess ... POPEN(3S)
cluster cenfiguratien file, get entry from .. GETCCENT(3C)
cluster nQdes, get a list .of active diskless ... CNODES(2)
clusters, diskless ... see diskless clusters
cnodeid - get diskless cnQde ID .of IQcal machine .. CNODEID(2)
mDde !D .of IDeal machine, get diskless , .. ,,,,,.,,",, . .,,.. "',,,,,,.,,,,.,,_.,., .. CNODEID(2)
cnodes - get a list .of active nQdes in cluster .. CNODES(2)
cQde cQnversien fQr lIS, Shift 115 and UllS ... JCODE(3X)
cede set cQnversiQn, character .. ICONV(3C)

cQllatiQn, nQn-ASCII string .. NL_STRING(3C)
cemmand bytes .over HP-IB, send ... HPIB_SEND_CMND(31)
cQmmand, shell, issue a .. SYSTEM(3S)
cQmmunicatiQn package, standard interprQcess " ... STDIPC(3C)
cQmpare CQntents .of memQry with character .. MEMORY(3C)
cQmpare two nQn-ASCII strings .. NL_STRING(3C)
cQmpare tWQ strings .. STRING(3C)
cemparisQn- routines fQr regular expressiens ... REGEXP(3X)
cempile and match rQutines fer regular expressiQns .. REGEXP(3X)
cempile a regular expressiQn ... REGCMP(3X)
compile - regular expressien cQmpile routine ... REGEXP(3X)
cemplementary errQr functien and errer functiQn .. ERF(3M)
cencatenate tWQ strings ... STRING(3C)
cenditien becemes true, wait until the requested status ... HPIB_STATUS_WAIT(31)
cenditiens, define fQr I/O device interrupt .. IO_ON_INTERRUPT(31)
cQnduct a serial pell .on HP-IB ... HPIB_SPOLL(31)
cenduct parallel PQll en HP-IB .. HPIB_PPOLL(31)
cenfigurable pathname variables, get ... P ATHCONF(2)
cenfigurable system variables, get ... SYSCONF(2)
cenfiguratiQn file, cluster, get entry frQm ... GETCCENT(3C)
cennectien, establish an Qut-bQund terminal line ... DIAL(3C)
cQntext-dependent file search, return prQcess CQntext fQr .. GETCONTEXT(2)
centext-dependent-files, return the expanded path that matches a path name GETCOF(3C)
centext, signal stack, set and/Qr get ... SIGSTACK(2)
cQntrQl AttentiQn line .on HP-IB .. HPIB_ATN_CTL(31)
centrel character device special file .. IOCTL(2)
centrel DMA allQcatien fQr an interface .. IO_DMA_CTL(31)
centrQI EOI mQde fQr HP-IB file .. HPIB_EOCCTL(3I)
cQntrel, file system ... FSCTL(2)
contrQl functiQns, tty line .. TCCONTROL(3C)
centrellers en HP-IB, change active ... HPIB_PASS_CTL(3I)
cQntrQllines en GPIO card, set .. GPIO_SET_CTL(3I)
cQntrelling terminal, generate file name .of ... CTERMID(3S)
contrQI eperatiens, message ... MSGCTL(2)
centrel eperatiQns, semaphQre ... SEMCTL(2)
centrel eperatiens, shared memQry .. SHMCTL(2)
cQntrel resPQnse tQ parallel PQll .on HP-IB .. HPIB_CARD]POLL_RESP(31)
centrQl·reutines fer .open-files .. FCNTL(2)
contrel system leg .. SYSLOG(3C)
cQntrel terminal device (VersiQn 6 cempatibility .only) ... STTY(2)
centrQl the HP-IB interface Remete Enable line ... HPIB_REN_CTL(3I)

HP-UX Release 7.0: September 1989 -5- (Index) 563

Index
Volume 2

Description Entry Name(Section)
control tty device ... TCATTRIBUTE(3C)
conventions, numeric formatting, of current locale, query ... LOCALECONV(3C)
conversion, formatted input, to a varargs argument .. VSCANF(3S)
conversion, initialize KANA to KANJI ... OPEN_KANA_KAN(3X)
conversion routines, KANA to KANJI .. HENKAN(3X)
convert access control list (ACL) structure to string form .. ACLTOSTR(3C)
convert between 3-byte integers and long integers .. L3TOL(3C)
convert between long integer and base-64 ASCII string ... A64L(3C)
convert character code set to another .. ICONV(3C)

convert date and time to string .. CTIME(3C)
convert date and time to string ... STRFTIME(3C)
convert file to stream .. FOPEN(3S)
convert floating-point number to string or string array element ... ECVT(3C)
convert JIS, Shift JIS and VJIS character codes ... JCODE(3X)
convert long double floating-point number to string ... LDCVT(3C)
convert long integer to string ... L TOSTR(3C)
convert string data order .. STRORD(3C)
convert string form to access control list (ACL) structure .. STRTOACL{3C)
convert string to double-precision number ... STRTOD(3C)
convert string to floating-point number .. CVTNUM(3C)
convert string to long double-precision number .. STRTOLD(3C)
coprocessor, math, check for presence of ... IS_HW_PRESENT(3C)
copy access control list (ACL) to another file .. CPACL(3C)
copy memory to another area .. MEMORY(3C)
cosh - hyperbolic cosine function ... SINH(3M)
cosine trigonometric function .. TRIG(3M)
cos - trigonometric cos function ... TRIG(3M)
cpacl - copy access control list (ACL) to another file .. CPACL(3C)
cpu, set name of host ... SETHOSTNAME(2)
CPV time used, report .. CLOCK(3C)
creat - create a new file or rewrite an existing one' ... CREAT(2)
create a directory file .. MKDIR(2)
create a directory, or a special or ordinary file ... MKNOD(2)
create a name for a temporary file ... TMPNAM(3S)
create a new file .. CREA T(2)
create a new file or rewrite an existing one .. CREAT(2)
create a new process ... FORK(2)
create an interprocess channel ... PIPE(2)
create a temporary file ... TMPFILE(3S)
create a unique (usually temporary) file name .. MKTEMP(3C)
create session and set process group ID .. SETSID(2)
crtO.o, gertO.o, mertO.o, trtO.o, mtrtO.o - execution startup routines .. CRTO(3)
crtO.o, mcrtO.o - C and Pascal execution startup routines .. CRTO(3)
CRT optimization and screen handling package ... CURSES(3X)
CRT screen handling and optimization package ... CURSES(3X)
crypt, setkey, encrypt - generate hashing encryption ... CRYPT(3C)
csjtojis, esjtouj - JIS, Shift JIS and VJIS code conversion .. JCODE(3X)
ctei-mid - generate file name for terminal ... CTERMID(3S)
ctime, nLcxtime - convert clock date and time to string .. CTIME(3C)
cujtojis, cujtosj - JIS, Shift JIS and VJIS code conversion .. JCODE(3X)

564 (Index) -6- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
current events and system calls to be audited ... SETEVENT(2)
current host, get name of .. GETHOSTNAME(2)
current HP-UX system, get name and version of ... UNAME(2)
current locale, query numeric formatting conventions of ... LOCALECONV(3C)
current process, get audit ID (aid) for .. GETAUDID(2)
current process, set audit ID (aid) for ... SETAUDID(2)
current process, suspend or resume auditing on .. AUDSWITCH(2)
current user, find the slot in the utmp file of the .. TTYSLOT(3C)
current working directory, get path-name of .. GETCWD(3C)
currlangid - get current NLS language ID number .. LANGINFO(3C)
curses - CRT screen handling and optimization package .. CURSES(3X)
cursor control, CRT optimization, and screen handling package ... CURSES(3X)
cuserid - get character-string login name of the user ... CUSERID(3S)
cvtnum - convert string to floating-point number ... CVTNUM(3C)
data and stack space, allocate then lock process into memory .. DATALOCK(3C)
data base management programming calls ... HPIMAGE(3X)
data base management programming calls ... see hpi...
data base subroutines (new multiple data base version) .. NDBM(3X)
data base subroutines (old version - see also NDBM(3X» ... DBM(3X)
data from a file, read .. READ(2)
data, get character or word from a stream file .. GETC(3S)
datalock - lock process into memory after allocating data and stack space DATALOCK(3C)
data order, convert string ... STRORD(3C)
data path width (in bits), set .. IO_WIDTH_CTL(3I)
data pointer for binary search tree, get ... TSEARCH(3C)
data segment and shared memory, attach or detach ... SHMOP(2)
data segment space allocation, change .. BRK(2)
data, text, or process, lock in memory .. PLOCK(2)
data to a file, write .. WRITE(2)
data transfer rate, inform system of required minimum I/O ... IO_SPEED_CTL(3I)
date and time, convert to string ... CTIME(3C)
date and time, convert to string .. STRFTIME(3C)
date and time, get more precisely (Version 7 compatibility only) .. FTIME(2)
date and time, get or set system clock ... GETTIMEOFDA Y(2)
date and time, set .. STIME(2)
daylight - Daylight Savings Time flag .. CTIME(3C)
dbm_clearerr - reset error condition on named data base .. NDBM(3X)
dbm_close - close an open data base ... NDBM{3X)
dbmclose - close currently open data base (old single-data-base version) DBM(3X)
dbm_delete - delete a data base key and associated contents .. NDBM(3X)
dbm_error - error in reading or writing in a data base .. NDBM(3X)
dbm_fetch - access a data base entry under a key .. NDBM(3X)
dbm_firstkey - get first key in a data base ... NDBM(3X)
dbminit - open a single data base (old single-data-base version) .. DBM{3X)
dbm_nextkey - get next key in a data base ... NDBM(3X)
dbm_open - open a data base for access ... NDBM(3X)
dbm_store - store an entry under a key in a data base .. NDBM(3X)
decimal ASCII string, convert long integer to .. LTOSTR(3C)
decimal library, packed, HP 3000-mode .. HPPAC(3X)
define additional signal stack space .. SIGSP ACE(2)

HP-UX Release 7.0: September 1989 -7- (Index) 565

Index
Volume 2

Description Entry Name(Section)
define interface parallel poll response .. HPIB_PPOLL_RESP _CTL(3I)

define IjO device interrupt (fault) conditions .. IO_ON_INTERRUPT(3I)

define v,that to do upon receipt of a signal .. SIGt~AL(2)
delete, add, or modify delete access control list entry .. SETACLENTRY(3C)

delete allocated signal stack space .. SIGSP ACE(2)

delete a node from a binary search tree ... TSEARCH(3C)

delete - delete key and data under it (old single-data-base version) ... DBM(3X)

delete file or directory name; remove directory entry .. UNLINK(2)

descend a directory hierarchy recursively ... ~ FTW(3C)

descriptor, close a file ... CLOSE(2)

descriptor file entry, get file system (BSD 4.2 compatibility only) .. GETFSENT(3X)

descriptor, map stream pointer to file ... FILENO(3S)

detach shared memory from data segment .. SHMOP(2)

determine accessibility of a file .. ACCESS(2)

determine current signal stack space .. SIGSP ACE(2)

determine how last I/O read terminated ... IO_GELTERM_REASON(3I)

device file, FIFO, make a ... MKFIFO(3C)

device for interleaved paging/swapping, add a swap .. SWAPON(2)

device I/O interrupt (fault) control ... IO_ON_INTERRUPT(3I)

device special file, control character ... IOCTL(2)

dial, undial - establish an out-bound terminal line connection .. DIAL(3C)

dictionaries, Japanese language user, manage ... LUD_SEARCH(3X)

directory:
access, open, or close a directory and associated directory stream DIRECTORY(3C)

change root directory .. CHROOT(2)

change working directory .. CHDIR(2)

delete file or directory name; remove directory entry ... UNLINK(2)

get entries in a filesystem-independent format .. GETDIRENTRIES(2)

get path-name of current working directory ... GETCWD(3C)

make a directory file .. MKDIR(2)

make a directory, or a special or ordinary file ... MKNOD(2)

remove a directory file ... RMDIR(2)

directory entry, remove; delete file or directory name ... UNLINK(2)

directory file, remove a ... RMDIR(2)

directory hierarchy, recursively descend a ... FTW(3C)

directory stream, directory and associated, open for access .. DIRECTORY(3C)

disable/enable Japanese specific facilities , ... OPEN_JLIB(3X)

disable/enable odd parity on ATN commands ... HPIB_PARITY_CTL(31)

disable or enable IjO interrupts for the associated eid .. IO_INTERRUPLCTL(31)

disable or enable process accounting .. ACCT(2)

disk, flush buffers to , ... SYNC(2)

diskless cluster nodes, get a list of active ... CNODES(2)

diskless cnode ID of local machine, get .. CNODEID(2)

disk storage, preallocate fast .. PREALLOC(2)

disk, synchronize a file's in-core state with its state on ... FSYNC(2)

distance function, Euclidean (hypoteneuse) .. HYPOT(3M)

division and remainder, integer ... DIV(3C)

div, Idiv - integer division and remainder .. DIV(3C)

DMA allocation for an interface, control ... IO_DMA_CTL(31)

double-precision number, convert string to .. STRTOD(3C)

566 (Index) -8- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
double-precision number, convert string to long ... STRTOLD(3C)

drand48, erand48 - generate double-precision pseudo-random numbers DRAND48(3C)

dup2 - duplicate an open file descriptor to a specific slot ... DUP2(2)

dup - duplicate an open file descriptor .. DUP(2)

duplicate an open file descriptor ... DUP(2)

duplicate an open file descriptor to a specific slot "'" """ .. ,""" .. ,""."" .. DUP2(2)

duplicate entries in a table, eliminate ... LSEARCH(3C)

dynamic file system swapping .. SWAPON(2)

echo, suppress while reading password from terminal .. GETPASS(3C)

ecvt, fcvt - convert floating-point number to string .. ECVT(3C)

edata - first address beyond initialized program data region ... END(3C)

effective access rights to a file, get a user's ... GETACCESS(2)

effective or real user or group ID, get .. GETUID(2)

effective, real, and/or saved user or group IDs, set ... SETRESUID(2)

element, convert floating-point number to string or string array .. ECVT(3C)

eliminate duplicate entries in a table .. LSEARCH(3C)

emulate /etc/termcap access routines ... TERMCAP(3X)

enable/disable Japanese specific facilities .. OPEN_JLIB(3X)
enable/disable odd parity on ATN commands ... HPIB_PARITY_CTL(31)

enable or disable I/O interrupts for the associated eid .. IO_INTERRUPLCTL(31)

enable or disable process accounting .. ACCT(2)

enable SRQ line on HP-IB, allow interface to ... HPIB_RQST_SRVCE(31)

encrypt, crypt, setkey - generate hashing encryption ... CRYPT(3C)

encryption, hashing, generate .. CRYPT(3C)

encryption, password ... ; CRYPT(3C)

endccent - close cluster configuration file .. GETCCENT(3C)

end - first address beyond uninitialized program data region ... END(3C)

endfsent - close file system descriptor file ... GETFSENT(3X)

endgrent - close currently open group file .. GETGRENT(3C)

end locations of allocated regions in program ... END(3C)

endmntent - close file system description file ... GETMNTENT(3X)

endpwent - close currently open password file ... GETPWENT(3C)

endspwent - close currently open secure password file .. GETSPWENT(3C)

endutent - close currently open utmp file .. GETUT(3C)

entries from a directory, get in a filesystem-independent format GETDIRENTRIES(2)

entries from name list, get .. NLIST(3C)

entries in a table, eliminate duplicate ... LSEARCH(3C)

entry from cluster configuration file, get .. GETCCENT(3C)

entry from group file, get ... GETGRENT(3C)

entry from password file, get .. GETPWENT(3C)

entry from secure password file, get ... GETSPWENT(3C)

entry, get file system description file .. GETMNTENT(3X)

entry, get file system descriptor file (BSD 4.2 compatibility only) .. GETFSENT(3X)

entry, write password file .. PUTPWENT(3C)

environment, change or add value to ... PUTENV(3C)

environment list, search for value of specified variable name .. GETENV(3C)

environment of a program, initialize the NLS .. NL_INIT(3C)

environment, save/restore stack for non-local goto .. SETJMP(3C)

environment variable, search environment list for value of ... GETENV(3C)

EOI mode for HP-IB file, control ... HPIB_EOLCTL(3I)

HP-UX Release 7.0: September 1989 -9- (Index) 567

Index
Volume 2

Description Entry Name(Section)
erf, erfc - error function and complementary error function .. ERF(3M)

errno - error indicator for system calls .. ERRNO(2)

errno - system error messages '''"''''''".",, PERROR(3C)

error function and complementary error function .. ERF(3M)

error-handling function, math library ... MATHERR(3M)

error indicator for system calls .. ERRNO(2)

error messages, system ... PERROR(3C)

establish an out-bound terminal line connection .. DIAL(3C)

establish time limit for I/O operations ... 10_ TIMEOULCTL(31)

/etc/termcap access routines, emulate .. TERMCAP(3X)

etext - first address beyond program text region .. END(3C)

Euclidean distance (hypoteneuse) function ... HYPOT(3M)

events and system calls currently being audited, get ... GETEVENT(2)

events and system calls to be audited .. : SETEVENT(2)

examine and change blocked signals ... SIGPROCMASK(2)

examine and change signal action ... SIGACTION(2)

examine pending signals ... SIGPENDING(2)

execl, execle, execlp, execv, execve, execvp - execute an object-code file ... EXEC(2)

execute an object-code file .. EXEC(2)

execute a regular expression against a string ... REGCMP(3X)

execution profile, prepare .. MONITOR(3C)

execution startup routines, C, Pascal, and FORTRAN ... CRTO(3)

execution, suspend for interval .. ~ .. SLEEP(3C)

execution time profile ... PROFIL(2)

existing file, truncate to zero for rewriting .. CREAT(2)

exit, _exit - terminate process ... EXIT(2)

exit, register a function to be called at .. ATEXIT(2)

expanded context-dependent-files path that matches a path name, return GETCDF(3C)

exp, Zag, ZoglO, pow, sqrt - exponential, logarithm, power, square root functions EXP(3M)

exponent and mantissa, split floating-point into ... FREXP(3C)

exponential, logarithm, power, square root functions ... EXP(3M)

expression, regular, compile and match routines .. REGEXP(3X)

expression, regular, compile or execute against a string ... REGCMP(3X)

fabs, floor, ceil, fmod - absolute value, floor, ceiling, remainder functions FLOOR(3M)

facilities, software signal ... SIGVECTOR(2)

fast disk storage, preallocate .. PREALLOC(2)

fast main memory allocator ... '" MALLOC(3X)

fault, generate an lOT .. ABORT(3C)

fault (interrupt) conditions, define for I/O device ... IO_ON_INTERRUPT(31)

fchmod -. change access mode (permissions) of file ... CHMOD(2)

fchown - change owner and group of a file ... CHOWN(2)

fclose - flush buffer then close stream ... FCLOSE(3S)

fcntZ - open-file control .. FCNTL(2)

fcpacl - copy access control list (ACL) to another file .. , CPACL(3C)

fcvt, ecvt - convert floating-point number to string .. ECVT(3C)

fdopen - associate a stream with an open file descriptor .. FOPEN(3S)

feof - check for end-of-file error on stream .. FERROR(3S)

ferror - check for I/O error on stream .. FERROR(3S)

fetch - access data under a key (old single-data-base version) .. DBM(3X)

!flush - flush buffer without closing stream .. FCLOSE(3S)

568 (Index) - 10- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry N ame(Section)
fgetacl - get access control list (ACL) information ... GET ACL(2}

fgetccent - get pointer to cluster configuration entry in a stream .. GETCCENT(3C}

fgetc, getc - get character from a stream file .. GETC(3S}

fgetgrent - get next entry in group-file-formatted input stream .. GETGRENT(3C}

fgetpos: save file position indicator for a stream .. FGETPOS(3S}

fgetpwent - get next entry in password-fiie-formatted input stream GETPWENT(3C}

fgets, gets - get a string from a standard input stream ... GETS(3S}

fgetspwent - get next entry in secure password-file-formatted input stream GETSPWENT(3C}

FIFO special file, make a ... MKFIFO(3C}

file:
access wtmp or utmp file .. GETUT(3C}

assign buffering to a stream file .. SETBUF(3S}

change access mode (permissions) of file ... CHMOD(2}

change owner and group of a file ... CHOWN(2}

change the name of a file ... RENAME(2}

close a file descriptor .. CLOSE(2}

copy access control list (ACL) to another file ... CPACL(3C}

create a name for a temporary file .. TMPNAM(3S}

create a new file or rewrite an existing one ... CREAT(2}

create a temporary file ... TMPFILE(3S}

delete file or directory name; remove directory entry .. ~ UNLINK(2}

determine accessibility of a file .. ACCESS(2}

execute an object-code file ... EXEC(2}

get file status ... STAT(2}

link additional name to an existing file ... LINK(2}

make a directory file or a special or ordinary file .. MKNOD(2}

make a symbolic link to a file .. SYMLINK(2}

make a unique (usually temporary) file name .. MKTEMP(3C}

open a file for reading or writing ... OPEN(2)

open-file control routines ... FCNTL(2)

print formatted output with numbered arguments to a file or string PRINTMSG(3C}

read data from a ,file .. READ(2)

read from file, stream, or character string with formatted input conversion SCANF(3S)

remove a directory file ... RMDIR(2)

remove a file .. REMOVE(3C)

rewrite an existing file .. CREAT(2)

truncate a file to a specified length .. TRUNCATE(2)

truncate an existing file to zero for rewriting ... CREAT(2}

write data to a file ... WRITE(2}

file access and modification times, set or update .. UTIME(2}

file, CDF: return process context for context-dependent file search, return GETCONTEXT(2)

file, cluster configuration: get entry from cluster configuration file .. GETCCENT(3C}

file creation (permissions) mask, set and get ... UMASK(2}

file descriptor:
duplicate an open file descriptor .. DUP(2)

duplicate an open file descriptor to a specific slot ... , DUP2(2)

map stream pointer to file descriptor ... FILENO(3S)

file entry, get file system description .. GETMNTENT(3X)

file entry, get file system descriptor (BSD 4.2 compatibility only) .. GETFSENT(3X}

file, get a user's effective access rights to a ... : GETACCESS(2}

HP-UX Release 7.0: September 1989 -11- (Index) 569

Index
Volume 2

Description Entry Name(Section)
file, group; get entry from group file ... GETGRENT(3C)

file locking: provide semaphores and record locking on files .. LOCKF(2)

fHe name of controiiing terminai, generate ... CTERMID(3S)

fileno - get integer file descriptor for stream ~ .. FERROR(3S)

fileno - map stream pointer to file descriptor .. FILENO(3S)

file, password:
get entry from password file .. GETPWENT(3C)

get entry from secure password file ... GETSPWENT(3C)

file pointer: move read/write file pointer .. LSEEK(2)

file position indicator for a stream, save or restore ... FGETPOS(3S)

files, audit, set or get .. AUDCTL(2)

file search: return process context for context-dependent file search GETCONTEXT(2)

file's in-core state with its state on disk, synchronize a ... FSYNC(2)

file size limits and break value, get or set .. ULIMIT(2)

file, stream:
buffered binary input/output to a stream file .. FREAD(3S)

convert file to stream; open or re-open a stream file ... FOPEN(3S)

get character or data word from a stream file .. GETC{3S)

open or re-open a stream file; convert file to stream ... FOPEN(3S)

reposition or get pointer for I/O operations on a stream file ... FSEEK(3S)

file, system:
get file system description file entry .. GETMNTENT(3X)

get file system descriptor file entry (BSD 4.2 compatibility only) GETFSENT(3X)

get file system statistics ... ST A TFS(2)

get mounted file system statistics .. USTAT(2)

mount a file system ... VFSMOUNT(2)

mount a removable file system ... MOUNT(2)

unmount a file system ... UMOUNT(2)

file system control .. FSCTL(2)

file system statistics, get .. STATFSDEV(3C)

file system swapping ... SWAPON(2)

file tree: walk a file tree ... FTW(3C)

file, utmp, of the current user, find the slot in the .. TTYSLOT(3C)

find name of a terminal .. TTYNAME(3C)

find the slot in the utmp file of the current user ... TTYSLOT(3C)

firstkey - get first key in data base (old single-data-base version) ... DBM(3X)

first locations beyond allocated program regions .. END(3C)

firstoj2, FIRSToj2 - test for valid first byte in 16-bit character ... NL_TOOLS_16(3C)

flag for calling process, get audit process ... GETAUDPROC(2)

floating-point:
convert floating-point number to string or string array element .. ECVT(3C)

convert string to floating-point number .. CVTNUM(3C)

split floating-point into mantissa and exponent ... FREXP(3C)

floating-point number to string, convert long double .. LDCVT(3C)

floor, ceil, [mod, Jabs - floor, ceiling, remainder, absolute value functions FLOOR(3M)

floor, ceiling, remainder, absolute value functions .. FLOOR(3M)

flush buffers to disk ... SYNC(2)

flush buffer with or without closing stream .. FCLOSE(3S)

Jmod, ceil, floor, Jabs - remainder, ceiling, floor, absolute value functions FLOOR(3M)

{open - open a named file and associate with a stream ... FOPEN(3S)

570 (Index) - 12- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
foreground process group ID, get .. TCGETPGRP(3C)

foreground process group ID, set ... TCSETPGRP(3C)

fork - create a new process .. FORK(2)

formatted input conversion, read from stream file or character string .. SCANF(3S)

formatted input conversion to a varargs argument .. VSCANF(3S)

formatted output of a varargs argument list, print .. VPRINTF(3S)

formatted output, print to standard output, file, or string .. PRINTF(3S)

formatted output with numbered arguments, print to a file or string PRINTMSG(3C)

formatted read and conversion from stream file or character string ... SCANF(3S)

formatting conventions, numeric, of current locale, query ... LOCALECONV(3C)

FORTRAN execution startup routines .. , CRTO(3)

fpatheonf - get configurable pathname variables .. PATHCONF(2)

fprintf, nl-fprintf - print formatted output to a file ... PRINTF(3S)

fprintmsg - print formatted output with numbered arguments to a file PRINTMSG(3C)

fpute, pute - put character on a stream .. PUTC(3S)

fputs - write null-terminated string to a named stream file .. PUTS(3S)

fread, fwrite - buffered binary input/output to a stream file .. FREAD(3S)

free - release allocated block of main memory .. MALLOC(3C)

free - release block of allocated main memory (fast allocator) .. MALLOC(3X)

freopen - substitute a named file in place of an already open stream .. FOPEN(3S)

frexp, ldexp, modf - split floating-point into mantissa and exponent .. FREXP(3C)

frtO.o, mfrtO.o - FORTRAN execution startup routines .. CRTO(3)

fseanf, nCfseanf - formatted read from named input stream file .. SCANF(3S)

fsetl - file system control .. FSCTL(2)

fseek, rewind, ftell - reposition a file pointer in a stream .. FSEEK(3S)

fseek - set position of next I/O operation on stream file .. FSEEK(3S)

fsetadentry - add, modify, or delete access control list entry ... SETACLENTRY(3C)

fsetad - set access control list (ACL) information ... SETACL(2)

fsetpos: restore file position indicator for a stream .. FGETPOS(3S)

fstatfsdev,statfsdev - get file system statistics ... STATFSDEV(3C)

fstatfs, statfs - get file system statistics .. STATFS(2)

fstat, (stat, lstat) - get open file status ... STAT(2)

fsyne - synchronize a file's in-core state with its state on disk ... FSYNC(2)

ftell - get offset from beginning-of-file of current byte in stream file ... FSEEK(3S)

ftime - get date and time more precisely (Version 7 compatibility only) .. FTIME(2)

ftok - standard interprocess communication package .. STDIPC(3C)

ftruncate, truncate - truncate a file to a specified length ... TRUNCATE(2)

ftw, ftwh - walk a file tree .. FTW(3C)

function:
Bessel functions .. BESSEL(3M)

Euclidean distance (hypoteneuse) ... HYPOT(3M)

hyperbolic trigonometric functions ... SINH(3M)

log gamma ... GAMMA(3M)

trigonometric functions .. TRIG(3M)

function to be called at program termination, register a ... ATEXIT(2)

/Write, fread - buffered binary input/output to a stream file .. FREAD(3S)

gamma function, log ... GAMMA(3M)

gamma, signgam - log gamma function ; .. GAMMA(3M)

gcrtO.o, gfrtO.o - C and Pascal execution startup routines .. CRTO(3)

gcvtl nCgevt - convert floating-point number to string array element .. ECVT(3C)

HP-UX Release 7.0: September 1989 -13- (Index) 571

Index
Volume 2

Description Entry Name(Section)
generate an lOT fault ... ABORT(3C)

generate file name of controlling terminal .. CTERMID(3S)

generate hashing encryption .. , .. ,' ,,""" CRYPT(3C)

generate uniformly distributed pseudo-random numbers ... DRAND48(3C)

generator, simple random-number ... RAND(3C)

get:
character or data word from a stream file .. GETC(3S)

data pointer for binary search tree ... TSEARCH(3C)

date and time more precisely (Version 7 compatibility only) .. FTIME(2)

diskless cnode ID of local machine ... CNODEID(2)

entries from a directory in a filesystem-independent format GETDIRENTRIES(2)

entries from name list ... NLIST(3C)

entry from group file .. GETGRENT(3C)

file size limits and break value, get or set .. ULIMIT(2)

file status ... STAT(2)

file system description file entry .. GETMNTENT(3X)

file system descriptor file entry (BSD 4.2 compatibility only) .. GETFSENT(3X)

file system statistics ... STATFS(2)

list of active nodes in diskless cluster .. CNODES(2)

message from an NLS message catalogue ... CATGETMSG(3C)

message queue : ... MSGGET(2)

mounted file system statistics .. USTAT(2)

name and version of current HP-UX system ... UNAME(2)

name of current host .. GETHOSTNAME(2)

NLS message from a catalogue ... GETMSG(3C)

NLS program message ... CATGETS(3C)

option letter from argument vector .. GETOPT(3C)

path-name of current working directory ... GETCWD(3C)

pointer for I/O operations on a stream file, get or reposition .. FSEEK(3S)

pointer to login name in utmp .. GETLOGIN(3C)

process and child process times ... TIMES(2)

process context for context-dependent file search ... GETCONTEXT(2)

process, process group, or parent process ID .. GETPID(2)

real or effective user or group ID ... GETUID(2)

set of semaphores .. SEMGET(2)

shared memory segment ... ~ ... SHMGET(2)

special attributes for group, get or set ... GETPRIVGRP(2)

system clock date and time .. GETTIMEOFDAY(2)

time .. TIME(2)

value of process interval timer .. GETITIMER(2)

get access control list (ACL) information ... GETACL(2)

getaccess - get a user's effective access rights to a file ... GETACCESS(2)

getacl, fgetacl - get access control list (ACL) information .. GETACL(2)

get and/or set signal stack context ... SIGSTACK(2)

getaudid - get audit ID (aid) for current process .. GETAUDID(2)

get audit ID (aid) for current process .. ~ GETAUDID(2)

get audit process flag for calling process .. GET AUDPROC(2)

getaudproc - get audit process flag for calling process ... GETAUDPROC(2)

get a user's effective access rights to a file .. GETACCESS(2)

getcccid - get cluster configuration file entry matching specified id GETCCENT(3C)

572 (Index) - 14- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
getccent - get entry in cluster configuration file .. GETCCENT(3C)

getccnam - get cluster configuration file entry matching specified name GETCCENT(3C)

getcdf - return the expanded path that matches a path name , GETCDF(3C)

getc, fgetc - get character from a stream file .. GETC(3S)

getchar - get character from standard input file .. GETC(3S)

get configurable pathname variables "" .. P,A,THCONF(2)

get configurable system variables .. SYSCONF(2)

getcontext - return the process context for context-dependent file search GETCONTEXT(2)

getcwd - get path-name of current working directory ... GETCWD(3C)

getdirentries - get entries from a directory in a filesystem-independent format GETDIRENTRIES(2)

getegid - get effective group ID ... GETUID(2)

getenv - return value for environment name .. GETENV(3C)

geteuid - get effective user ID .. GETUID(2)

getevent - get events and system calls currently being audited .. GETEVENT(2)

get events and system calls currently being audited .. GETEVENT(2)

get file system statistics ... STATFSDEV(3C)

get foreground process group ID ... TCGETPGRP(3C)

getfsent - get next line in file system descriptor file ... GETFSENT(3X)

getfsfile - search descriptor file for ordinary file entry ... GETFSENT(3X)

getfsspec - search descriptor file for special (device) file entry .. GETFSENT(3X)

getfstype - search descriptor file for specified file type entry .. GETFSENT(3X)

getgid - get real group ID ... GETUID(2)

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get entry from group file GETGRENT(3C)

getgrent - get next entry in group file .. GETGRENT(3C)

getgrgid - get entry from group file that matches gid .. GETGRENT(3C)

getgrnam - get entry from group file that matches group name name GETGRENT(3C)

getgroups - get group access list ... GETGROUPS(2)

gethcwd - get path-name of current working directory including diskless hidden directories GETCWD(3C)

gethostname - get name of current host .. GETHOSTNAME(2)

getitimer - get value of process interval timer ~ ... GETITIMER(2)

getlocale - get the locale of a program .. SETLOCALE(3C)

getlogin - get pointer to login name in utmp ... ~ GETLOGIN(3C)

getmntent - get a file system description file entry ... GETMNTENT(3X)

getmsg - get NLS message from a catalogue ... GETMSG(3C)

getopt, optarg, optind, opterr - get option letter from argument vector GETOPT(3C)

get or set audit files .. AUDCTL(2)

get or set tty baud rate .. CFSPEED(3C)

getpass - read a password from terminal while suppressing echo ... GETP ASS(3C)

getpgrp2 - get process group ID of specified process .. GETPID(2)

getpgrp - get process gro1.1p ID ... GETPID(2)

getpid - get process ID .. GETPID(2)

getppid - get parent process ID .. GETPID(2)

getprivgrp - get special attributes for group .. GETPRIVGRP(2)

getpwent - get next password file entry .. CETPWENT(3C)

getpw - get name from UID (obsolete) .. GETPW(3C)

getpwnam - get password file entry matching login name name ... CETPWENT(3C)

getpwuid - get password file entry matching uid ... CETPWENT(3C)

gets, fgets - get a string from a standard input stream ... GETS(3S)

getspwaid - get next secure password file audit ID ... GETSPWENT(3C)

getspwent - get next secure password file entry .. GETSPWENT(3C)

HP-UX Release 7.0: September 1989 - 15- (Index) 573

Index
Volume 2

Description Entry Name(Section)
getspwnam - get secure password file entry matching login name name GETSPWENT(3C)

getspwuid - get secure password file entry matching uid ... GETSPWENT(3C)

get the locale of a program """,.,, , .. SETLOCALE(3C)

gettimeofday - get system clock date and time ... GETTIMEOFDAY(2)

get tty device operating parameters .. TCATTRIBUTE(3C)

getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group GETUID(2)

getutent - get pointer to next entry in a utmp file ... GETUT(3C)

getutid - get pointer to entry matching id in a utmp file .. GETUT(3C)

getutline - get pointer to entry matching line in a utmp file ... GETUT(3C)

getw - get data word (integer) from a stream file .. GETC(3S)

gfrtO.o, gcrtO.o - C and Pascal execution startup routines .. CRTO(3)

gmtime - convert date and time to Greenwich Mean Time .. CTIME(3C)

goto, save/restore stack environment for non-local .. SETJMP(3C)

GPIO:

return status lines of GPIO card ... GPIO_GET_STATUS(3I)

set control lines on GPIO card .. GPIO_SELCTL(3I)

gpio_geCstatus - return status lines of GPIO card .. GPIO_GET_STATUS(3I)

gpio_seCctl - set control lines on GPIO card ... GPIO_SELCTL(3I)

group access list:
get group access list ... GETGROUPS(2)

initialize group access list ... INITGROUPS(3C)

set group access list .. SETGROUPS(2)

group and/or owner, change in access control list (ACL) ... CHOWNACL(3C)

group and owner of a file, change .. CHOWN(2)

group file, get entry from ... GETGRENT(3C)

group, get or set special attributes for .. GETPRIVGRP(2)

group ID:
get real or effective group ID ..•.. GETUID(2)

set group ID ... SETUID(2)

set real, effective, and/or saved group or user IDs .. SETRESUID(2)

create session and set process ... , ... SETSID(2)

foreground process group ID, get ... TCGETPGRP(3C)

foreground process group ID, set ; .. TCSETPGRP(3C)

for job control, set process group ID .. SETPGID(2)

group of processes, send a signal to a process or a ... KILL(2)

gsignal - raise a software signal .. SSIGNAL(3C)

gtty, stty - control terminal device (Version 6 compatibility only) ... STTY(2)

halt or start auditing system ... '" .. AUDCTL(2)

HankakuZenkaku, ZenkakuHankaku - translate characters ... HANKAKUZENKAKU(3X)

hardware capabilities, check for presence of .. IS_HW_PRESENT(3C)

hashing encryption, generate ... CRYPT(3C)

hash search tables, manage ... HSEARCH(3C)

hasmntopt - search mount option field in file system description file GETMNTENT(3X)

hcreate - allocate space for new hash search table ... HSEARCH(3C)

hdestroy - destroy existing hash search table .. HSEARCH(3C)

Henkan - KANA to KANJI conversion routines ... HENKAN(3X)

HenkanOwari - KANA to KANJI conversion routines .. HENKAN(3X)

hierarchy, directory, recursively descend a .. FTW(3C)

HiraganaKatakana: translate characters .. HIRAGANAKATAKANA(3X)

hold signal upon receipt .. SIGSET(2V)

574 (Index) - 16- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
host cpu, set name of ... SETHOSTNAME(2)
host, current, get name of ... GETHOSTNAME(2)
HP 3000-mode packed decimal library .. HPPAC{3X)
HP-IB:

allow interface to enable SRQ line on HP-IB .. HPIB_RQST_SRVCE(31)
change active controllers on HP~IB ... I-IPIB_PASS_CTL(3I)

conduct a serial poll on HP-IB .. HPIB_SPOLL(31)
conduct parallel poll on HP-IB ... HPIB_PPOLL(31)
control Attention line on HP-IB .. HPIB_ATN_CTL(31)
control EOI mode for HP-IB file ... HPIB_EOLCTL(31)
control response to parallel poll on HP-IB .. HPIB_CARD]POLL_RESP(31)
control the Remote Enable line on HP-IB .. HPIB_REN_CTL(31)
define interface parallel poll response ... HPIB_PPOLL_RESP _CTL(31)
enable/disable odd parity on ATN commands ... HPIB]ARITY_CTL(31)
perform I/O with an HP-IB channel from buffers ... HPIB_IO(31)
return status of HP-IB interface ... HPIB_BUS_STATUS(31)
send command bytes over HP-IB ... HPIB_SEND_CMND(31)
set HP-IB bus address for an interface .. HPIB_ADDRESS_CTL(31)
stop activity on specified HP-IB ... HPIB_ABORT(31)
wait until a particular parallel poll value occurs ... HPIB_WAIT_ON_PPOLL(31)
wait until the requested status condition becomes true HPIB_STATUS_WAIT(31)

hpib_abort - stop activity on specified HP-IB .. HPIB_ABORT(31)
hpib_address_ctl - set HP-IB bus address for an interface ... HPIB_ADDRESS_CTL(31)
hpib_atn_ctl - control Attention line on HP-IB ... HPIB_ATN_CTL(31)
HP-IB bus address for an interface, set ... HPIB_ADDRESS_CTL(31)
hpib_bus_status - return status of HP-IB interface ... HPIB_BUS_STATUS(31)
hpib_card_ppoICresp - control response to parallel poll on HP-IB HPIB_CARD]POLL_RESP(31)
hpibegin, chpibegin - start data base transaction ... HPIMAGE{3X)
hpibjoCctl - control EOI mode for HP-IB file ... HPIB_EOLCTL(31)
HP-IB/GPIO channel, perform low-overhead I/O on an ... IO_BURST(31)
hpib_io - perform I/O with an HP-IB channel from buffers ... HPIB_IO(31)
hpib_parity_ctl - enable/disable odd parity on ATN commands HPIB]ARITLCTL(31)
hpib_pass_ctl - change active controllers on HP-IB ... HPIB]ASS_CTL(31)
hpib_ppoll - conduct parallel poll on HP-IB .. HPIB]POLL(31)
hpib_ppoICresp_ctl - define interface parallel poll response HPIB]POLL_RESP _CTL(31)
hpibJen_ctl - control the Remote Enable line on HP-IB .. HPIB_REN_CTL(31)
hpib_rqscsrvce - allow interface to enable SRQ line on HP-IB HPIB_RQSLSRVCE(31)
hpib_send_cmnd - send command bytes over HP-IB ... HPIB_SEND_CMND(31)
hpib_spoll - conduct a serial poll on HP-IB ... HPIB_SPOLL(31)
hpib_status_wait - wait until the requested status condition becomes true HPIB_STATUS_WAIT(31)
hpib_waiCon_ppoll - wait until a particular parallel poll value occurs HPIB_WArLON_PPOLL(31)
hpiclose, chpiclose - terminate data base or data set access .. HPIMAGE(3X)
hpicontrol, chpicontrol - enable or disable return of data base chain info HPIMAGE(3X)
hpidelete, chpidelete - delete an entry from data base .. HPIMAGE(3X)
hpiend, chpiend - end and commit a data base transaction .. HPIMAGE(3X)
hpierror, chpierror - supply data base status array message ... HPIMAGE(3X)
hpifind, chpifind - locate first and last entry in data base chain ... HPIMAGE(3X)
hpifindset, chpifindset - locate data base entries that satisfy an expression HPIMAGE(3X)
hpiget, chpiget - retrieve entry from data base data set .. HPIMAGE{3X)
hpiinfo, chpiinfo - provide structural information about data base .. HPIMAGE{3X)

HP-UX Release 7.0: September 1989 - 17- (Index) 575

Index
Volume 2

Description Entry Name(Section)
hpilock, chpilock - lock data base or data set or sets for exclusive access HPIMAGE(3X)
HPIMAGE ALLBASE/HP-UX programmatic calls .. HPIMAGE(3X)
hpimemo, chpimemo - vJrite user information to data base log file _ _ .. _ _ ~ .. ;. HPIMAGE(3X)
hpiopen, chpiopen - initiate access to data base ... HPIMAGE(3X)
hpiput, chpiput -- add new entry to data base data set .. HPIMAGE(3X)
hpiundo, chpiundo - abort uncommited data base transaction ... HPIMAGE(3X)
hpiupdate, chpiupdate - modify existing data base entry .. HPIMAGE(3X)
HPPAC*: HP3000-mode packed decimal library ... HPPAC(3X)
hsearch - hash table search routine ... HSEARCH(3C)
hyperbolic trigonometric functions ... SINH(3M)
hypoteneuse of a right triangle .. HYPOT(3M)
hypot - Euclidean distance function .. HYPOT(3M)
ICONV, ICONVl, ICONV2: code set conversion routines ... ICONV(3C)
iconvsize, iconvopen, iconvclose, iconvlock: code set conversion routines ICONV(3C)
10, create session and set process group ... SETSID(2)
10, foreground process group, get ... TCGETPGRP(3C)
10, foreground process group, set .. TCSETPGRP(3C)
10 for job control, set process group ... SETPGID(2)
10, get real or effective user or group .. GETUID(2)
10 of local machine, get diskless cnode .. CNODEID(2)
10, set user or group .. SETUID(2)
idtolang - convert NLS language 10 number to language name ... LANGINFO(3C)
ignorable signals mask, set current '" ... SIGSETMASK(2)
ignore signal ... SIGSET(2V)
ignore signals ... SIGBLOCK(2)
in-core state with its state on disk, synchronize a file's ... FSYNC(2)
increase data segment space allocation .. BRK(2)
information, NLS, about native languages .. LANGINFO(3C)
information, NLS, about native languages .. NL_LANGINFO(3C)
initgroups - initialize group access list .. INITGROUPS(3C)
initialize group access list .. INITGROUPS(3C)
initialize KANA to KANJI conversion .. OPEN_KANA_KAN(3X)
initialize, manipulate, and test signal sets .. SIGSETOPS(3C)
initialize the NLS environment of a program ... NL_INIT(3C)
input conversion, formatted read from stream file or character string .. SCANF(3S)
input conversion, formatted, to a varargs argument .. VSCANF(3S)
input/output, buffered, standard stream file package ... STDIO(3S)
input/output to a stream file, buffered binary .. FREAD(3S)
input stream, push character back into .. UNGETC(3S)
input string from a standard input stream .. GETS(3S)
integer absolute value, return .. ABS(3C)
integer, convert string to long .. STRTOL(3C)
integer data in a machine-independent fashion, access long ... SPUTL(3X)
integer division and remainder .. DIV(3C)
integer, long, convert to string ... LTOSTR(3C)
integers, convert between 3-byte integers and long integers ... L3TOL(3C)
integer to base-64 ASCII string, convert long .. A64L(3C)
interface: define HP-IB interface parallel poll response ... HPIB]POLL_RESP _CTL(3I)
interface, control OMA allocation for an ... IO_DMA_CTL(3I)
interface, GPIO:

576 (Index) - 18- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
return status lines of GPIO card ... GPIO_GELSTATUS(31)

set control lines on GPIO card .. GPIO_SELCTL(31)

interface, HP-IB:

allow interface to enable SRQ line on HP-IB .. HPIB_RQST_SRVCE(31)

change active controllers on HP-IB ... HPIB_PASS_CTL(31)

conduct a serial poll on HP-IB .. HPIB.SPOLL(3I)

conduct parallel poll on HP-IB ... HPIB_PPOLL(31)

control EOI mode for HP-IB file ... HPIB_EOLCTL(31)

control response to parallel poll on HP-IB .. HPIB_CARD]POLL_RESP(31)

control the HP-IB interface Remote Enable line .. HPIB_REN_CTL(31)

perform I/O with an HP-IB channel from buffers ... HPIB_IO(31)

return status of HP-IB interface ... HPIB_BUS_STATUS(31)

send command bytes over HP-IB ... HPIB_SEND_CMND(31)

stop activity on specified HP-IB ... HPIB_ABORT(31)

wait until a particular parallel poll value occurs ... HPIB_WAILON_PPOLL(31)

wait until the requested status condition becomes true HPIB_STATUS_WAIT(31)

interface parallel poll response, define ... HPIB]POLLRESP _CTL(31)

interface, reset an I/O .. 10_RESET(31)

interface, set HP-IB bus address for an ... HPIB_ADDRESS_CTL(31)

interface, unlock or lock an I/O .. 10_LOCK(31)

interleaved paging/swapping, add a swap device for .. SWAPON(2)

interprocess channel, create an .. PIPE(2)

interprocess communication package, standard ... STDIPC(3C)

interrupt, atomically release blocked signals and wait for .. SIGPAUSE(2)

interrupt (fault) conditions, define for I/O device ... 10_ON_INTERRUPT(3I)

interrupts for the associated eid, disable or enable I/O ... IO_INTERRUPLCTL(3I)

interval, suspend execution for ... SLEEP(3C)

interval timer, set or get value of process ... GETITIMER(2)

introduction to subroutines and libraries ... INTRO(3)

introduction to system calls .. INTRO(2)

intro - introduction to subroutines and libraries .. INTRO(3)

I/O:
GPIO card, return status lines of .. GPIO_GET_STATUS(31)

GPIO card, set control lines on ... GPIO_SELCTL(31)

io_burst - perform low-overhead I/O on an HP-IB/GPIO channel .. 10_BURST(31)

I/O, control character device special file .. IOCTL(2)

ioctl - control character device special file .. IOCTL(2)

I/O data path width (in bits), set ... 10_ WIDTH_CTL(31)

I/O device interrupt (fault) control ... 10_ON_INTERRUPT(31)

io_dma_ctl - control DMA allocation for an interface ... 10_DMA_CTL(31)

io_eoLctl - set up I/O read termination character on special file ... IO_EOL_CTL(31)

io_geCtermJeason - determine how last read terminated 10_GELTERM_REASON(3I)

I/O interface, reset an .. IO_RESET(31)

I/O interface, unlock or lock an .. 10_LOCK(31)

io_interrupt_ctl - enable/disable interrupts for the associated eid 10_INTERRUPT_CTL(31)

I/O interrupts for the associated eid, disable or enable ... IO_INTERRUPT_CTL(31)

io_lock, io_unlock - lock and unlock an I/O interface ... 10_LOCK(3I)

I/O multiplexing, synchronous ... SELECT(2)

I/O on an HP-IB/GPIO channel, perform low-overhead ... IO_BURST(31)

io_on_interrupt - device I/O interrupt (fault) control ... 10_ON_INTERRUPT(31)

HP-UX Release 7.0: September 1989 - 19- (Index) 577

Index
Volume 2

Description Entry Name(Section)
!f0 operations on a stream file, get or reposition pointer for ... FSEEK(3S)

I/O operations, set time limit for .. IO_TIMEOULCTL(3I)

i/O pipe to or from a process, open or close .. POPEN(3S)

I/O read, determine how last terminated .. IO_GELTERM_REASON(3I)

I/O read termination character on special file, set up ... IO_EOL_CTL(3I)

io_reset - reset an I/O interface ... IO_RESET(3I)

io_speed_ctl - inform system of required transfer speed .. IO_SPEED_CTL(3I)

lOT fault, generate an .. ABORT(3C)

io_timeout_ctl - establish a time limit for I/0 operations .. IO_TIMEOULCTL(3I)

I/0 to a stream file, buffered binary .. FREAD(3S)

io_unlock - unlock an I/0 interface .. IO_LOCK(3I)

io_width_ctl - set width (in bits) of data path .. IO_WIDTH_CTL(3I)

I/O with an HP-IB channel from buffers, perform ... HPIB_IO(3I)

is_68010_present - check for MC68010 system microprocessor IS_HW_PRESENT(3C)

is_6888Lpresent - check for MC68881 math coprocessor ... IS_HW_PRESENT(3C)

is_98248A_present - check for floating-point accelerator card IS_HW _PRESENT(3C)

is_98635A_present - check for floating-point math card ... IS_HW_PRESENT(3C)

isalnum - character is alphanumeric ... CTYPE(3C)

isalpha - character is alpha ... CTYPE(3C)

isascii - character is 7-bit ASCII code ... CTYPE(3C)

isatty - find name of a terminal ... TTYNAME(3C)

iscntrl - character is a control character ... CTYPE(3C)

isdigit - character is a digit .. CTYPE(3C)

isgraph - character is a visible character .. CTYPE(3C)

isinf - test for INFINITY function .. ISINF(3M)

islower - character is lowercase .. CTYPE(3C)

isnan - test for NaN function ... ISNAN(3M)

isprint - character is a printing character ... CTYPE(3C)

ispunct - character is punctuation ... CTYPE(3C)

isspace - character is whitespace ... CTYPE(3C)

issue a shell command .. SYSTEM(3S)

isupper - character is uppercase .. CTYPE(3C)

isxdigit - character is a hexadecimal digit .. CTYPE(3C)

jO, jl, jn, yO, yl, yn - Bessel functions ... BESSEL(3M)

jl - Bessel function .. BESSEL(3M)

Japanese language user dictionaries, manage .. LUD_SEARCH(3X)

Japanese specific facilities, enable/disable ... OPEN_JLIB(3X)

liKouho - KANA to KANJI conversion routines ... HENKAN(3X)

}IS, Shift JIS and D}IS code conversion routines .. JCODE(3X)

jistosj, jistouj - JIS, Shift JIS and DJIS code conversion .. JCODE(3X)

jn - Bessel function ... ; .. BESSEL(3M)

job control, set process group ID for ... SETPGID(2)

LUD_close: manage user dictionaries ... LUD_SEARCH(3X)

LUD _delete: manage user dictionaries ... LUD_SEARCH(3X)

I_UD_free: manage user dictionaries .. LUD_SEARCH(3X)

I_UD_open: manage user dictionaries ... LUD_SEARCH(3X)

I_UD_search: manage user dictionaries .. LUD_SEARCH(3X)

LUD_store: manage user dictionaries ... LUD_SEARCH(3X)

Kakutei - KANA to KANJI conversion routines .. ; HENKAN(3X)

.KANA to KANJI conversion, initialize ... OPEN_KANA_KAN(3X)

578 (Index) - 20- HP-UX Release 7.0: September 1989

Description

Index
Volume 2

Entry Name(Section)
KANA to KANJI conversion routines ... HENKAN(3X)
KANJI to KANA conversion, initialize ... OPEN_KANA_KAN(3X)
KANJI to KANA conversion routines ... HENKAN(3X)
KatakanaHiragana: translate characters .. HIRAGANAKATAKANA(3X)
killpg - 4.2 BSD-compatible kill system call ... BSDPROC(2)
kill - send a signal to a process or a group of processes .. KILL(2)
kill system call, 4.2 BSD-compatible .. BSDPROC(2)
KutenZenkaku - translate characters ... KUTENZENKAKU(3X)
13tol - convert 3-byte integer to long integer ... L3TOL(3C)
164a - convert long integer to base-64 value ASCII string ... A64L(3C)
langinfo - obtain NLS string form of local language variable ... LANGINFO(3C)
langtoid - convert NLS language name to language ID number ... LANGINFO(3C)
languages, NLS information about native (local) .. LANGINFO(3C)
languages, NLS information about native (local) .. NL_LANGINFO(3C)
last I/O read, determine how terminated .. IO_GELTERM_REASON(31)
last locations of allocated regions in program .. END(3C)
ldecvt, (_ldecvt) - convert long double to string .. LDCVT(3C)
_ldecvt, _ldfcvt, _ldgcvt - convert long double to string .. LDCVT(3C)
ldexp, frexp, modf - split floating-point into mantissa and exponent .. FREXP(3C)
ldfcvt, (_ldfcvt) - convert long double to string ... LDCVT(3C)
ldgcvt, (_ldgcvt) - convert long double to string .. LDCVT(3C)
ldiv - long integer division and remainder .. DIV(3C)
length of string, find ... STRING(3C)
libraries and subroutines, introduction to .. INTRO(3)
library, packed decimal, HP 3000-mode .. HPPAC(3X)
limit for I/O operations, set time .. I03IMEOULCTL(31)
linear table search with optional update ... LSEARCH(3C)
line connection, establish an out-bound terminal ... DIAL(3C)
line control functions, tty .. TCCONTROL(3C)
line on HP-IB, control the Remote Enable .. HPIB_REN_CTL(31)
lines of GPIO card, return status ... GPIO_GELSTATUS(31)
lines on GPIO card, set control .. GPIO_SET_CTL(3I)
line, SRQ, on HP-IB, allow interface to enable ... HPIB_RQSLSRVCE(31)
link - link additional name to an existing file .. LINK(2)
link, symbolic, read value of : .. READLINK(2)
link to a file, make a symbolic ... SYMLINK(2)
list, get group access .. GETGROUPS(2)
list, initialize group access ... INITGROUPS(3C)
list, name, get entries from ... NLIST(3C)
list, print formatted output of a varargs argument .. VPRINTF(3S)
list, set group access ... SETGROUPS(2)
localeconv - query numeric formatting conventions of current locale LOCALECONV(3C)
locale, current, query numeric formatting conventions of .. LOCALECONV(3C)
locale of a program, get or set the ... SETLOCALE(3C)
local machine, get diskless cnode ID of .. CNODEID(2)
local (native) languages, NLS information about .. LANGINFO(3C)
local (native) languages, NLS information about .. NL_LANGINFO(3C)
localtime - convert date and time to local timezone .. CTIME(3C)
location of character in memory, find ... MEMORY(3C)
locations beyond allocated program regions, first ... END(3C)

HP-UX Release 7.0: September 1989 - 21 - (Index) 579

Index
Volume 2

Description Entry Name(Section)
lock{ - provide semaphores and record locking on files .. LOCKF(2)

locking on files, provide semaphores and record ... LOCKF(2)

lock or unlock an I/O interface ... iO_LOCK(3I)

lock process into memory after allocating data and stack space .. DATALOCK(3C)

lock process, text, or data in memory ... PLOCK(2)

loglO, log, exp, pow, sqrt - exponential, logarithm, power, square root functions EXP(3M)

logarithm, exponential, power, square root functions ... EXP(3M)

log, exp, loglO, pow, sqrt - exponential, logarithm, power, square root functions EXP(3M)

log gamma function .. GAMMA(3M)

login name in utmp, get pointer to .. GETLOGIN(3C)

login name of the user, get character-string .. CUSERID(3S)

login name of user, obtain ... LOGNAME(3C)

logname - return login name of user .. LOGNAME(3C)

log, system, control .. SYSLOG(3C)

long double floating-point number to string, convert .. LDCVT(3C)

long double-precision number, convert string to ... STRTOLD(3C)

long integer data in a machine-independent fashion, access ... SPUTL(3X)

long integers and 3-byte integers, convert between ... L3TOL(3C)

long integer to base-64 ASCII string, convert .. A64L(3C)

long integer to string, convert .. LTOSTR(3C)

longjmp - restore stack environment after non-local goto ... SETJMP(3C)

lowercase, translate characters to ... CONV(3C)

low-overhead I/O on an HP-IB/GPIO channel, perform ... IO_BURST(3I)

lrand48, nrand48 - generate long-integer pseudo-random numbers .. DRAND48(3C)

lsearch, lfind - linear search and update .. LSEARCH(3C)

lseek - move read/write file pointer; seek .. LSEEK(2)

lstat, (stat, fstat) - get file link status ... STAT(2)

lsync, sync - update super-block ... SYNC(2)

ltoa; convert long integer to ASCII decimal ... L TOSTR(3C)

ltol3 - convert long integer to 3-byte integer ... L3TOL(3C)

ltostr; convert long integer to string ... LTOSTR(3C)

machine, get diskless cnode ID of local .. CNODEID(2)

main memory allocator, fast version .. MALLOC(3X)

main memory allocator ... MALLOC(3C)

make a directory file ... MKDIR(2)

make a directory, or a special or ordinary file .. MKNOD(2)

make a FIFO special file .. MKFIFO(3C)

make a symbolic link to a file .. SYMLlNK(2)

make a unique (usually temporary) file name ... MKTEMP(3C)

mallinfo - memory usage after allocation by fast main memory allocator MALLOC(3X)

malloc - allocate block of main memory (fast allocator) .. MALLOC(3X)

malloc - allocate block of main memory ... MALLOC(3C)

mal/oc, free, real/oc, calloc - main memory allocator .. MALLOC(3C)

malloc, free, realloc, calloc, mal/opt, mallinfo - fast main memory allocator MALLOC(3X)

mallopt - control options for fast main memory allocator ... MALLOC(3X)

manage a binary search tree .. TSEARCH(3C)

manage hash search tables .. HSEARCH(3C)

manage Japanese language user dictionaries ... LUD_SEARCH(3X)

management, signal (sigset, sighold, sigre/se, sigignore, sigpause) .. SIGSET(2V)

manipulate, initialize, and test signal sets .. SIGSETOPS(3C)

580 (Index) - 22- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
mantissa and exponent, split floating-point into ... FREXP(3C)
map stream pointer to file descriptor , ... FILENO(3S)
mask for file creation, set and get permissions .. UMASK(2)
mask, set current ignorable signals ... SIGSETMASK(2)
match routines for regular expressions .. REGEXP(3X)
math:

Bessel functions .. BESSEL(3M)
error function and complementary error function ... ERF(3M)
Euclidean distance (hypoteneuse) function ... HYPOT(3M)
exponential, logarithm, power, square root functions ... EXP(3M)
floor, ceiling, remainder, absolute value functions ... FLOOR(3M)
hyperbolic trigonometric functions ... SINH(3M)
log gamma function .. GAMMA(3M)
math library error-handling function .. MATHERR(3M)
split floating-point into mantissa and exponent ... FREXP(3C)
test for INFINITY function ... ISINF(3M)
test for NaN function .. ISNAN(3M)
trigonometric functions .. TRIG(3M)

math coprocessor or accelerator, check for presence of .. IS_HW_PRESENT(3C)
matherr - math library error-handling function ... MATHERR(3M)
math library error-handling function .. MATHERR(3M)
mblen, mbtowc, mbstowcs,

wctomb, wcstombs - multibyte characters and strings conversions MULTIBYTE(3C)
mcrtO.o, crtO.o - C and Pascal execution startup routines .. CRTO(3)
memchr - find first occurrence of character in memory area .. MEMORY(3C)
memcmp - compare character with memory contents ... MEMORY(3C)
memcpy, memccpy - copy characters from memory to another memory location MEMORY(3C)
memmove - move memory contents ... MEMORY(3C)
memory allocator for main memory .. MALLOC(3C)
memory control operations, shared .. SHMCTL(2)
memory, lock process into after allocating data and stack space ... DATALOCK(3C)
memory, lock process, text, or data in .. PLOCK(2)
memory operations - copy, compare, test for contents, or set contents to value MEMORY(3C)
memory segment, get shared .. SHMGET(2)
memset - set area in memory to contain a specified character .. MEMORY(3C)
message catalog support, RTE/MPE-style ... CATREAD(3C)
message catalogue, get message from an NLS ... CATGETMSG(3C)
message control operations .. MSGCTL(2)
message from a catalogue, get NLS .. GETMSG(3C)
message from an NLS message catalogue, get ... CATGETMSG(3C)
message, NLS program, get an ... CATGETS(3C)
message queue, get .. MSGGET(2)
message, send or receive message to or from message queue .. MSGOP(2)
messages, system error ... PERROR(3C)
mfrtO.o, frtO.o - FORTRAN execution startup routines .. CRTO(3)
microprocessor, MC68010, check for presence of ... IS_HW_PRESENT(3C)
minimum I/O data transfer rate, inform system of required ... IO_SPEED_CTL(31)
mkdir - make a directory file ... MKDIR(2)
mkfifo - make a FIFO special file ... MKFIFO(3C)
mknod - make a directory, or a special or ordinary file ... MKNOD(2)

HP-UX Release 7.0: September 1989 - 23- (Index) 581

Index
Volume 2

Description Entry Name(Section)
mktemp - make a unique (temporary) file name .. MKTEMP(3C)
mode, EOI, for HP-IB file, control ... HPIB_EOLCTL(31)
mode (permissions) of file, change access ... CHMOD(2)
mod!, !rexp, Idexp - split floating-point into mantissa and exponent .. FREXP(3C)
modification and access times, set or update file .. UTIME(2)
modify, add, or delete access control list entry ... SETACLENTRY(3C)
monitor - prepare execution profile ... MONITOR(3C)
mount a file system ... VFSMOUNT(2)
mount a removable file system .. MOUNT(2)
mounted file system statistics, get ... USTAT(2)
mount - mount a removable file system ... MOUNT(2)
move read/write file pointer; seek ... LSEEK(2)
MPE clock value, return the ... CLOCK(3X)
MPE Native Language Support:

append language ID to valid MPE file name .. NLAPPEND(3X)
check/ convert time string to MPE internal format ... NLCONVCLOCK(3X)
compare character arrays (key1, key2) using MPE collation table NLKEYCOMPARE(3X)
compare strings; use MPE language-dependent collating sequence NLCOLLATE(3X)
convert ASCII number to MPE language-specific formatted number NLFMTNUM(3X)
convert date string to MPE packed date format ... NLCONVCUSTDA(3X)
convert MPE native language formatted number to ASCII NLCONVNUM(3X)
convert string between phonetic and screen order using MPE table NLSWITCHBUF(3X)
extract substring in string using MPE character set table ... NLSUBSTR(3X)
format MPE date and time in localized format .. NLFMTDATE(3X)
format MPE packed date using custom date .. NLFMTCUSTDATE(3X)
format MPE packed date using localized format ... NLFMTCAL(3X)
format MPE packed date using long calendar format ... NLFMTLONGCAL(3X)
format MPE time of day using localized format .. NLFMTCLOCK(3X)
identify one- or multi-byte Asian character using MPE character table NLJUDGE(3X)
move, scan, case-shift strings using MPE character set table NLSCANMOVE(3X)
replace non-displayable string characters using MPE character set table NLREPCHAR(3X)
return current user, data, or system default language .. NLGETLANG(3X)
return MPE calendar date .. CALENDAR(3X)
return MPE language-dependent information ... NLINFO(3X)
return number conversion/formatting information for MPE routines NLNUMSPEC(3X)
return numeric date information in MPE format .. ALMANAC(3X)
search for string in a string using MPE character set definition NLFINDSTR(3X)
translate ASCII strings to EBCDIC using MPE conversion table NLTRANSLATE(3X)

MPE/RTE-style message catalog support .. CATREAD(3C)
mrand48, jrand48 - generate signed long-integer pseudo-random numbers DRAND4S(3C)
msgctl - message control operations .. MSGCTL(2)
msgget - get message queue ... MSGGET(2)
msgrcv - receive message from message queue .. MSGOP(2)
msgsnd - send message to message queue .. MSGOP(2)
multiplexing, synchronous I/O ... SELECT(2)

582 (Index) - 24- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
name:

change the name of a file ... RENAME(2)

create a name for a temporary file .. TMPNAM(3S)

find name of a terminal .. TTYNAME(3C)

get character-string representation of user login name .. CUSERID(3S)

get entries from name list ... NLIST(3C)

get name and version of current HP-UX system ... UNAME(2)

get name from UID (obsolete) .. GETPW(3C)

get name of current host .. GETHOSTNAME(2)

get pointer to login name in utmp .. GETLOGIN(3C)

obtain user login name ... LOGNAME(3C)

return expanded context-dependent-files path that matches a path name GETCDF(3C)

set the name of host cpu .. SETHOSTNAME(2)

native languages, NLS information about ... LANGINFO(3C)

native languages, NLS information about ... NL_LANGINFO(3C)

native language support .. see NLS

new file, create .. CREAT(2)

new process, create a .. FORK(2)

new process, spawn in a virtual memory efficient way ... VFORK(2)

nextkey - get next key in data base (old single-data-base version) .. DBM(3X)

nice - change priority of a process .. NICE(2)

nlappend - append language ID to valid MPE file name ... NLAPPEND(3X)

nl_atof - convert string to double-precision number .. STRTOD(3C)

nlcollate - compare strings; use MPE language-dependent collating sequence NLCOLLATE(3X)

nlconvclock - check/convert time string to MPE internal format NLCONVCLOCK(3X)

nlconvcustda - convert date string to MPE packed date format NLCONVCUSTDA(3X)

nlconvnum - convert MPE native language formatted number to ASCII NLCONVNUM(3X)

nCctime, nCasctime - (obsolete; backwards compatibility only) .. CTIME(3C)

nlfindstr - search for string in a string using MPE character set definition NLFINDSTR(3X)

nlfmtcalendar - format MPE packed date using localized format ... NLFMTCAL(3X)

nlfmtclock - format MPE time of day using localized format ... NLFMTCLOCK(3X)

nlfmtcustdate - format MPE packed date using custom date .. NLFMTCUSTDATE(3X)

nlfmtdate - format MPE date and time in localized format ... NLFMTDATE(3X)

nlfmtlongcal - format MPE packed date using long calendar format NLFMTLONGCAL(3X)

nlfmtnum - convert ASCII number to MPE language-specific formatted number NLFMTNUM(3X)

nCfprintf, fprintf - print formatted output to a file ... PRINTF(3S)

nCfscanf, fscanf - formatted read from named input stream file .. SCANF(3S)

nCgcvt, gcvt - convert floating-point number to string array element .. ECVT(3C)

nlgetlang - return current user, data, or system default language NLGETLANG(3X)

nlinfo - return MPE language-dependent information ... NLINFO(3X)

nCinit, langinit(obsolete) - initialize the NLS environment of a program NLINIT(3C)

nCisalnum - NLS character class is alphanumeric ... NL_CTYPE(3C)

nCisalpha - NLS character class is alpha .. NL_CTYPE(3C)

nCiscntrl - NLS character class is a control character .. NL_CTYPE(3C)

nCisdigit - NLS character class is a digit .. NL_CTYPE(3C)

nCisgraph - NLS character class is a visible character ... NL_CTYPE(3C)

nCislower - NLS character class is lowercase ... NL_CTYPE(3C)

nCisprint - NLS character class is a printing character .. NL_CTYPE(3C)

nCispunct - NLS character class is punctuation ... NL_CTYPE(3C)

nl_isspace - NLS character class is whitespace ... NL_CTYPE(3C)

HP-UX Release 7.0: September 1989 - 25- (Index) 583

Index
Volume 2

Description Entry Name(Section)
nlist - get entries from name list ... NLIST(3C)
nUsupper - NLS character class is uppercase .. NL_CTYPE(3C)
nUsxdigit - NLS character class is a hexadecimal digit ... NL_CTYPE(3C)
nljudge - identify one- or multi-byte Asian character using MPE character table NLJUDGE(3X)
nlkeycompare - compare character arrays using MPE collation table NLKEYCOMPARE(3X)
nUanginfo - obtain NLS string form of local language variable NL_LANGINFO(3C)
nlnumspec - return number conversion/formatting information for MPE routines NLNUMSPEC(3X)
nCprintf, printf - print formatted output to standard output .. PRINTF(3S)
nlrepchar - replace non-displayable string characters using MPE character set table NLREPCHAR(3X)
NLS:

classify characters for use with NLS .. NL_CTYPE(3C)
convert JIS, Shift JIS and UJIS character codes .. JCODE(3X)
get an NLS program message, .. CATGETS(3C)
get message from an NLS message catalogue ... CATGETMSG(3C)
get NLS message from a catalogue .. GETMSG(3C)
initialize NLS environment of a program ... NL_INlT(3C)
KANA to KANJI conversion routines .. HENKAN(3X)
manage Japanese language user dictionaries ... LUD_SEARCH(3X)
NLS information about native languages ... LANGINFO(3C)
NLS information about native languages ... NL_LANGINFO(3C)
query numeric formatting conventions of current locale ... LOCALECONV(3C)
translate characters for use with NLS (obsolete - useCONV(3C» NL_CONV(3C)
translate characters .. HANKAKUZENKAKU(3X)
translate characters ... HIRAGANAKATAKANA(3X)
translate characters .. KUTENZENKAKU(3X)
translate characters ... ROMA}IHIRAGANA(3X)

nCscanf, scanf - formatted read from standard input stream file .. SCANF(3S)
nlscanmove - move, scan, case-shift strings using MPE character set table NLSCANMOVE(3X)
nCsprintf, sprintf - print formatted output to a string .. PRINTF(3S)
nCsscanf, sscanf - formatted read from character string ... SCANF(3S)
nCstrcmp, nCstrncmp - compare strings using language-dependent collation STRING(3C)
nCstrtod - convert string to double-precision number ... STRTOD(3C)
nlsubstr - extract substring in string using MPE character set table .. NLSUBSTR(3X)
nlswitchbuf - convert string between phonetic and screen order using MPE table NLSWlTCHBUF(3X)
nCtoupper, nCtolower - (obsolete) translate characters for use with NLS NL_CONV(3C)
nltranslate - translate ASCII strings to EBCDIC using MPE conversion table NLTRANSLATE(3X)
node from a binary search tree, delete a .. TSEARCH(3C)
non-ASCII string collation ... NL_STRING(3C)
non-local goto, save/restore stack environment for .. SETJMP(3C)
number, convert string to double-precision .. STRTOD(3C)
number, convert string to floating-point ... CVTNUM(3C)
number, convert string to long double-precision ... STRTOLD(3C)
numbers, generate uniformly distributed pseudo-random .. DRAND48(3C)
number to string, convert long double floating-point .. LDCVT(3C)
number to string or string array element, convert floating-point .. ECVT(3C)
numeric formatting conventions of current locale, query ... LOCALECONV(3C)
object-code file, execute an ... EXEC(2)
odd parity on ATN commands, enable/disable .. HPIB_PARITY_CTL(3I)
open, access, or close a directory ... DIRECTORY(3C)
open a directory and associated directory stream for access ... DIRECTORY(3C)

584 (Index) - 26- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
opendir - open a directory and associated directory stream for access DIRECTORY(3C)
open-file control ... FCNTL(2)
open file descriptor, duplicate an .. DUP(2)
open file descriptor to a specific slot, duplicate an ... DUP2(2)
open_jlib - enable/disable Japanese specific facilities .. OPEN_JLIB(3X)
open_kana_kan - initialize KANA to KANJI conversion .. ,,",,"" OPEN_KANA_KAN(3X)
openlog - initialize system log file .. SYSLOG(3C)
open - open file for reading or writing .. OPEN(2)
open or close pipe I/0 to or from a process ... POPEN(3S)
open or re-open a stream file; convert file to stream ... FOPEN(3S)
operations, message control ... MSGCTL(2)
operations on a stream file, get or reposition pointer for I/O ... FSEEK(3S)
operations, semaphore control ... SEMCTL(2)
operations, semaphore ... ,. SEMOP(2)
operations, set time limit for I/O .. 10_ TIMEOULCTL(31)
operations, shared memory control .. SHMCTL(2)
optarg, optind, opterr, getopt - get option letter from argument vector GETOPT(3C)
optimization package, CRT screen handling and .. CURSES(3X)
option letter from argument vector, get .. GETOPT(3C)
order of data, convert string .. STRORD(3C)
ordinary file, make a directory, or a special or ... MKNOD(2)
out-bound terminal line connection, establish an ... DIAL(3C)
output, formatted, print to standard output, file, or string ... PRINTF(3S)
output, formatted with numbered arguments, print to a file or string PRINTMSG(3C)
output/input, buffered, standard stream file package ... STDIO(3S)
output of a varargs argument list, print formatted .. VPRINTF(3S)
owner and group of a file, change .. CHOWN(2)
owner and/or group, change in access control list (ACL) ... CHOWNACL(3C)
package, standard interprocess communication ... STDIPC(3C)
packed decimal library, HP 3000-mode ... HPPAC(3X)
paging/swapping, add a swap device for interleaved .. SWAPON(2)
parallel poll on HP-IB bus, conduct .. HPIB_PPOLL(31)
parallel poll on HP-IB, control response to ... HPIB_CARD_PPOLL_RESP(31)
parallel poll response, define interface ... HPIB]POLL_RESP _CTL(31)
parallel poll value occurs, wait until a particular .. HPIB_WAILON]POLL(31)
parent process ID, get process, process group, or .. GETPID(2)
parity on ATN commands, enable/disable odd .. HPIB_PARITY_CTL(31)
particular parallel poll value occurs, wait until a .. HPIB_WAILON_PPOLL(31)
Pascal and C execution startup routines .. CRTO(3)
password encryption function .. CRYPT(3C)
password file entry, secure, write ... PUTSPWENT(3C)
password file entry, write .. PUTPWENT(3C)
password file, get entry from .. GETPWENT(3C)
password, read from terminal while suppressing echo .. GETP ASS(3C)
pathconf, fpathconf - get configurable pathname variables ... PATHCONF(2)
path-name of current working directory, get .. GETCWD(3C)
path name, return expanded context-dependent-files path that matches a GETCDF(3C)
pathname variables, get configurable ... PATHCONF(2)
path that matches a path name, return expanded context-dependent-files GETCDF(3C)
pause - suspend process until signal .. PAUSE(2)

HP-UX Release 7.0: September 1989 - 27- (Index) 585

Index
Volume 2

Description Entry Name(Section)
pelose - terminate pipe I/O to or from a process .. POPEN(3S)

pending signals, examine .. SIGPENDING(2)

perform I/O with an HP-lB channel from buffers .. HP!B_!O(3J)

perform low-overhead I/O on an HP-IB/GPIO channel .. IO_BURST(3I)

permissions mask for file creation, set and get .. UMASK(2)

permissions (mode) of file, change access ... CHMOD(2)

perror, erma, sys_errlist, sys_nerr - system error messages ... PERROR(3C)

pipe - create an interprocess channel ... PIPE(2)

pipe I/O to or from a process, open or close .. POPEN(3S)

plock - lock process, text, or data in memory .. PLOCK(2)

pOinter, file, move read/write ... LSEEK(2)

pointer for binary search tree, get data ... TSEARCH(3C)

pointer for I/O operations on a stream file, get or reposition ... FSEEK(3S)

pointer, stream, map to file descriptor .. FILENO(3S)

pointer to login name in utmp, get .. GETLOGIN(3C)

poll on HP-IB bus, conduct a serial ... HPIB_SPOLL(31)

poll on HP-IB bus, conduct parallel .. HPIB_PPOLL(31)

poll on HP-IB, control response to parallel ... HPIB_CARD_PPOLLRESP(3I)

poll, parallel, define interface response .. HPIB]POLL_RESP _CTL(3I)

poll value occurs, wait until a particular parallel .. HPIB_WAIT_ON_PPOLL(3I)

popen - initiate pipe I/O to or from a process ... POPEN(3S)

power, logarithm, exponential, square root functions ... EXP(3M)

pow, loglO, log, exp, sqrt - exponential, logarithm, power, square root functions EXP(3M)

preallocate fast disk storage ... PREALLOC(2)

prealloc - preallocate fast disk storage .. PREALLOC(2)

prepare execution profile ... MONITOR(3C)

presence of hardware capabilities, check for .. IS_HW _PRESENT(3C)

preset contents of memory area to specified character ... MEMORY(3C)

print!, nCprintf - print formatted output to standard output .. PRINTF(3S)

print formatted output of a varargs argument list ... VPRINTF(3S)

print formatted output to standard output, file, or string ... PRINTF(3S)

print formatted output with numbered arguments to a file or string PRINTMSG(3C)

printmsg - print formatted output with numbered arguments to standard output PRINTMSG(3C)

priority of a process, change ... NICE(2)

privileges for group, set or get kernel access ... GETPRIVGRP(2)

process 16-bit characters, tools to ... NL_TOOLS_16(3C)

process accounting, enable or disable ... ACCT(2)

process and child process times, get ... TIMES(2)

process, calling, set or clear auditing on ... SETAUDPROC(2)

process, change priority of a ... NICE(2)

process context for context-dependent file search, return .. GETCONTEXT(2)

process, create a new .. FORK(2)

process, get audit ID (aid) for current .. GETAUDID(2)

process, get audit process flag for calling ... GET AUDPROC(2)

process group ID, create session and set ... SETSID(2)

process group ID, foreground, get ... TCGETPGRP(3C)

process group ID, foreground, set .. TCSETPGRP(3C)

process group ID for job control, set ... SETPGID(2)

process interval timer, set or get value of ... GETITIMER(2)

process, lock into memory after allocating data and stack space ... DATALOCK(3C)

586 (Index) - 28- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
process, open or close pipe I/O to or from a .. POPEN(3S)

process or a group of processes, send a signal to a ... KILL(2)

process, process group, or parent process ID, get .. GETPID(2)

process's alarm clock, set ... ALARM(2)

process, self-auditing, write audit record for .. AUDWRITE(2)

process, set audit ID (aid) for current ... SETAUDID(2)

process, spawn new, in a virtual memory efficient way .. VFORK(2)

process, suspend or resume auditing on current .. AUDSWITCH(2)

process, suspend until signal .. PAUSE(2)

process, terminate ... EXIT(2)

process, text, or data, lock in memory .. PLOCK(2)

process to stop or terminate, wait for child or traced ... WAIT(2)

process trace .. PTRACE(2)

profile, execution time .. PROFIL(2)

profile of execution, prepare ... MONITOR(3C)

profil - execution time profile ... PROFIL(2)

program assertion, verify .. ASSERT(3X)

program, get or set the locale of a ... SETLOCALE(3C)

program, initialize the NLS environment of a .. NL_INIT(3C)

program message, get an NLS .. CATGETS(3C)

program regions, first locations beyond allocated ... END(3C)

program termination, register a function to be called at ... ATEXIT(2)

provide semaphores and record locking on files .. LOCKF(2)

pseudo-random numbers, generate uniformly distributed .. DRAND48(3C)

ptraee - process trace ... PTRACE(2)

push character back into input stream ... UNGETC(3S)

put a string on a stream .. PUTS(3S)

pute, fpute - put character on a stream .. PUTC(3S)

put character or word on a stream .. PUTC(3S)

putehar - put character on stream standard output .. PUTC(3S)

putenv - change or add value to environment .. PUTENV(3C)

putpwent - write password file entry .. PUTPWENT(3C)

putspwent - write secure password file entry .. PUTSPWENT(3C)

puts - write null-terminated string to stream stdout .. PUTS(3S)

pututline - update or create entry in a utmp file ... GETUT(3C)

put word or character on a stream .. PUTC(3S)

putw - put word (integer) on a stream ... PUTC(3S)

qsort - quicker sort .. QSORT(3C)

query numeric formatting conventions of current locale .. LOCALECONV(3C)

quicker sort ... QSORT(3C)

raise a software signal ... SSIGNAL(3C)

rand - generate successive random numbers .. RAND(3C)

random-number generator, simple ... RAND(3C)

rate of I/O data transfer, inform system of required minimum .. IO_SPEED_CTL(3I)

readdir - get pointer to current entry in open directory .. DIRECTORY(3C)

read from stream file or character string with formatted input conversion SCANF(3S)

reading or writing, open file for .. OPEN(2)

read, I/O, determine how last terminated ... IO_GELTERM_REASON(3I)

readlink - read value of a symbolic link ... READLINK(2)

read or change realtime priority ... RTPRIO(2)

HP-UX Release 7.0: September 1989 - 29- (Index) 587

Index
Volume 2

Description Entry Name(Section)
read password from terminal while suppressing echo ... GETP ASS(3C)
read - read contiguous data from a file "." ... READ(2)
read termination character on special file, set up I/O ... IO_EOL_CTL(31)
read value of a symbolic link ... READLINK(2)
readv - read non-contiguous data from a file .. READ(2)
read/write file pointer, move .. LSEEK(2)
real, effective, and/or saved user or group IDs, set ... SETRESUID(2)
realloc - change size of allocated memory block .. MALLOC(3C)
realloc - change size of allocated memory block (fast allocator) ... MALLOC(3X)
real or effective user or group ID, get .. GETUID(2)
reboot - boot the system .. REBOOT(2)
receipt of a signal, define what to do upon ... SIGNAL(2)
receive message from message queue .. MSGOP(2)
record, audit, write for self-auditing process .. AUDWRITE(2)
record locking and semaphores on files, provide ... LOCKF(2)
recursively descend a directory hierarchy .. FTW(3C)
regcmp - compile a regular expression .. REGCMP(3X)
regex - execute a regular expression against a string .. REGCMP(3X)
regions, first locations beyond allocated program ... END(3C)
register a function to be called at program termination .. ATEXIT(2)
regular expression compile and match routines .. REGEXP(3X)
regular expression, compile or execute against a string .. REGCMP(3X)
release blocked signals and atomically wait for interrupt ... SIGPAUSE(2)
remainder, ceiling, floor, absolute value functions .. FLOOR(3M)
remainder, integer division and '" .. DIV(3C)
Remote Enable line on HP-IB, control the .. HPIB_REN_CTL(31)
remove a directory file .. RMDIR(2)
remove directory entry; delete file or directory name .. UNLINK(2)
remove - remove a file .. REMOVE(3C)
rename - change the name of a file ... RENAME(2)
re-open or open a stream file; convert file to stream ; FOPEN(3S)
report CPU time used ... CLOCK(3C)
reposition or get pOinter for I/O operations on a stream file .. FSEEK(3S)
requested status condition becomes true, wait until the ... HPIB_STATUS_WAIT(31)
required minimum I/O data transfer rate, inform system of ... IO_SPEED_CTL(3I)
reset an I/O interface ... IO_RESET(31)
response, define interface parallel poll ... HPIB_PPOLL_RESP _CTL(3I)
response to parallel poll on HP-IB, control ... HPIB_CARD]POLL_RESP(31)
restore or save file position indicator for a stream .. FGETPOS(3S)
restore/save stack environment for non-local goto ... SETJMP(3C)
restore signal action ... SIGSET(2V)
resume or suspend auditing on current process ... AUDSWITCH(2)
return character back into input stream ... UNGETC(3S)
return integer absolute value ... ABS(3C)
return process context for context-dependent file search , GETCONTEXT(2)
return status of HP-IB interface .. HPIB_BUS_STATUS(31)
rewinddir - reset position of named directory stream to beginning of directory DIRECTORY(3C)
rewind - set position of next I/O operation on stream file ... FSEEK(3S)
rewrite an existing file .. CREAT(2)
rights to a file, get a user's effective access ... GETACCESS(2)

588 (Index) - 30- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry N ame(Section)
right triangle, hypoteneuse of a .. , .. HYPOT(3M)
rmdir - remove a directory file .. RMDIR(2)
RomajiHankakuKatakana - translate characters ... ROMAJIHIRAGANA(3X)
RomajiHiragana, RomajiKatakana,

RomajiHankakuKatakana: translate characters .. ROMAJIHIRAGANA(3X)
RomajiKatakana - translate characters ,." .. ,""", .. ".,.,., ... , ... , Rm.1A]IHIRAGAN,A.(3X)
root directory, change .. CHROOT(2)
routine for sorted tables, binary search ... BSEARCH(3C)
routines, CRT screen handling and optimization ' .. CURSES(3X)
routines, emulate /etc/termcap access .. TERMCAP(3X)
routines, KANA to KANJI conversion .. HENKAN(3X)
RTE/MPE-style message catalog support .. CATREAD(3C)
rtprio - change or read realtime priority ... RTPRIO(2)
saved, real, and/or effective user or group IDs, set ... SETRESUlD(2)
save or restore file position indicator for a stream .. FGETPOS(3S)
save/restore stack environment for non-local goto ... SETJMP(3C)
sbrk - increase data segment space allocation .. BRK(2)
scanf, nCscanf - formatted read from standard input stream file .. SCANF(3S)
screen handling and optimization package, CRT .. CURSES(3X)
search, context-dependent file, return process context for ... GETCONTEXT(2)
search environment list for value of specified variable name ... GETENV(3C)
search routine, binary, for sorted tables .. BSEARCH(3C)
search table for entry; optional update if missing .. LSEARCH(3C)
search tables, hash, manage .. HSEARCH(3C)
search tree, manage a binary ... TSEARCH(3C)
secof2, SECof2 - test for valid second byte in 16-bit character .. NL_TOOLS_16(3C)
secure password file entry, write .. PUTSPWENT(3C)
secure password file, get entry from ... GETSPWENT(3C)
seekdir - set position of next readdir operation on named directory stream DIRECTORY(3C)
seek; move read/write file pointer ... LSEEK(2)
segment, get shared memory .. SHMGET(2)
select - synchronous I/O multiplexing .. SELECT(2)
self-auditing process, write audit record for ... AUDWRITE(2)
semaphore control operations .. SEMCTL(2)
semaphore operations .. SEMOP(2)
semaphores and record locking on files, provide ... LOCKF(2)
semaphores, get set of .. SEMGET(2)
semctl - semaphore control operations ... SEMCTL(2)
semget - get set of semaphores ... SEMGET(2)
semop - semaphore operations ... SEMOP(2)
send a signal to a process or a group of processes .. KILL(2)
send command bytes over HP-IB .. HPIB_SEND_CMND(31)
send message to message queue ... MSGOP(2)
separate floating-point into mantissa and exponent ... FREXP(3C)
serial poll on HP-IB bus, conduct a ... HPIB_SPOLL(31)
session, create and set process group ID ... SETSID(2)
set: file creation (permissions) mask, set and get ... UMASK(2)
set: file size limits and break value, get or set ... ULIMIT(2)
set: system clock date and time ... GETTIMEOFDAY(2)
set access control list (ACL) information .. SETACL(2)

HP-UX Release 7.0: September 1989 - 31 - (Index) 589

Index
Volume 2

Description Entry Name(Section)
setadentry - add, modify, or delete access control list entry .. SETACLENTRY(3C)

setad, fsetad - set access control list (ACL) information .. SETACL(2)

set and/or get signai stack context ... SIGSTACK(2)

set a process's alarm clock .. ALARM(2)

setaudid - set audit ID (aid) for current process .. SETAUDID(2)

set audit ID (aid) for current process .. SETAUDID(2)

setaudproc - set or clear auditing on calling process ... SETAUDPROC(2)

setbuf, setvbuf - assign buffering to a stream file .. SETBUF(3S)

setccent - rewind cluster configuration pointer to beginning of file GETCCENT(3C)

set contents of memory area to specified character .. MEMORY(3C)

set current ignorable signals mask .. SIGSETMASK(2)

setevent - set current events and system calls to be audited ... SETEVENT(2)

set foreground process group ID .. TCSETPGRP(3C)

setfsent - open and rewind file system descriptor file .. GETFSENT(3X)

setgid - set group ID ... SETUID(2)

setgrent - rewind pointer to first entry in group file .. GETGRENT(3C)

set group access list .. SETGROUPS(2)

setgroups - set group access list .. SETGROUPS(2)

sethostname - set name of host cpu ... SETHOSTNAME(2)

setitimer - set value of process interval timer .. GETITIMER(2)

_setjmp - save stack environment for non-local goto .. SETJMP(3C)

setkey, crypt, encrypt - generate hashing encryption ... CRYPT(3C)

setlocale - set the locale of a program .. SETLOCALE(3C)

setlogmask - set system log file priority mask .. SYSLOG(3C)

setmntent - open a file system description file .. GETMNTENT(3X)

set name of host cpu .. SETHOSTNAME(2)

set of semaphores, get .. SEMGET(2)

set or clear auditing on calling process ... SETAUDPROC(2)

set or get audit files .. AUDCTL(2)

set or get tty baud rate .. CFSPEED(3C)

set or update file access and modification times ... UTIME(2)

setpgid, - set process group ID for job control ... : SETPGID(2)

setpgrp2: set process group ID ... SETPGID(2)

setpgrp - create session and set process group ID ... SETSID(2)

setprivgrp - set special attributes for group ... GETPRIVGRP(2)

set process group ID, create session and ... SETSID(2)

set process group ID for job control .. SETPGID(2)

setpwent - rewind pointer to beginning of password file .. GETPWENT(3C)

set real, effective, and/or saved user or group IDs .. SETRESUID(2)

setresgid - set real, effective, and/or saved group IDs .. SETRESUID(2)

setresuid - set real, effective, and/or saved user IDs ... SETRESUID(2)

setsid, setpgrp - create session and set process group ID .. SETSID(2)

setspwent - rewind pointer to beginning of secure password file .. GETSPWENT(3C)

set the locale of a program ... SETLOCALE(3C)

set time and date ... STIME(2)

set time limit for 1j0 operations ... IO_TIMEOUT_CTL(3I)

settimeofday - set system clock date and time .. GETTIMEOFDA Y(2)

set tty device operating parameters .. TCATTRIBUTE(3C)

setuid - set user ID .. SETUID(2)

set up I/O read termination character on special file .. IO_EOL_CTL(3I)

590 (Index) - 32- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
SetUserDict - KANA to KANJI conversion routines ... HENKAN(3X)
set user or group ID ... SETUID(2)
setutent - reset input stream to beginning of utmp file ... GETUT(3C)
set value of process interval timer ... GETITIMER(2)
set width (in bits) of data path ... IO_WIDTH_CTL(3I)
sgetl - retrieve a 4-byte long integer from memory ... SPUTL(3X)
shared memory and data segment, attach or detach ... SHMOP(2)
shared memory control operations ... SHMCTL(2)
shared memory segment, get .. SHMGET(2)
shell command, issue a ... , ... SYSTEM(3S)
shmat - attach shared memory to data segment ... SHMOP(2)
shmat - detach shared memory from data segment ... SHMOP(2)
shmctl - shared memory control operations .. SHMCTL(2)
shmget - get shared memory segment ... SHMGET(2)
sigaction - examine and change signal action ... SIGACTION(2)
sigaddset - initialize, manipulate, and test signal sets .. SIGSETOPS(3C)
sigblock - block signals ... SIGBLOCK(2)
sigdelset - initialize, manipulate, and test signal sets ... SIGSETOPS(3C)
sigemptyset - initialize, manipulate, and test signal sets ... SIGSETOPS(3C)
sigemptyset, sigfillset, sigaddset,

sigdelset, sigismember - initialize, manipulate, and test signal sets SIGSETOPS(3C)
sigfillset - initialize, manipulate, and test signal sets .. SIGSETOPS(3C)
sighold, sigrelse, sigignore, sigpause, sigset - signal management ... SIGSET(2V)
sigignore, sigpause, sigset, sighold, sigrelse - signal management ... SIGSET(2V)
sigismember - initialize, manipulate, and test signal sets .. SIGSETOPS(3C)
signal - 4.2 BSD-compatible signal system call .. BSDPROC(2)
signal action, examine and change ... SIGACTION(2)
signal, define what to do upon receipt of a ... SIGNAL(2)
signal facilities, software ... SIGVECTOR(2)
signal, hold upon receipt ... SIGSET(2V)
signal, ignore .. SIGSET(2V)
signal management (sigset, sighold, sigrelse, sigignore, sigpause) ... SIGSET(2V)
signal, raise a software .. SSIGNAL(3C)
signal, restore action .. SIGSET(2V)
signals, blocked, examine and change ... SIGPROCMASK(2)
signals, block .. SIGBLOCK(2)
signal, select method of handling ... SIGSET(2V)
signal, send to a process or a group of processes .. KILL(2)
signal sets, initialize, manipulate, and test ... SIGSETOPS(3C)
signals, examine pending .. SIGPENDING(2)
signals mask, set current ignorable ... SIGSETMASK(2)
signal - specify what to do upon receipt of a signal .. SIGNAL(2)
signals, release blocked and atomically wait for interrupt .. SIGPAUSE(2)
signal stack context, set and/or get .. SIGSTACK(2)
signal stack space, define, delete, or get amount of .. SIGSPACE(2)
signal, suspend calling process until received .. SIGSET(2V)
signal, suspend process until ... ; PAUSE(2)
signal system call, 4.2 BSD-compatible .. BSDPROC(2)
signal, wait for a .. SIGSUSPEND(2)
signgam, gamma - log gamma function ... GAMMA(3M)

HP-UX Release 7.0: September 1989 - 33- (Index) 591

Index
Volume 2

Description Entry Name(Section)
sigpause - atomically release blocked signals and wait for interrupt ... SIGPAUSE(2)
sigpause, sigset, sighold, sigrelse, sigignore - signal management ... SIGSET(2V)
sigpending - examine pending signals ... SlGI)ENDING(2)
sigprocmask - examine and change blocked signals .. SIGPROCMASK(2)
sigrelse, sigignore, sigpause, sigset, sighold - signal management ... SIGSET(2V)
sigsetmask - set current ignorable signals mask .. SIGSETMASK(2)
sigset, sighold, sigrelse, sigignore, sigpause - signal management ... SIGSET(2V)
sigspace - define or delete additional signal stack space .. SIGSPACE(2)
sigstack - set and/or get Signal stack context .. SIGSTACK(2)
sigsuspend - wait for a signal ... SIGSUSPEND(2)
sigvec - 4.2 BSD-compatible sigvec system call .. BSDPROC(2)
sigvec system call, 4.2 BSD-compatible .. BSDPROC(2)
sigvector - software signal facilities ... SIGVECTOR(2)
sine trigonometric function .. TRIG(3M)
sinh - hyperbolic sin function .. SINH(3M)
sin - trigonometric sin function .. TRIG(3M)
sixteen-bit characters, tools to process ... NL_TOOLS_16(3C)
sjtojis, sjtouj - JIS, Shift JIS and UJIS code conversion .. JCODE(3X)
sleep - suspend execution for interval ... SLEEP(3C)
slot in the utmp file of the current user, find .. TTYSLOT(3C)
software signal facilities .. SIGVECTOR(2)
software signal, raise a .. SSIGNAL(3C)
sorted tables, binary search routine for ... BSEARCH(3C)
sort, quicker .. QSORT(3C)
space allocation, change data segment .. BRK(2)
space for signal stack, define, delete, or get amount of ... SIGSP ACE(2)
space, stack and data, allocate then lock process into memory ... DATALOCK(3C)
spawn new process in a virtual memory efficient way , VFORK(2)
special file, control character device ... IOCTL(2)
special file, FIFO, make a .. MKFIFO(3C)
special file, set up I/O read termination character on ... IO_EOL_CTL(3I)
special or ordinary file, make a directory, or a ... MKNOD(2)
specify I/0 read termination character on special file .. IO_EOL_CTL(3I)
specify what to do upon receipt of a signal ... SIGNAL(2)
speed, inform system of required minimum I/O transfer .. IO_SPEED_CTL(3I)
split floating-point into mantissa and exponent .. FREXP(3C)
sprintf, nl_sprintf - print formatted output to a string .. PRINTF(3S)
sprintmsg - print formatted output with numbered arguments to a string PRINTMSG(3C)
sputl - place a 4-byte long integer in memory ... SPUTL(3X)
sqrt, log, exp, logl0, pow - exponential, logarithm, power, square root functions EXP(3M)
square root, power, logarithm, exponential functions ... EXP(3M)
srand48, seed48, Icong48 - initialize pseudo-random number generator DRAND48(3C)
srand - reset random-number generator to random starting point ... RAND(3C)
SRQ line on HP-IB, allow interface to enable .. HPIB_RQSLSRVCE(31)
sscanf, nl_sscanf - formatted read from character string ... SCANF(3S)
ssignal - raise a software signal and perform an action .. SSIGNAL(3C)
stack and data space, allocate then lock process into memory .. DATALOCK(3C)
stack context, signal, set and/or get ... SIGSTACK(2)
stack environment, save/restore for non-local goto .. SETJMP(3C)
stack space for signals, define, delete, or get amount of ... SIGSPACE(2)

592 (Index) - 34- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
standard buffered input/output stream file package ... STDIO(3S)
standard input stream, input string from a ... GETS(3S)
standard interprocess communication package .. STDIPC(3C)
start or halt auditing system .. AUDCTL(2)
state with its state on disk, synchronize a file's in-core ... FSYNC(2)
statfsdev, fstatfsdev - get file system statistics ... STATFSDEV(3C)
statfs, fstatfs - get file system statistics .. STATFS(2)
statistics, get file system .. ST ATFS(2)
statistics, get file system .. STATFSDEV(3C)
statistics, get mounted file system ... USTAT(2)
stat, [stat, fstat - get file status ... STAT(2)
status condition becomes true, wait until the requested ... HPIB_STATUS_WAIT(3I)
status, get file ... STAT(2)
status inquiries, stream ... FERROR(3S)
status lines of GPIO card, return ... GPIO_GELSTATUS(3I)
status of HP-IB interface, return ... HPIB_BUS_STATUS(3I)
stdio - standard buffered input/output stream file package .. STDIO(3S)
step - regular expression string comparison routine .. REGEXP(3X)
stime - set time and date .. STIME(2)
stop activity on specified HP-IB .. HPIB_ABORT(3I)
stop or terminate, wait for child or traced process to ... WAIT(2)
storage, preallocate fast disk .. PREALLOC(2)
store - store data under a key (old single-data-base version) .. DBM(3X)
strcat, strncat - append string 2 to string 1 .. STRING(3C)
strchr, strrchr - get pointer to character in string ... STRING(3C)
strcmp16, strncmp16 - non-ASCII 16-bit character string collation .. NLSTRING(3C)
strcmp8, strncmp8 - non-ASCII 8-bit character string collation .. NL_STRING(3C)
strcmp, strncmp - compare two strings ... STRING(3C)
strcoll - process string of text tokens .. STRING(3C)
strcpy, strncpy - copy string 2 to string 1 ... STRING(3C)
stream, close a ... FCLOSE(3S)
stream file, assign buffering to a ... SETBUF(3S)
stream file, buffered binary input/output to a .. FREAD(3S)
stream file, get character or data word from a .. GETC(3S)
stream file, get or reposition pointer for I/O operations on a ... FSEEK(3S)
stream file, open or re-open; convert file to stream ... FOPEN(3S)
stream file or character string, read from with formatted input conversion "'" SCANF(3S)
stream file package, standard buffered input/output .. STDIO(3S)
stream, flush buffer with or without closing ... FCLOSE(3S)
stream, input string from a standard input ... GETS(3S)
stream pointer, map to file descriptor ... FILENO(3S)
stream, push character back into input .. UNGETC(3S)
stream, put word or character on a ... PUTC(3S)
stream, save or restore file position indicator for a ... FGETPOS(3S)
stream status inquiries .. FERROR(3S)
strftime - convert date and time to string .. STRFTIME(3C)
string collation, non-ASCII .. NL_STRING(3C)
string, convert between long integer and base-64 ASCII .. A64L(3C)
string, convert date and time to ... CTIME(3C)
string, convert date and time to .. STRFTIME(3C)

HP-UX Release 7.0: September 1989 - 35- (Index) 593

Index
Volume 2

Description Entry N ame(Section)
string, convert long double floating-point number to .. LDCVT(3C)

string, convert long integer to .. L TOSTR(3C)

string, convert to access control list (ACL) structure .. STRTOACL(3C)

string, convert to floating-point number ... CVTNUM(3C)

string, convert to long double-precision number ... STRTOLD(3C)

string data order, convert ... STRORD(3C)

string form, convert access control list (ACL) structure to ... ACLTOSTR(3C)

string from a standard input stream, input ... GETS(3S)

string operations, character ... STRING(3C)

string or string array element, convert floating-point number to .. ECVT(3C)

strings, concatenate two .. STRING(3C)

string to double-precision number, convert .. STRTOD(3C)

string to long integer, convert .. STRTOL(3C)

strlen - determine length of a string ... STRING(3C)

strord - convert string data order ... STRORD(3C)

strpbrk - find occurrence of character from string 2 in string 1 .. STRING(3C)

strspn, strcspn - find length of matching substrings .. STRING(3C)

strstr - process string of text tokens•.. STRING(3C)

strtoacl - convert exact string form to access control list (ACL) structure STRTOACL(3C)

strtoaclpatt - convert pattern string form to access control list (ACL) structure STRTOACL(3C)

strtod - convert string to double-precision number .. STRTOD(3C)

strtok - process string of text tokens ... STRING(3C)

strtol - convert string to long integer ... STRTOL(3C)

strtold - convert string to long double-precision number ... STRTOLD(3C)

strxfrm - process string of text tokens ... STRING(3C)

stty, gtty - control terminal device (Version 6 compatibility only) ... STTY(2)

subroutines and libraries, introduction to .. INTRO(3)

subroutines, data base (new multiple data base version) ... NDBM(3X)

subroutines, data base (old version - see also NDBM(3X» .. DBM(3X)

super-block, update .. SYNC(2)

support, RTE/MPE-style message catalog ... CATREAD(3C)

suppress echo while reading password from terminal ... GETPASS(3C)

suspend execution for interval .. SLEEP(3C)

suspend or resume auditing on current process ... AUDSWITCH(2)

suspend process until signal ... PAUSE(2)

swab - swap bytes ... SWAB(3C)

swap bytes .. SW AB(3C)

swap device for interleaved paging/swapping, add a .. SWAPON(2)

swapon - add a swap device for interleaved paging/swapping .. SWAPON(2)

swapping, file system .. SWAPON(2)

swapping/paging, add a swap device for interleaved .. SWAPON(2)

symbolic link, read value of ... READLINK(2)

symbolic link to a file, make a ... SYMLINK(2)

symlink - make symbolic link to a file .. SYMLINK(2)

synchronize a file's in-core state with its state on disk .. FSYNC(2)

synchronous I/0 multiplexing .. SELECT(2)

sync, lsync - update super-block ... SYNC(2)

sysconf - get configurable system variables .. SYSCONF(2)

sys_errlist - system error messages .. PERROR(3C)

syslog - write message onto system log file ... SYSLOG(3C)

594 (Index) - 36- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
sys_nerr - system error messages ... PERROR(3C)
system, boot .. REBOOT(2)
system calls and events currently being audited, get ... GETEVENT(2)
system calls and events to be audited .. SETEVENT(2)
system calls, BSD-4.2-compatible kill, sigvec, and signal BSDPROC(2)
system-calls error indicator .. ,', ERRNO(2)
system calls, introduction to ... INTRO(2)
system clock date and time, get or set ... GETTIMEOFDA Y(2)
system error messages .. PERROR(3C)
system - issue a shell command .. SYSTEM(3S)
system log, control ... SYSLOG(3C)
system variables, get configurable ... SYSCONF(2)
table, eliminate duplicate entries in a ... LSEARCH(3C)
table, linear search for entry; optional update if missing .. LSEARCH(3C)
tables, binary search routine for sorted ... BSEARCH(3C)
tables, hash search, manage .. HSEARCH(3C)
tangent trigonometric function .. TRIG(3M)
tanh - hyperbolic tangent function .. SINH(3M)
tan - trigonometric tangentfunction ... TRIG(3M)
tcdrain: tty line control function ... TCCONTROL(3C)
tcflow: tty line control function ... TCCONTROL(3C)
tcflush: tty line control function .. TCCONTROL(3C)
tcgetattr: get tty device operating parameters .. TCATTRIBUTE(3C)
tcgetpgrp: get foreground process group ID .. TCGETPGRP(3C)
tcsendbreak: tty line control function .. TCCONTROL(3C)
tcsetattr: set tty device operating parameters ... TCATTRIBUTE(3C)
tcsetpgrp: get foreground process group ID ... TCSETPGRP(3C)
tdelete - delete a node from a binary search tree .. TSEARCH(3C)
telldir - get current location of named directory stream ... DIRECTORY(3C)
tempnam - create a name for a temporary file ... TMPNAM(3S)
temporary file, create a name for ... TMPNAM(3S)
temporary file, create a .. TMPFILE(3S)
temporary (unique) file name, make a ... MKTEMP(3C)
termcap access routines, emulate jetcj ... TERMCAP(3X)
terminal block-mode library interface .. BLMODE(3C)
terminal, find name of ... TTYNAME(3C)
terminal, generate file name of controlling ... CTERMID(3S)
terminal I/O, block-mode library interface for .. BLMODE(3C)
terminal line connection, establish an out-bound ... DIAL(3C)
terminal, read password from while suppressing echo .. GETPASS(3C)
terminated, determine how last I/O read .. IO_GELTERM_REASON(3I)
terminate, wait for child or traced process to stop or ... WAIT(2)
termination character on special file, set up I/O read ... IO_EOL_CTL(3I)
termination, register a function to be called at program ... ATEXIT(2)
test contents of memory area ... MEMORY(3C)
test for INFINITY function .. ISINF(3M)
test for NaN function ... ISNAN(3M)
test, initialize, and manipulate signal sets .. SIGSETOPS(3C)
text, data, or process, lock in memory .. PLOCK(2)
tfind - get data pointer for binary search tree ... TSEARCH(3C)

HP-UX Release 7.0: September 1989 - 37- (Index) 595

Index
Volume 2

Description Entry Name(Section)
tgetent - get compiled terminfo data base entry into buffer .. TERMCAP(3X)
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - emulate /etc/termcap access routines TERMCAP(3X)
tgetflag - get availability of compiled boolean terminal capability .. TERMCAP(3X)
tgetnum - get numeric value of compiled terminal capability .. TERMCAP(3X)
tgetstr - get string value of compiled terminal capability ... TERMCAP(3X)
tgoto - get compiled terminal cursor addressing string .. TERMCAP(3X)
three-byte integers and long integers, convert between ... L3TOL(3C)
time and date, convert to string ... CTIME(3C)
time and date, convert to string .. STRFTIME(3C)
time and date, get more precisely (Version 7 compatibility only) .. FTIME(2)
time and date, get or set system clock ... GETTIMEOFDA Y(2)
time and date, set .. STIME(2)
time, get ... TIME(2)
time - get time .. TIME(2)
time limit for I/O operations, set .. 10_ TIMEOULCTL(31)
timeout limit for I/0 operations, set .. 103IMEOULCTL(31)
time profile, execution .. PROFIL(2)
timer, set or get value of process interval ... GETITIMER(2)
times, file access and modification, set or update ... UTIME(2)
times - get process and child process times .. TIMES(2)
times, get process and child process ... TIMES(2)
time used, 'report CPU .. CLOCK(3C)
timezone - difference between GMT and local timezone ... CTIME(3C)
tmpfile - create a temporary file ... TMPFlLE(3S)
tmpnam - create a name for a temporary file ... TMPNAM(3S)
toascii - translate characters to 7 -bit ASCII ... CONV(3C)
tolower, _tolower - translate characters to lowercase ... CONV(3C)
tools to process 16-bit characters .. NL_TOOLS_16(3C)
toupper, _toupper, - translate characters to uppercase ... CONV(3C)
tputs - decode terminal string padding information ... TERMCAP(3X)
traced process to stop or terminate, wait for child or ... WAIT(2)
trace, process ... PTRACE(2)
transfer speed, inform system of required minimum I/O .. 10_SPEED_CTL(31)
translate character code to another code set ... ICONV(3C)

translate characters for use with NLS (obsolete - useCONV(3C» ... NL_CONV(3C)
translate characters ... HANKAKUZENKAKU(3X)
translate characters .. KUTENZENKAKU(3X)
translate characters ... ROMAJIHIRAGANA(3X)
translate characters ... HIRAGANAKATAKANA(3X)
translate characters to uppercase, lowercase, or 7 -bit ASCII .. CONV(3C)
traverse a binary search tree .. TSEARCH(3C)
traverse (walk) a file tree , .. FTW(3C)
tree, manage a binary search ... TSEARCH(3C)
tree, walk a file ... FTW(3C)
triangle, right, hypoteneuse of a .. HYPOT(3M)
trigonometric functions, hyperbolic .. SINH(3M)
trigonometric functions .. TRIG(3M)
true, wait until the requested status condition becomes ... HPIB_STATUS_WAIT(31)
truncate an existing file to zero for rewriting .. CREAT(2)
truncate, [truncate - truncate a file to a specified length ... TRUNCATE(2)

596 (Index) - 38- HP-UX Release 7.0: September 1989

Index
Volume 2

Description Entry Name(Section)
tsearch - build and access a binary search tree ... TSEARCH(3C)

tty baud rate, set or get ... CFSPEED(3C)

tty device operating parameters, get or set .. TCATTRIBUTE(3C)

tty line control functions ... TCCONTROL(3C)

ttyname, isatty - find name of a terminal .. TTYNAME(3C)

ttyslot - find the slot in the uimp file of the current user .. TTYSLOT(3C)

twalk - traverse a binary search tree .. TSEARCH(3C)

type, classify characters according to ... CTYPE(3C)

type of NLS characters, classify .. NL_CTYPE(3C)

tzname - name of local time zone .. CTIME(3C)

tzset - initialize timezone, daylight, and tzname using TZ variable .. CTIME(3C)

UID, get name from (obsolete) .. GETPW(3C)

UJIS, JIS and Shift JIS code conversion routines .. JCODE(3X)

ujtojis, ujtosj - JIS, Shift JIS and UJIS code conversion ... JCODE(3X)

ulimit - get or set file size limits and break value .. ULIMIT(2)

ultoa; convert unsigned long integer to ASCII decimal ... LTOSTR(3C)

ultostr; convert unsigned long integer to string .. LTOSTR(3C)

umask - set and get file creation (permissions) mask ... UMASK(2)

umount - unmount a file system ... UMOUNT(2)

uname - get name and version of current HP-UX system .. UNAME(2)

undial, dial - establish an out-bound terminal line connection .. DIAL(3C)

ungetc - push character back into input stream .. UNGETC(3S)

unique (usually temporary) file name, make a .. MKTEMP(3C)

unlink - remove directory entry; delete file .. UNLINK(2)

unlock or lock an I/O interface ... IO_LOCK(3I)

unmount a file system .. UMOUNT(2)

unsigned long integer to string, convert .. LTOSTR(3C)

update or set file access and modification times ... UTIME(2)

update super-block ... SYNC(2)

update table if entry missing after search ... LSEARCH(3C)

uppercase, translate characters to ... CONV(3C)

user, current, find the slot in the utmp file of the ... TTYSLOT(3C)

user dictionaries, Japanese language, manage ... LUD_SEARCH(3X)

user ID, get real or effective .. GETUID(2)

user ID, set .. SETUID(2)

user login name, get character-string representation of .. CUSERID(3S)

user login name, obtain .. LOGNAME(3C)

user or group IDs, set real, effective, and/or saved ... SETRESUID(2)

user's effective access rights to a file, get a ... GETACCESS(2)

ustat - get mounted file system statistics ... USTAT(2)

utime - set or update file access and modification times ... UTIME(2)

utmp file of the current user, find the slot in the .. TTYSLOT(3C)

utmp, get pointer to login name in .. GETLOGIN(3C)

utmpname - change name of utmp file being examined ... GETUT(3C)

utmp or wtmp file, access ... GETUT(3C)

value, change or add to environment ... PUTENV(3C)

value, get or set file size limits and break .. ULIMIT(2)

value occurs, wait until a particular parallel poll .. HPIB_WAILON_PPOLL(3I)

value of process interval timer, set or get ... GETITIMER(2)

value, return integer absolute .. ABS(3C)

HP-UX Release 7.0: September 1989 - 39- (Index) 597

Index
Volume 2

Description Entry Name(Section)
varargs argument, formatted input conversion to a ... VSCANF(3S)

varargs argument list, print formatted output of a .. VPRINTF(3S)

variable, environment, search environment list for vaiue of .. GETENV(3C)

variables, configurable pathname, get .. PATHCONF(2)

variables, system, get configurable .. SYSCONF(2)

vector, get option letter from argument .. GETOPT(3C)

verify program assertion ... ASSERT(3X)

version and name of current HP-UX system, get ... UNAME(2)

vfork - spawn new process in a virtual memory efficient way ... VFORK(2)

vfprintf - print formatted output of a varargs argument list .. VPRINTF(3S)

vfseanf - formatted input conversion to a varargs argument .. VSCANF(3S)

vfsmount - mount a file system .. VFSMOUNT(2)

virtual memory efficient way, spawn new process in a ... VFORK(2)

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list VPRINTF(3S)

vseanf - formatted input conversion to a varargs argument ... VSCANF(3S)

vsprintf - print formatted output of a varargs argument list .. VPRINTF(3S)

vsseanf - formatted input conversion to a varargs argument .. VSCANF(3S)

wait for a signal ... SIGSUSPEND(2)

wait for interrupt, atomically release blocked signals and .. SIGPAUSE(2)

wait until a particular parallel poll value occurs ... HPIB_WAILON_PPOLL(3I)

wait until the requested status condition becomes true .. HPIB_STATUS_WAIT(3I)

wait, waitpid, wait3 - wait for child or traced process to stop or terminate WAIT(2)

walk a file tree .. FTW(3C)

WCHARADV, PCHARADV (obsolete) - put character in memory and advance pointer NL_TOOLS_16(3C)

WCHAR, PCHAR (obsolete) - put 8- or 16-bit character in memory NL_TOOLS_16(3C)

width (in bits) of data path, set .. IO_WIDTH_CTL(3I)

word from a stream file, get character or data .. GETC(3S)

word or character, put on a stream ... PUTC(3S)

working directory, change .. CHDIR(2)

working directory, get path-name of current .. GETCWD(3C)

write a null-terminated string on a stream .. PUTS(3S)

write audit record for self-auditing process .. AUDWRITE(2)

write password file entry ... PUTPWENT(3C)

write/read file pointer, move .. LSEEK(2)

write secure password file entry ... PUTSPWENT(3C)

writev - write non-contiguous data to a file ... WRITE(2)

write - write contiguous data to a file ... WRITE(2)

writing or reading, open file for .. OPEN(2)

wtmp or utmp file, access ... GETUT(3C)

yO - Bessel function .. BESSEL(3M)

yl - Bessel function .. BESSEL(3M)

yn - Bessel function .. BESSEL(3M)

ZenkakuHankaku - translate characters ... HANKAKUZENKAKU(3X)

598 (Index) - 40- HP-UX Release 7.0: September 1989

